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ABSTRACT

Deep generative models such as Variational AutoEncoder (VAE) and Generative
Adversarial Network (GAN) play an increasingly important role in machine learn-
ing and computer vision. However, there are two fundamental issues hindering
their real-world applications: the difficulty of conducting variational inference in
VAE and the functional absence of encoding real-world samples in GAN. In this
paper, we propose a novel algorithm named Latently Invertible Autoencoder (LIA)
to address the above two issues in one framework. An invertible network and its
inverse mapping are symmetrically embedded in the latent space of VAE. Thus the
partial encoder first transforms the input into feature vectors and then the distri-
bution of these feature vectors is reshaped to fit a prior by the invertible network.
The decoder proceeds in the reverse order of the encoder’s composite mappings.
A two-stage stochasticity-free training scheme is designed to train LIA via adver-
sarial learning, in the sense that the decoder of LIA is first trained as a standard
GAN with the invertible network and then the partial encoder is learned from an
autoencoder by detaching the invertible network from LIA. Experiments conducted
on the FFHQ face dataset and three LSUN datasets validate the effectiveness of
LIA for inference and generation1.

1 INTRODUCTION

Deep generative models play a more and more important role in cracking challenges in computer
vision as well as in other disciplines, such as high-quality image generation (Isola et al., 2017;
Zhu et al., 2017; Karras et al., 2018a;b; Brock et al., 2018), text-to-speech transformation (van den
Oord et al., 2016a; 2017), information retrieval (Wang et al., 2017), 3D rendering (Wu et al., 2016;
Eslami et al., 2018), and signal-to-image acquisition (Zhu et al., 2018). Overall, the generative
models fall into four categories: autoencoder and its most important variant of Variational Auto-
Encoder (VAE) (Kingma & Welling, 2013), auto-regressive models (van den Oord et al., 2016b;a),
Generative Adversarial Network (GAN) (Goodfellow et al., 2014), and normalizing flows (NF) (Tabak
& Vanden-Eijnden, 2010; Tabak & Turner, 2013; Rezende & Mohamed, 2015).

Here we compare these models through the perspective of data dimensionality reduction and recon-
struction. To be formal, let x be a data point in the dx-dimensional observable space Rdx and y be
its corresponding low-dimensional representation in the feature space Rdy . The general formulation
of dimensionality reduction is

f : Rdx → Rdy , x 7→ y = f(x),

where f(·) is the mapping function and dy � dx. The manifold learning aims at requiring f under
various constraints on y (Tenenbaum1 et al., 2000; Roweis & Saul, 2000). However, the sparsity of
data points in high-dimensional space often leads to model overfitting, thus necessitating research on
opposite mapping from y to x, i.e.

g : Rdy → Rdx , y 7→ x = g(y),

where g(·) is the opposite mapping function with respect to f(·), to reconstruct the data. In general,
the role of g(·) is a regularizer to f(·) or a generator to produce more data. The autoencoder is

1We will make source code of LIA publicly available
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of mapping x
f7→ y

g7→ x̃. A common assumption in autoencoder is that the variables in low-
dimensional space are usually sampled from a prior distribution P(z;θ) such as uniform or Gaussian.
To differentiate from y, we let z represent the low-dimensional vector following the prior distribution.
Thus we can write

g : Rdz → Rdx , z 7→ x = g(z), z ∼ P(z;θ).

It is crucial to establish such dual maps z = f(x) and x = g(z). In the parlance of probability, the
process of x 7→ z = f(x) is called inference, and the other procedure of z 7→ x = g(z) is called
sampling or generation. VAE is capable of carrying out inference and generation in one framework
by two collaborative functional modules. However, it is known that in many cases VAEs are only
able to generate blurry images due to the imprecise variational inference. To see this, we write the
approximation of the marginal log-likelihood

log p(x) = log

∫
p(x|z)p(z)dz ≥ −KL[q(z|x)||p(z)] + Eq[log p(x|z)], (1)

where KL[q(z|x)||p(z)] is the Kullback-Leibler divergence with respect to posterior probability
q(z|x) and prior p(z). This lower-bound log-likelihood usually produces imprecise inference.
Furthermore, the posterior collapse frequently occurs when using more sophisticated decoder mod-
els (Bowman et al., 2015; Kingma et al., 2016). These two issues greatly limit the generation
capability of the VAE. On the other hand, GAN is able to achieve photo-realistic generation re-
sults (Karras et al., 2018a;b). However, its critical limitation is the absence of the encoder f(x) for
carrying inference on real images. Effort has been made on learning an encoder for GAN under
the framework of VAE, however the previous two issues of learning VAE still exist. Normalizing
flows can perform the exact inference and generation with one architecture by virtue of invertible
networks (Kingma & Dhariwal, 2018). But it requires the dimension dx of the data space to be
identical to the dimension dz of the latent space, thus posing computational issues due to high
complexity of learning deep flows and computing the Jacobian matrices.

Inspired by recent success of GANs (Karras et al., 2018a;b) and normalizing flows (Kingma et al.,
2016; Kingma & Dhariwal, 2018), we develop a new model called Latently Invertible Autoencoder
(LIA). LIA utilizes an invertible network to bridge the encoder and the decoder of VAE in a symmetric
manner. We summarize its key advantages as follows:

• The symmetric design of the invertible network brings two benefits. The prior distribution
can be exactly fitted from an unfolded feature space, thus significantly easing the inference
problem. Besides, since the latent space is detached, the autoencoder can be trained without
variational optimization thus there is no approximation here.
• The two-stage adversarial learning decomposes the LIA framework into a Wasserstein GAN

(only a prior needed) and a standard autoencoder without stochastic variables. Therefore
the training is deterministic2, implying that the model will be not affected by the posterior
collapse when the decoder is more complex or followed by additional losses such as the
adversarial loss and the perceptual loss.
• We compare LIA with state-of-the-art generative models on inference and generation/recon-

struction. The experimental results on FFHQ and LSUN datasets show the LIA achieves
superior performance on inference and generation.

2 LATENTLY INVERTIBLE AUTOENCODER

The neural architecture of LIA is designed such that the data distribution can be progressively unrolled
from a complex or manifold-valued one to a given simple prior. We now describe the detail as follows.

2.1 NEURAL ARCHITECTURE OF LIA

Framework of LIA is based on the classic VAE and the realization of normalizing flow. As shown in
Figure 1f, we symmetrically embed an invertible neural network in the latent space of VAE, following
the diagram of mapping process as

2The “deterministic” and “stochasticity-free” in this paper refer to the second-stage training, i.e. the learning
of the inference process.
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(f) neural architecture of LIA

Figure 1: Latently invertible autoencoder (LIA). LIA consists of five functional modules: an encoder
to unfold the manifold y = f(x), an invertible network φ to reshape feature embeddings to match
the prior distribution z = φ(x) and φ−1 to map latent variables to feature vectors y = ψ−1(z), a
decoder to produce output x̃ = g(ỹ), a feature extractor ε to perform reconstruction measure, and a
discriminator c to distinguish real/fake distributions .

encoder︷ ︸︸ ︷
x

f7−→ y ↔ y
φ17→ z1 · · · zk−1

φk7→︸ ︷︷ ︸
invertible network

zk

decoder︷ ︸︸ ︷
φ−1
k7→ zk−1 · · · z1

φ−1
17→ y︸ ︷︷ ︸

invertible network

↔ y
g7−→ x̃, (2)

where φ = φ1 ◦ · · · ◦ φk denotes the deep composite mapping of normalizing flow with depth k.
LIA first performs nonlinear dimensionality reduction on the input data x and transform them into
the low-dimensional feature space Rdy . The role of f(x) for LIA can be regarded to unfold the
underlying data manifold, as illustrated in Figures 1a and 1b. Therefore, the Euclidean operations
such as linear interpolation and vector arithmetic are reliable in this feature space. Then we establish
an invertible mapping φ(y) from the feature y to the latent variable z, as opposed to the VAEs
that directly map original data to latent variables. The feature y can be exactly recovered via the
invertibility of φ from z, which is the advantage of using invertible networks. The recovered feature
y is then fed into a partial decoder g(y) to generate the corresponding data x̃. If the maps φ and φ−1

of the invertible network are bypassed, it comes back as a standard autoencoder, i.e. x
f7→ y

g7→ x̃.

In general, any invertible networks are applicable in the LIA framework. We find in practice that a
simple invertible network is sufficiently capable of constructing the mapping from the feature space
Rdy to the latent space Rdz . Let x = [xt;xb] and z = [zt; zb] be the forms of the top and bottom
fractions of x and z, respectively. Then the invertible network (Dinh et al., 2015) can be built as
follows,

zt = xt, zb = xb + τ(xt), (3)
xt = zt, xb = zb − τ(zt), (4)

where τ is the transformation that can be an arbitrary differentiable function. Alternatively, one can
attempt to exploit the complex invertible network with affine coupling mappings for more challenging
tasks (Dinh et al., 2017; Kingma & Dhariwal, 2018). As conducted in (Dinh et al., 2015), we set τ as
a multi-layer perceptron with the leaky ReLU activation.

2.2 RECONSTRUCTION LOSS AND ADVERSARIAL LEARNING

To guarantee the precise reconstruction x̃, the conventional way by (variational) autoencoders is
to use the distance ‖x − x̃‖ or the cross entropy directly between x and x̃. Here, we utilize the
perceptual loss that is proven to be more robust to variations of image details (Johnson et al., 2016).
Let ε denote the feature extractor, e.g. VGG (Simonyan & Zisserman, 2014). Then we can write the
loss

L(ε,x, x̃) = ‖ε(x)− ε(x̃)‖2. (5)
It suffices to emphasize that the functionality of ε here is in essence to produce the representations of
the input x and the output x̃. The acquisition of ε is fairly flexible. It can be attained by supervised or
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(a) Decoder training. (b) Encoder training.

Figure 2: Detaching the functional modules of LIA for two-stage training.

unsupervised learning, meaning that ε can be trained with class labels or without class labels (van den
Oord et al., 2018).

The norm-based reconstruction constraints usually incur the blurry image generation in autoencoder-
like architectures. This problem can be handled via the adversarial learning (Goodfellow et al., 2014).
To do so, a discriminator c is employed to balance the loss of the comparison between x and x̃. Using
the Wasserstein GAN (Arjovsky et al., 2017; Gulrajani et al., 2017), we can write the optimization
objective as

L(c,x, x̃) = E
x̃∼Px̃

[c(x̃)]− E
x∼Px

[c(x)] +
γ

2
E

x∼Px

[
‖∇xc(x)‖2`2

]
, (6)

where Px and Px̃ denote the probability distributions of the real data and the generated data, respec-
tively. γ is the hyper-parameter of the regularization. The R1 regularizer is formulated in (Mescheder
et al., 2018), which is proven more stable for training convergence.

3 TWO-STAGE STOCHASTICITY-FREE TRAINING

Training deep models usually follows an end-to-end fashion for the whole architecture. To backprop-
agate gradients through random variables for VAE, the reparameterization trick is harnessed (Kingma
& Welling, 2013), i.e. z = µ + σ ∗ N (0,1), where µ is the mean and σ the standard deviation.
The regularization of coupling the prior and the posterior is the KL divergence used to optimize the
parameters of the encoder by backpropagation. For our framework, however, we find that this end-
to-end learning strategy cannot lead the algorithm to converge to a satisfactory optima. To proceed,
we propose a scheme of two-stage stochasticity-free training, which decomposes the framework into
two parts that can be well trained end-to-end respectively, as shown in Figure 2. At the first step, the
decoder of LIA is trained using adversarial learning with invertible network to acquire the ability of
high-quality generation. At the second step, the invertible network that connects feature space and
latent space is detached from the architecture, reducing the framework to a standard autoencoder
without variational inference. Thus this two-stage design prevents the posterior collapse issue while
facilitates the decoder with more complex structure as well as adversarial loss for high-resolution
image generation.

3.1 DECODER TRAINING

ProGAN (Karras et al., 2018a), StyleGAN (Karras et al., 2018b), and BigGAN (Brock et al., 2018) are
capable of generating photo-realistic images from random noise sampled from some prior distribution.
Then it is naturally supposed that such GAN models are applicable to recover a precise x̃ if we can
find the latent variable z for the given x. Namely, we may train the associated GAN model separately
in the LIA framework. To conduct this, we single out a standard GAN model for the first-stage
training, as displayed in Figure 2a. Here z is directly sampled from a prior distribution. According to
the principle of Wasserstein GAN, the optimization objective can be written as

{φ∗, g∗, c∗} = min
φ,g

max
c
L(c,x, x̃), (7)

where the superscript ∗ denotes that the parameters of corresponding mappings have already been
learned. It is worth noting that the role of the invertible network here is just its transformation
invertibility. We do not pose any constraints on the probabilities of z and φ(y) in contrast to
normalizing flows. Our strategy of attaching an invertible network in front of the generator can be
potentially applied to any GAN models.
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3.2 ENCODER TRAINING

In the LIA architecture, the invertible network is embedded in the latent space in a symmetric fashion,
in the sense that f(x) = y = φ−1(z). The unique characteristic of the invertible network allows us to
detach the invertible network φ from the LIA framework. Thus we attain a conventional autoencoder
without stochastic variables, as shown in Figure 2b. In practice, the feature extractor ε in perceptual
loss is the VGG weight up to conv4 pretrained on the ImageNet dataset. After the first-stage encoder
training, the parameter of f is needed to be learned as

f∗ = min
f
βL(ε∗,x, x̃) + L(c∗,x, x̃), (8)

where β is the hyper-parameter. The above optimization serving to the architecture in Figure 2b is
widely applied in computer vision. It is the backbone framework of various GANs for diverse image
processing tasks (Isola et al., 2017; Zhu et al., 2017). For LIA, however, it is much simpler because
we only need to learn the partial encoder f . This simplicity brought by the two-stage training is able
to enforce the encoder to converge with more precise inference.

4 RELATED WORK

Our LIA model is relevant to the works that solve the inference problem for VAEs with adversarial
learning as well as the works that design encoders for GANs. The integration of GAN with VAE can
be traced back to the work of VAE/GAN (Larsen et al., 2016) and implicit autoencoders (Makhzani
et al., 2015; Makhani, 2018). These methods encounter the difficulty of end-to-end training, because
the gradients are prone to becoming unstable after going through the latent space in deep complex
architectures (Bowman et al., 2015; Kingma et al., 2016). Besides, there is an intriguing attempt
of training VAE in the adversarial manner (Ulyanov et al., 2017; Heljakka et al., 2018). These
approaches confront the trade-off between the roles of the encoder that performs inference and
compares the real/fake distributions. This is difficult to tune. So we prefer the complete GAN with an
indispensable discriminator.

The closely related works to LIA are the models of combining VAE and the inverse autoregressive
flow (Kingma et al., 2016) and the latent-flow-based VAE approach that are VAEs with latent
variables conditioned by normalizing flows (Su & Wu, 2018; Xiao et al., 2019). These three models
all need to optimize the posterior probability of normalizing flows, which is essentially different
from our deterministic optimization in LIA. The stochasticity-free training is directly derived from
the symmetric design of the invertible network in the latent space, which is different from (Kingma
et al., 2016) and (Su & Wu, 2018; Xiao et al., 2019). There are alternative attempts of specifying the
generator of GAN with normalizing flow (Grover et al., 2017) or mapping images into feature space
with partially invertible network (Lucas et al., 2019). These approach suffers from high complexity
computation for high dimensions. The approach of two-stage training in (Luo et al., 2017) is incapable
of solving the posterior estimation.

It worth noticing that the reconstruction task we focus here is different to the recent work of
representation learning which learns features for recognition using adversarial inference (Dumoulin
et al., 2017; Jeff Donahue, 2017; Donahue & Simonyan, 2019). Our primary goal is to faithfully
reconstruct real images from the latent code.

5 EXPERIMENTS

For experimental setup, we instantiate the decoder of LIA with the generator of StyleGAN (Karras
et al., 2018b). The difference is that we replace the mapping network (MLP) in StyleGAN with the
invertible network. The layer number of the invertible network is 8. The hyper-parameters for the
discriminator are γ = 10 (equation (6)) and β = 0.001 (equation (8)). For perceptual loss in equation
(5), we take ε = conv4_3 from the VGG weight.

The generative models we compare are the MSE-based optimization methods (Radford et al., 2016;
Berthelot et al., 2017; Lipton & Tripathi, 2017)3, the adversarially learned inference (ALI) (Dumoulin
et al., 2017), and the adversarial generator-encoder (AGE) network (Ulyanov et al., 2017). To evaluate

3We use the code at https://github.com/Puzer/stylegan-encoder.

5

https://github.com/Puzer/stylegan-encoder


Under review as a conference paper at ICLR 2020

FFHQ LIA (ours) ALI AGE MSE-based Encoded

Figure 3: Reconstructed faces by generative models on FFHQ database.

Table 1: Quantitative comparison of image reconstruction.

Metric LIA (ours) ALI AGE MSE-based optimization Encoded StyleGAN
FID 16.88 74.98 118.88 44.79 22.26
SWD 10.01 15.09 38.70 43.44 15.82
MSE 18.10 32.61 29.91 18.81 23.18

the necessity of the invertible network, we also train an encoder and a StyleGAN with its original
multi-layer perceptron, which is the last column in Figure 3. The two-stage training scheme is used
as LIA does. The generator and discriminator of the StyleGAN is exactly same to that of StyleGAN.

For quantitative evaluation metrics, we use Fréchet inception distance (FID), sliced Wasserstein
distance (SWD), and mean square error (MSE). These three metrics are commonly used to measure the
numerical accuracy of generative algorithms (Ulyanov et al., 2017; Karras et al., 2018a; Jeff Donahue,
2017; Karras et al., 2018b). We directly use the code released by the authors of ProGAN (Karras
et al., 2018a). The prior for z is Gaussian and the dimension is 512.

Figure 4: Manipulating reconstructed faces. The algorithm in (Shen et al., 2019) is applied to
manipulate the image reconstructed from the latent code w given by LIA. Each row shows the
original image, the reconstruction, glass, pose, gender, smile, and age.

5.1 FFHQ FACE DATABASE

All models are first tested on the Flickr-Faces-HQ (FFHQ) database4 created by the authors of
StyleGAN as the benchmark. FFHQ contains 70,000 high-quality face images. We take the first
65,000 faces as the training set and the remaining 5,000 faces as the reconstruction test according to
the exact order of the dataset. We do not split the dataset by random sampling for interested readers
can precisely reproduce all the reported results with our experimental protocol.

4https://github.com/NVlabs/ffhq-dataset
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Figure 5: The exemplar real images of objects and scenes from LSUN database and their reconstructed
images by LIA. Three categories are tested, i.e. cat, bedroom, and car. For each group, the first row is
the original images, the second row shows the reconstructed images.

Figure 3 shows the reconstructed faces of all models. It is clear that LIA significantly outperforms
others. The reconstructed faces by ALI and AGE look correct, but the quality is mediocre. The ideas
of ALI and AGE are elegant. Their performance may be improved with the new techniques such
as progressive growing of neural architecture or style-based one. The method of the MSE-based
optimization produces facial parts of comparable quality with LIA when the faces are normal. But
this approach fails when the variations of faces become large. For example, the failure comes from
the long fair, hats, beard, and large pose. The interesting phenomenon is that the StyleGAN with
encoder only does not succeed in recovering the target faces using the same training strategy as LIA,
even though it is capable of generating photo-realistic faces in high quality due to the StyleGAN
generator. This indicates that the invertible network plays the crucial role to make the LIA work. The
quantitative result in Table 1 shows the consistent superiority of LIA. More reconstruction results are
included in Appendix A.5. The reconstruction from LIA facilitates semantic photo editing. Figure 4
shows the manipulation results on reconstructed faces. More results can be found in Appendix A.7.
The interpolation and style mixing are also displayed for reference in Appendix A.2.

Figure 6: Interpolation on objects in the LSUN database.

5.2 LSUN DATABASE

To further evaluate LIA on the data with large variations, we use the three categories from the
large-scale LSUN database (Yu et al., 2015), i.e. cat, car, and bedroom. For each category, the 0.1
million images are selected by ranking algorithm (Zhou et al., 2003) from the first 0.5 million images
in the dataset. Each cat and bedroom images are resized to be 128× 128 and the size of the car image
is 128× 96 for training. We take subsets because it does not take too long for training to converge
while still maintains the data complexity. These subsets will be made available for evaluation.

Figure 5 shows that the reconstructed objects by LIA faithfully maintain the semantics as well as
the appearance of the original ones. For example, the cats’ whiskers are recovered, indicating that
LIA is able to recover very detailed information. More results are attached in Appendix A.6. We
can see that LIA significantly improves the reconstruction quality. The improvement mainly comes
from the two-stage training of LIA. The decoder trained with adversarial learning guarantees that
the generated images are photo-realistic. The encoder deterministically trained with perceptual and
adversarial losses ensures that latent feature vectors can be obtained more precisely. This two-stage
training is enabled by the design that the invertible network detachs the encoder and decoder, thus
avoiding the optimization of the posterior probability when learning the encoder. Figure 6 shows the
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Figure 7: Illustration of gradients and losses for training encoders on FFHQ dataset. For VAE, the
decoder is exactly the generator of StyleGAN. The two-stage training of VAE is the same as that of
LIA. The first and last layers in (a) and (b) refer to the neural architecture of the encoder. The y-axis
indicates the average value of the gradients. The x-axis is re-scaled by 10,000. The gradients for
LIA case are much more stable than the ones for VAE. The gradient of middle layer is also shown in
Appendix A.8.

interpolation results on those reconstructed objects. More results are included in Appendix A.3. The
experimental results on FFHQ and LSUN databases verify that the symmetric design of the invertible
network and the two-stage training successfully handles the issue of inference.

5.3 WHY THE INVERTIBLE NETWORK MATTERS?

To further reveal the importance of the invertible network in LIA, we investigate the gradients of
the encoders under two different cases of decoders when learning the encoder in the two-stage
training. The first case is to directly apply the KL-divergence to optimize the random latent space

as VAE does. The mapping of the encoder and the decoder is x
f7→ z

ϕ7→ y
g7→ x̃, where ϕ is the

mapping network (MLP) in StyleGAN. This is the conventional way of learning encoders for GAN
algorithms via variational inference. The second one is our architecture of LIA for the second-stage

training, i.e. x
f7→ y

g7→ x̃, where the latent space is removed due to the symmetric design of the
invertible network. Figure 7 clearly illustrates the difference of gradients between these two cases.
The gradient volatility for variational inference is high and the associated loss is not effectively
reduced, meaning that the gradients during training are noisy and not always informative. This may
indicate that the stochasticity in latent space causes problems for training encoder via variational
inference. Instead, the encoder’s gradients for LIA are rather stable across different layers and the loss
decreases monotonically, showing the importance of the stochasticity-free training and the invertible
network.

6 CONCLUSION

A new generative model, named Latently Invertible Autoencoder (LIA), has been proposed for
generating image sample from a probability prior and simultaneously inferring accurate latent code
for a given sample. The core idea of LIA is to symmetrically embed an invertible network in an
autoencoder. Then the neural architecture is trained with adversarial learning as two decomposed
modules. With the design of two-stage training, the decoder can be replaced with any GAN generator
for high-resolution image generation. The role of the invertible network is to remove any probability
optimization and bridge the prior with unfolded feature vectors. The effectiveness of LIA is validated
with experiments of reconstruction (inference and generation) on FFHQ and LSUN datasets.

It is still challenging to faithfully recover all the image content especially when the objects or scenes
have unusual parts. For example, LIA fails to recover the hand appeared at the top of the little girl
(the second row in Figure 3). Besides, the Bombay cat’s necklace (the second row in Figure 5) is
missed in the reconstructed image. These features belong to multiple unique parts of the objects or
scenes, which are difficult for the generative model to capture. One possible solution is to raise the
dimension of latent variables (e.g. using multiple latent vectors) or employ the attention mechanism
to highlight such unusual structures in the decoder, which is left for future work.
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A APPENDIX

A.1 GENERATION RESULTS

We compare the generation results of StyleGAN and LIA. For the decoder (generator), the difference
between these two models is the mapping network. To be specific, the architecture of StyleGAN
generator is of form

z
MLP7−→ y

g7−→ x̃, (9)

where MLP is multi-layer perceptron. The LIA decoder consists of mappings

z
φ−1

7−→ y
g7−→ x̃, (10)

where φ is the invertible network. We follow the experimental setting of StyleGAN (Karras et al.,
2018b) to compute the FIDs. We first generate 50,000 fake faces and then randomly sample another
50,000 real faces. The FID is computed with these two datasets. Table 2 and Figure 8 show that the
performance of StyleGAN and LIA is comparably good. The benefit of using the invertible network
is to facilitate the training of the encoder for inference.

Table 2: FIDs of generative results.

Algorithm FFHQ Cat Car Bedroom
StyleGAN 6.23 7.36 3.09 4.88
LIA 6.28 7.08 2.52 4.36
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Figure 8: Generative results by StyleGAN and LIA. For each group of objects, the first row shows
the generative results obtained by StyleGAN and the second row by LIA.
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A.2 FACE INTERPOLATION AND STYLE MIXING

Examining the interpolation in the latent feature space is an effective way of visualizing the capability
of generative models as well as measuring how well it fits the underlying data distribution. Here we
compare the three algorithms. As shown in Figure 9, LIA achieves smoother interpolation result
while well preserve the facial properties. The interpolation quality of the MSE-based optimization is
actually based on the reconstruction performance because it has a good generator (StyleGAN). The
intermediate interpolation result from Glow deviates from real faces.

Figure 9: Interpolation results by three generative models. The first row shows the result of LIA
(ours), the second row that of the MSE-based optimization, and the last row that of Glow. The first
and last faces in the Glow result are the real face images of FFHQ.

We further perform style mixing using a small set of reconstructed faces. Style mixing is conducted
using the same approach presented in (Karras et al., 2018b). The difference is that LIA uses the real
faces thanks to its encoding capability. Figure 10 shows that our algorithm can infer accurate latent
codes and generate high-quality mixed faces.

Figure 10: Style mixing for real faces. The faces in the first row are the source faces where the style
comes from.
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A.3 OBJECT INTERPOLATION

FFHQ Faces

Cat

Car

Bedroom
Figure 11: Interpolation on FFHQ faces and objects in the LSUN database.
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A.4 DISENTANGLEMENT ILLUSTRATION

Figure 12: Interpolation with the latent code z and the featurew. For each group, the first row shows
the result with z and the second row shows the result with w.
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Figure 13: Generated faces along the optimization path with the latent code z and the feature w.
The path is formed by the optimization of the MSE loss with respect to z and w, respectively. The
faces in the first column are generated by the initial values of z and w. Then the following faces are
sequentially generated with the optimization process until the optimization converges. For each group,
the first row shows the result with z and the second row shows the result withw. The disentanglement
effect of w is clearly shown. Instead, the latent code z suffers from the entanglement of features.
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A.5 RECONSTRUCTION FOR FFHQ DATABASE

FFHQ Faces

LIA (ours)

ALI

AGE

MSE-based optimization

Encoded StyleGAN

Figure 14: Real images from FFHQ dataset and their reconstructed faces by various generative
models.
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A.6 RECONSTRUCTION FOR LSUN DATABASE

Figure 15: Real images from LSUN dataset and the reconstructed images by LIA.

Figure 16: Real images from LSUN dataset and the reconstructed images by LIA.
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A.7 FACE MANIPULATION

Figure 17: Manipulating reconstructed faces. The algorithm in (Shen et al., 2019) is applied to
manipulate faces reconstructed from the latent code w given by LIA. Each row shows the original
image, the reconstruction, glass, pose, gender, smile, and age.

19



Under review as a conference paper at ICLR 2020

A.8 GRADIENTS OF MIDDLE LAYER
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Figure 18: Illustration of gradients when training encoders on FFHQ dataset. For VAE, the decoder is
exactly the generator of StyleGAN. The two-stage training of VAE is the same as that of LIA. The red
and blue lines represent the gradients for VAE and LIA respectively. This figure shows the gradient
of middle layer in the neural architecture of the encoder, which is complementary to Figure 7.
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A.9 THE ARCHITECTURAL DETAIL OF LIA
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Figure 19: The architectural detail of LIA for each block of the whole network. Here the encoder and
the invertible network are shown. The synthesis network in the decoder is the same as StyleGAN.
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