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ABSTRACT

Deep neural networks have demonstrated unprecedented success in various
knowledge management applications. However, the networks created are often
very complex, with large numbers of trainable edges which require extensive com-
putational resources. We note that many successful networks nevertheless often
contain large numbers of redundant edges. Moreover, many of these edges may
have negligible contributions towards the overall network performance. In this pa-
per, we propose a novel iSparse framework, and experimentally show, that we can
sparsify the network, by 30-50%, without impacting the network performance.
iSparse leverages a novel edge significance score, E, to determine the importance
of an edge with respect to the final network output. Furthermore, iSparse can be
applied both while training a model or on top of a pre-trained model, making it
a retraining-free approach - leading to a minimal computational overhead. Com-
parisons of iSparse against PFEC, NISP, DropConnect, and Retraining-Free on
benchmark datasets show that iSparse leads to effective network sparsifications.

1 INTRODUCTION

Deep neural networks (DNNs), particularly convolutional neural networks (CNN), have shown im-
pressive success in many applications, such as facial recognition (Lawrence et al., 1997), time series
analysis (Yang et al., 2015), speech recognition (Hinton et al., 2012), object classification (Liang &
Hu, 2015), and video surveillance (Karpathy & et. at., 2014). As the term “deep” neural networks
implies, this success often relies on large networks, with large number of trainable edges (weights)
(Huang et al., 2017; Zoph et al., 2018; He et al., 2016; Simonyan & Zisserman, 2015).

While a large number of trainable edges help generalize the network for complex and diverse pat-
terns in large-scale datasets, this often comes with enormous computation cost to account for the
non-linearity of the deep networks (ReLU, sigmoid, tanh). In fact, DNNs owe their recent suc-
cess to hardware level innovations that render the immense computational requirements practi-
cal (Ovtcharov & et. al., 2015; Matthieu Courbariaux et al., 2015). However, the benefits of hard-
ware solutions and optimizations that can be applied to a general purpose DNN or CNN are limited
and these solutions are fast reaching their limits. This has lead to significant interest in network-
specific optimization techniques, such as network compression (Choi & et. al., 2018), pruning (Li
et al., 2016; Yu et al., 2018), and regularization (Srivastava & et. al., 2014; Wan et al., 2013), aim to
reduce the number of edges in the network. However, many of these techniques require retraining
the pruned network, leading to the significant amount of computational waste.

1.1 NETWORK SPARSIFICATION

Many successful networks nevertheless often contain large numbers of redundant edges. Consider
for example, the weights of sample network shown in Figure 1a. As we see here, the weight distribu-
tion is centered around zero and has significant number of weights with insignificant contribution to
the network output. Such edges may add noise or non-informative information leading to reduction
in the network performance. (Denil et al., 2013; Ashouri et al., 2018; Yu et al., 2018) has shown that
it is possible to predict 95% network parameters while only learning 5% parameters.

Sparsification techniques can generally be classified into neuron/kernel sparcification (Li et al.,
2016; Yu et al., 2018) and edge/weight sparcification techniques (Wan et al., 2013; Ashouri et al.,
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(a) Weight Distribution for LeNet-5
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(b) Model Accuracy vs Sparsification Factor

Figure 1: Overview of weight distribution and model accuracies for MNIST dataset (LeNet-5)

2018): (Li et al., 2016) proposed to eliminate neurons that have low l2-norms of their weights,
whereas (Yu et al., 2018) proposed a neuron importance score propagation (NISP) technique where
neuron importance scores (using Roffo & et. al. (2015) - See Equation 5) are propagated from
the output layer to the input layer in a back-propagation fashion. Drop-out (Srivastava & et. al.,
2014) technique instead deactivates neuron activations at random. As an edge sparsification tech-
nique, DropConnect (Wan et al., 2013) selects edges to be sparsified randomly. (Ashouri et al.,
2018) showed that the network performance can be maintained by eliminating insignificant weights
without modifying the network architecture.

1.2 OUR CONTRIBUTIONS: OUTPUT INFORMED EDGE SPARSIFICATION

Following these works, we argue network sparsification can be a very effective tool for reducing
sizes and complexities of DNNs and CNNs, without any significant loss in accuracy. However, we
also argue that edge weights cannot be used “as is” for pruning the network. Instead, one needs to
consider the significance of each edge within the context of their place in the network (Figure 2):
“Two edges in a network with the same edge weight may have different degrees of contributions to
the final network output” and in this paper, we show that it is possible to quantify significance of each
edge in the network, relative to their contributions to the final network output and use these measures
significance to minimize the redundancy in the network by sparsifying the weights that contributes
insignificantly to network. We, therefore, propose a novel iSparse framework, and experimentally
show, that we can sparsify the network, by almost 50%, without impacting the network performance.
The key contributions of our proposed work are as follows:

• Output-informed quantification of the significance of network parameters: Informed by
the final layer network output, iSparse computes and propagates edge significant scores that
measure the importance of each edge with respect to the model output (Section 3).

• Retraining-free network sparsification (Sparsify-with): The proposed iSparse framework is
robust to edge sparsification and can maintain network performance without having to retraining
the network. This implies that one can apply iSparse on pre-trained networks, on-the-fly, to
achieve the desired level of sparsification (Section 3.3)

• Sparsification during training (Train-with): iSparse can also be used as a regularizer during
the model training allowing for learning of sparse networks from scratch (Section 4).

As the sample results in Figure 1b shows, iSparse is able to achieve 30-50% sparsification with
minimal impact on model accuracy. More detailed experimental comparisons (See Section 5) of
iSparse against PFEC, NISP, Retraining-Free and DropConnect on benchmark datasets illustrated
that iSparse leads to more effective network sparsifications.

2 RELATED WORKS

A neural network is a sequence of layers of neurons to help learn (and remember) complex non-
linear patterns in a given dataset (Grossberg, 1988). Recently, deep neural networks (DNNs), and
particularly CNNs, which leverage recent hardware advances to increase the number of layers in the
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Figure 2: Overview of iSparse sparsification, considering the ni’s contribution to overall output
rather than only between ni and nj neurons

network to scales that were not practical until recently, (Lawrence et al., 1997; Yang et al., 2015;
Hinton et al., 2012; Liang & Hu, 2015; Karpathy & et. at., 2014) have shown impressive success in
several data analysis and machine learning applications.

A typical CNN consists of (1) feature extraction layers are responsible for learning complex patterns
in the data and remember them through layer weights. An m× n layer, Ll, maps an n-dimensional
input (Yl−1) to an m-dimensional output (Yl), by training for a weight matrix WlεRml×nl (see
Section 3.1 for further details); (2) activation layers, which help capture non-linear patterns in the
data through activation functions (σ) which maps the output from a feature extraction layer to a non-
linear space ( ReLU and softmax are commonly used activation functions); and (3) pooling layers,
(sampling) which up- or down-sample the intermediate data in the network.

The training process of a neural network often comprises of two key stages: (1) forward-propagation
(upstream) maps the input data, X , to an output variable, Ŷ . At each layer, we have Ŷl = L(Yl) =
σ(WlYl+Bl), where Y1 = X . Intuitively, each layer learns to extract new features from the features
extracted by the prior layer. (2) backward-propagation (downstream) revises network weights, W ,
based on the training error, Err = |Y − Ŷ |, where Y and Ŷ are the ground truth and predictions
of the model, respectively, such that update weights are defined as W ′ = W − Err.

The number of trainable parameters in a deep network can range from as low as tens of thousands
(LeCun et al., 1999) to hundreds of millions (Simonyan & Zisserman, 2015) (Table 1 in Section 5).
The three order increase in the number trainable parameter may lead to parameters being redundant
or may have negligible contribution to the overall network output. This redundancy and insignifi-
cance of the network parameters has led to advancements in network regularization, by introducing
dynamic or informed sparsification in the network.

These advancements can be broadly classified into two main categories: parameter pruning and pa-
rameter regularization. In particular, pruning focuses on compressing the network by eliminating the
redundant or insignificant parameters. (Han et al., 2015; Han & et. al., 2016) aims to prune the pa-
rameters with near-zero weights inspired from l1 and l2 regularization (Tibshirani, 1996; Tikhonov,
1963). (Li et al., 2016) choose to filter out convolutional kernel with minimum weight values in
given layer. Recently, (Yu et al., 2018) minimizes the change in final network performance by elimi-
nating the neuron that have minimal impact on the network output by leveraging neuron importance
score (NL) (See Section 5.3) - computed using Inf-FS (Roffo & et. al., 2015). More complex ap-
proaches have been proposed to tackle the problem of redundancy in the network through weight
quantization. (Rastegari & et. al., 2016) propose to the quantize the inputs and output activations
of the layers in a CNN by using step function and also leveraging the binary operation by using the
binary weights opposed to the real-values weights. (Chen & et. al., 2015) focuses on low-level mo-
bile hardware with limited computational power, and proposed to leverage the inherent redundancy
in the network for using hashing functions to compress the weights in the network.

(Bahdanau et al., 2014; Woo et al., 2018) showed that the each input feature to a given layer in the
network rarely have the same importance, therefore, learning there individual importance (attention)
helps improve the performance of the network. More recently, (Garg & Candan, 2019) has shown
that input data informed deep networks can provide high-performance network configurations. In
this paper, we rely on output information for identifying and eliminating insignificant parameters
from the network, without having to update the edge weights or retraining the network.
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3 ISPARSE: OUTPUT INFORMED SPARSIFICATION OF NEURAL NETWORKS

As discussed in Section 1, in order to tackle complex inputs, deep neural networks have gone in-
creasingly deeper and wider. This design strategy, however, often results in large numbers of in-
significant edges1 (weights), if not redundant. In this section, we describe the proposed iSparse,
framework which quantifies the significance of each individual connection in the network with re-
spect to the overall network output to determine the set of edges that can be sparsified to alleviate
network redundancy and eliminate insignificant edges. iSparse aims to determine the significance
of the edges in the network to make informed sparsification of the network.

3.1 MASK MATRIX

A typical neural network, N , can be viewed as a sequential arrangement of convolutional (C) and
fully connected (F) layers: N (X) = LL (LL−1 . . . (L2 ( L1(X)))), here, X is the input, L is the
total number of layers in the network and L ε {C,F} , s.t., any given layer, Ll | 1 ≤ l ε L, can be
generalized as

Ll(Yl) = σl(WlYl +Bl) = Ŷl, (1)

where, Yl is the input to the layer (s.t. Yl = Ŷl−1 and for l = 1, Y1 = X) and σl, Wl, and Bl are
the activation function, weight, and bias respectively. Note that, if the lth layer has ml neurons and
the (l − 1)

th layer has nl neurons , then Ŷl ε Rml×1, Yl ε Rnl×1, Wl ε Rml×nl and B ε Rml×1.

Given this formulation, the problem of identifying insignificant edges can be formulated as the prob-
lem of generating a sequence of binary mask matrices, M1, . . . ,ML, that collectively represents
whether any given edge in the network is sparsified (0) or not (1):

Ml = Bnl×ml ,B ε {0, 1}, 1 ≤ l ≤ L (2)

3.2 EDGE SIGNIFICANCE SCORE

Let Ml be a mask matrix as defined in Equation 2, and Ml can be expanded as

Ml =

Ml,1,1 . . . Ml,1,nl

...
. . .

...
Ml,ml,1 . . . Ml,ml,nl

 , (3)

where each Ml,i,j ∈ {0, 1} corresponds to an edge el,i,j in the network. Our goal in the paper is to
develop an edge significant score measure to help set the binary value of Ml,i,j for each edge in the
network. More specifically, we aim to associate a non-negative real valued number, El,i,j ≥ 0, to
each edge in the network, s.t.

Ml,i,j =

{
1 El,i,j ≥ τl(θl)
0 El,i,j < τl(θl)

,∀i = 1 . . .ml, j = 1 . . . nl. (4)

Here, τl(θl) represents the lowest significance of the θl% of the most significant edges in the layer l.
Intuitively, given a target sparsification rate, θl, we rank all the edges based on their edge significance
scores and keep only the highest scoring θl% of the edges by setting their mask values to 1.

As we have seen in Figure 1a, the (signed) weight distribution of the edges in a layer is often centered
around zero, with large numbers of edges having weights very close to 0. As we also argued in the
Introduction, such edges can work counter-intuitively and add noise or non-informative information
leading to reduction in the network performance. In fact, several existing works, such as (Ashouri
et al., 2018), relies on these weights for eliminating insignificant edges without having to retrain
the network architecture. However, as we also commented in the Introduction, we argue that edge
weights should not be used alone for sparsifying the network. Instead, one needs to consider each
edge within the context of their place in the network: Two edges in a network with the same edge
weight may have different degrees of contributions to the final network output. Unlike existing
works, iSparse takes this into account when selecting the edges to be sparsified (Figure 3).

1An edge is defined as a direct connection (weighted) between two neurons.
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(a) Sample Network (b) Retrain-free (c) iSparse

Figure 3: A sample network architecture and its sparsification using Retraining-free (Ashouri et al.,
2018) and iSparse; here node labels indicate input to the node; edge labels [0,1] indicate the edge
weights; and edge labels between parentheses indicate edge contribution

More specifically, let W+
l be the absolute positive of the weight matrix,Wl , for edges in lth layer.

We compute the corresponding edge significance score matrix, El, as

El = W+
l �Nl =

W+
l,1,1 ×Nl,1 . . . W+

l,1,nl
×Nl,nl

...
. . .

...
W+

l,ml,1
×Nl,1 . . . W+

l,ml,nl
×Nl,nl

 . (5)

where, Nl represents the neuron significance scores2, Nl,1 through Nl,nl
, and “� ” represents the

scalar multiplication between edge weights and neuron scores. Nl,i, denotes the significance of the
ith input neuron to the lth connection layer of the network, which itself is defined recursively, based
on the following layer in the network, using the conventional dot product:

Nl = W+
l+1Nl+1 =

 W+
l+1,1,1 ×Nl+1,1 + · · ·+W+

l+1,1,nl+1
×Nl+1,nl+1

...
W+

l+1,ml+1,1
×Nl+1,1 + · · ·+W+

l+1,ml+1,nl+1
×Nl+1,nl+1

 . (6)

Note that Nl can be expanded as

Nl = (W+
l+1(W

+
l+2 . . . (W

+
L−1(W

+
L NL)))), (7)

Above, NL denotes the neuron scores of the final output layer, and NL is defined using infinite
feature selection (Roffo & et. al., 2015; Yu et al., 2018) as NL = inffs(ŶL) where ŶLεRx×n (x is
the number of input samples and n is the number of output neurons) to determine neuron importance
score with respect to the the final network output. Given the above, the edge score (Equation 5) can
be rewritten as

El = W+
l �

(
W+

l+1(W
+
l+2 . . . (W

+
L−1(W

+
L NL)))

)
. (8)

Note that the significance scores of edges in layer l considers not only the weights of the edges, but
also the weights of all downstream edges between these edges and the final output layer.

3.3 EDGE SPARSIFICATION

As noted in Section 3.1, the binary values in the masking matrix Ml depends on τl(θl), which
represents the lowest significance of the θl% of the most significant edges in the layer3: therefore,
given a target sparsification rate, θl, for layer l, we rank all the edges based on their edge significance
scores and keep only the highest scoring θl% of the edges by setting their mask values to 1. Note
that, once an edge is sparsified, change in its contribution is not propagated back to the layers earlier
in the network relative to the sparsified edge. Having determined the insignificant edges with respect
to the final layer output, represented in form of the mask matrix, Ml (described in Section 3.1), the
next step is to integrate this mask matrix in the layer itself. To achieve this, iSparse extends the layer
l (Equation 1) to account for the corresponding mask matrix (Ml):

Ll(Yl) = σl ((Wl ∗Ml)Yl +Bl) , (9)
2Nl summarizes the edge and neuron importance in the subsequent layers i.e. Ll+1 . . .LL.
3 In the experiments reported in Section 5, without loss of generality, we assume that θl has the same

value for all connection layers in the network. This is not a fundamental assumption and iSparse can easily
accommodate different rates of sparsification across connection layers.
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Table 1: Number of trainable parameters (weights) and statistics for various benchmark datasets
Network LeNet VGG
Datasets MNIST FMNIST COIL20 COIL100 NORB CIFAR10 CIFAR20 CIFAR100 SVHN GTSRB ImageNet
Weights 44,426 44,426 62,556 69,356 168,801 32,418,834 32,428,844 32,508,924 32,418,834 38,743,323 138,357,544

Statistics
Resolution 28× 28 32× 32 32× 32 96× 96 32× 32 32× 32 32× 32 32× 32 32× 32 224× 224
Train Set 60,000 60,000 1300 6480 24,300 50,000 50,000 50,000 ∼73,000 39,209 ∼1,281,167
Test Set 10,000 10,000 140 720 24,300 10,000 10,000 10,000 ∼26,000 12,630 ∼50,000
Labels 10 14 20 100 6 10 20 100 10 43 1000

where, ∗ represents the element-wise multiplication between the matrices Wl and Ml. Intuitively,
Ml facilitates introduction of informed sparsity in the layer by eliminating edges that do not con-
tribute significantly to the final output layer.

4 INTEGRATION OF ISPARSE WITHIN MODEL TRAINING

In the previous section, we discussed the computation of edge significance scores on a pre-trained
network, such as of pre-trained ImageNet models, and the use of these scores for network sparsifica-
tion. In this section, we highlight that iSparse can also be integrated directly within the the training
process.

To achieve this, the edge significance score is computed for every trainable layer in the network using
the strategy described in Section 3.2 and the mask matrix is updated using Equation 4. Furthermore,
the back-propagation rule, described in Section 2 , is updated to account for the mask matrices:

W ′
l = Wl − η(Ml ∗ Errl) (10)

where, W ′
l are the updated weights, Wl original weights, η is the learning rate, and Errl is the

error recorded by as the divergence in between ground truth (Yl) and model predictions (Ŷl) as
Errl = |Yl− Ŷl|. Note that, we argue that any edge that does not contribute towards the final model
output, must not be included in the back-propagation. Therefore, we mask the error as Errl ∗Ml.

5 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate of the proposed iSparse framework using LeNet and
VGG architectures (See Section 5.2) and compare it against the approaches, such as PFEC, NISP,
and DropConnect (see Section 5.3).

5.1 SYSTEM CONFIGURATION

We implemented iSparse in Python environment (3.5.2) using Keras Deep Learning Library (2.2.4-
tf) (Chollet et al., 2015)with TensorFlow Backend (1.14.0). All experiments were performed on an
Intel Xeon E5-2670 2.3 GHz Quad-Core Processor with 32GB RAM equipped with Nvidia Tesla
P100 GPU with 16 GiB GDDR5 RAM with CUDA-10.0 and cuDNN v7.6.4.4.

5.2 BENCHMARK NETWORKS AND DATASETS

In this paper, without loss of generality, we leverage LeNet-5 (LeCun et al., 1999) and VGG-16
(Simonyan & Zisserman, 2015) as the baseline architectures to evaluate sparsification performance
on different benchmark image classification datasets and for varying degrees of edge sparsification.
In this section, we present an overview of these architectures (See Table 1).

LeNet-5: Designed for recognizing handwritten digits, LeNet-5 is simple network with 5 trainable
(2 convolution and 3 dense) and 2 non-trainable layers using average pooling with tanh and soft-
max as the hidden and output activation. LeNet’s simplicity has made it a common benchmark for
datasets recorded in constrained environments, such as MNIST (LeCun et al., 1998), FMNIST (Xiao
et al., 2017), COIL (Nene et al., 1996a;b), and NORB (LeCun et al., 2004).

4Results presented in this paper were obtained using NSF testbed: “Chameleon: A Large-Scale Re-
configurable Experimental Environment for Cloud Research (https://www.chameleoncloud.org/)”

6
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Figure 4: Top-1 and top-5 accuracy for spar-
sified VGG-16 for ImageNet (sparsify-with)
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Figure 5: Model classification time vs sparsi-
fication factor for MNIST dataset (train-with)
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(a) VGG network (VGG-16)
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(b) LeNet network (LeNet-5)

Figure 6: Top-1 classification accuracy results for sparsified pre-trained models (sparsify-with)

VGG-16: VGG (Simonyan & Zisserman, 2015)’s, a 16 layer network with 13 convolution and 3
dense layers, with interleaved 5 max-pooling layers. VGG leverages ReLU as the hidden activation
to overcome the problem of vanishing gradient, as opposed to tanh. Given the ability of VGG
network to learn the complex pattern in the real-world dataset, we use the network on benchmark
datasets, such as CIFAR10/20/100 (Krizhevsky, 2009), SVHN (Netzer & et. al., 2011), GTSRB
(Stallkamp & et. al., 2012), and ImageNet (Deng et. al., 2009). Table 1 reports the number of
trainable parameters (or weights) for each model/data set pair considered in the experiments.

5.3 COMPETITORS

We compared iSparse against several state-of-the-art network sparsification techniques: DropCon-
nect (Wan et al., 2013) is a purely random approach, where edges are randomly selected for sparsifi-
cation. Retraining-free (Ashouri et al., 2018) considers each layer independently and sparsifies in-
significant weights in the layer, without accounting for the final network output contribution. PFEC
(Li et al., 2016) is a kernel pruning strategy that aims to eliminate neurons that have low impact
on the overall model accuracy. In order to determine the impact, PFEC computes the l2-norms of
the weights of the neurons and ranks them, separately, for each layer. NISP (Yu et al., 2018) pro-
poses a neuron importance score propagation (NISP) technique where neuron importance scores are
propagated from the output layer to the input layer in a back-propagation fashion.
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(a) PFEC (b) NISP (c) DropConnect (d) Retrain-Free (e) iSparse

Figure 7: Mask matrices for the LeNet network conv 2 layer for MNIST data (sparsification factor
= 50%): dark regions indicate the edges that have been marked for sparsification; in (e) iSparse,
the arrows point to those edges that are subject to different pruning decision from retrain-free in(d)
(green arrows point to edges that are kept in iSparse instead of being pruned and red arrows point to
edges that are sparsified in iSparse instead of being kept)

5.4 ACCURACY RESULTS

5.4.1 SPARSIFICATION OF PRE-TRAINED MODELS (sparsify-with)

In Figure 4, we first present top-1 and top-5 classification results for ImageNet dataset for VGG-
16 network. As we see in the Figure 4, iSparse provides the highest robustness to the degree of
sparsification in the network. In particular, with iSparse , the network can be sparsified by 50% with
≤ 6% drop in accuracy for top-1 and≤ 2% drop in accuracy for top-5 classification, respectively. In
contrast, the competitors, see larger drops in accuracy. The closest competitor, Retrain-free, suffers
a loss in accuracy of ∼ 16% and ∼ 6% for top-1 and top-5 classification, respectively. The other
competitors suffer significant accuracy drops after a mere 10-20% sparsification.

Figures 6a and 6b show the top-1 classification accuracy results for other models and data sets. As
we see here, the above pattern holds for all configurations considered: iSparse provides the best
robustness. It is interesting to note that DropConnect, NISP, and PFEC see especially drastic drops
in accuracy for the VGG-16 network and especially on the CIFAR data. This is likely because,
VGG-CIFAR is already relatively sparse (20% > sparsity as opposed to ∼ 7% for VGG-ImageNet
and < 1% for LeNet) and these three techniques are not able to introduce additional sparseness in
a robust manner. In contrast, iSparse is able to introduce significant additional sparsification with
minimal impact on accuracy.

Figure 7 provides the mask matrices created by the different algorithms to visual illustrate the key
differences between the competitors. As we see in this figure, PFEC and NISP, both sparsify input
neurons. Consequently, their effect is to mask out entire columns from the weight matrix and this
prevents these algorithms to provide fine grain adaption during sparsification. DropConnect selects
individual edges for sparsification, but only randomly and this prevents the algorithm to provide
sufficiently high robustness. Retrain-free and iSparse both select edges in an fine-grained manner:
retrain-free uses relies on edge-weights, whereas iSparse complements edge-weight with an edge
significance measure that accounts for each edges contribution to the final output within the overall
network. As we see in Figure 7 (d) and (e), this results in some differences in the corresponding
mask matrices, and these differences are sufficient to provide significant boost in accuracy.
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Table 2: Top-1 classification accuracy for sparsified different architectures and datasets (train-with)

Datasets MNIST FMNIST COIL20 COIL100 NORB
Factor DC RT IS DC RT iS DC RT iS DC RT iS DC RT iS
Base (0%) 98.79 98.79 98.79 88.02 88.02 88.02 95.52 95.56 95.56 90.00 90.00 90.00 84.42 84.42 84.42

5% 98.90 97.99 98.09 88.23 88.70 88.75 95.00 94.16 94.72 89.83 90.12 90.61 84.51 84.75 85.03
10% 98.17 98.45 98.56 87.60 87.02 87.89 94.72 95.01 95.55 90.05 89.81 90.33 85.35 85.98 86.25
15% 98.76 98.79 98.92 88.14 87.43 87.96 95.00 95.21 95.50 89.50 89.73 90.00 83.91 84.12 84.73
20% 98.79 98.81 98.98 88.02 88.00 88.11 95.83 95.95 96.10 90.83 88.54 91.03 83.04 82.56 83.29
25% 98.85 98.85 98.80 87.62 87.54 88.19 95.27 94.66 95.80 90.11 89.98 90.22 85.33 85.01 85.61
30% 98.78 98.71 98.98 88.00 87.75 88.25 95.00 94.74 95.00 90.12 90.12 90.55 83.69 85.91 86.08
35% 98.73 98.73 98.79 88.14 86.99 88.06 94.72 94.99 95.27 90.11 91.35 91.99 83.98 83.01 84.81
40% 98.85 98.97 98.99 87.81 87.25 88.30 95.00 95.31 95.56 88.22 90.01 90.44 83.14 84.12 85.08
45% 98.91 98.95 98.99 87.45 87.11 87.82 95.29 95.04 95.56 89.45 89.87 90.23 85.47 85.12 86.02
50% 98.55 98.85 99.00 87.76 88.15 88.46 95.00 94.16 94.72 90.66 90.21 90.85 84.49 85.61 86.77

VGG-16
Datasets CIFAR10 CIFAR20 CIFAR100 SVHN GTSRB
Factor DC RT IS DC RT iS DC RT iS DC RT iS DC RT iS
Base (0%) 84.14 84.14 84.14 66.96 66.96 66.96 55.09 55.09 55.09 91.33 91.33 91.33 97.68 97.68 97.68

5% 84.21 84.56 84.66 62.26 62.01 62.85 57.35 52.74 53.10 93.49 92.42 92.70 96.49 97.68 98.64
10% 84.35 84.33 84.35 63.63 66.53 67.33 51.32 51.01 51.48 95.00 92.56 92.96 95.03 91.09 93.24
15% 83.43 83.51 83.69 60.95 59.87 62.49 52.18 52.53 52.97 91.96 93.11 93.40 96.83 95.91 97.29
20% 82.83 85.04 85.81 61.79 63.45 65.03 51.67 50.01 50.52 92.63 93.34 93.74 93.02 94.41 95.76
25% 84.07 84.32 84.56 61.85 60.19 62.52 56.47 53.25 53.81 82.56 87.14 87.63 95.11 96.66 97.76
30% 83.41 84.17 84.48 62.14 58.39 62.14 51.19 54.05 54.50 91.95 91.97 92.26 97.18 97.43 98.56
35% 83.06 84.95 85.42 60.09 57.81 61.79 52.05 48.52 49.03 92.58 92.38 92.65 97.18 97.61 98.17
40% 83.96 82.01 82.21 66.34 65.09 66.62 50.19 55.11 55.68 88.79 91.92 92.31 95.61 96.91 97.61
45% 82.75 82.81 82.83 65.65 66.93 68.72 54.18 53.47 53.63 91.38 91.23 91.62 96.71 93.31 94.02
50% 83.44 84.15 84.53 65.37 65.04 68.82 51.65 51.78 52.56 82.94 87.61 87.68 94.31 95.91 97.31

Table 3: Robustness analysis for edge-based strategies vs iSparse (train-with)

Tan-Adam Tanh-RMS ReLU-Adam
DC RT iS DC RT iS DC RT iS

MNIST

Base (0%) 98.82 98.82 98.82 98.79 98.79 98.79 98.89 98.89 98.89

5% 98.90 98.23 98.94 98.90 97.99 98.09 98.66 98.91 98.95
10% 99.02 98.75 99.15 98.17 98.45 98.56 98.90 98.75 98.86
15% 98.94 98.01 98.83 98.76 98.79 98.92 98.94 99.01 99.23
20% 98.76 98.41 98.97 98.79 98.81 98.86 99.05 99.32 99.53
25% 98.91 98.25 98.92 98.85 98.78 98.80 98.89 98.85 98.96
30% 99.01 98.04 98.92 98.78 98.71 98.78 98.88 98.74 98.94
35% 98.94 98.65 99.05 98.73 98.75 98.79 98.86 98.62 98.92
40% 99.12 98.88 99.57 98.85 98.97 98.99 98.83 98.23 98.95
45% 98.84 98.42 99.04 98.91 98.95 98.99 99.07 99.01 99.48
50% 99.07 98.01 99.12 98.55 98.85 99.00 98.98 98.16 98.89

CIFAR10

Base (%) 87.66 87.66 87.66 81.95 81.95 81.95 84.14 84.14 84.14

5% 88.87 89.56 89.66 81.17 85.94 86.14 84.21 84.56 84.66
10% 84.75 88.21 88.31 86.75 87.01 87.42 84.35 84.33 84.35
15% 81.78 81.89 82.49 88.75 88.99 89.04 83.43 83.51 83.69
20% 85.64 85.95 86.21 87.10 89.10 89.23 82.83 85.04 85.81
25% 86.10 87.68 87.86 84.81 87.31 87.74 84.07 84.32 84.56
30% 87.07 86.21 86.30 80.20 83.45 83.56 83.41 84.17 84.48
35% 82.38 86.43 86.48 85.91 86.75 86.93 83.06 84.95 85.42
40% 86.76 88.63 88.77 82.17 84.10 87.44 83.96 82.01 82.21
45% 83.90 85.52 85.61 85.79 86.40 89.42 82.75 82.81 82.83
50% 80.45 79.21 79.59 83.89 86.42 86.52 83.44 84.15 84.53

5.4.2 SPARSIFICATION DURING TRAINING (train-with)

Tables 2 present accuracy results for the scenarios where iSparse (iS) is used to sparsify the model
during the training process. The table also considers DropConnect (DC) and Retrain-Free (RF), as
alternatives. As we see in the table, for both network architectures, under most sparsification rates,
the output informed sparsification approach underlying iSparse leads to networks with the highest
classification accuracies.

5.5 ROBUSTNESS TO THE VARIATIONS IN NETWORK ELEMENTS

In this section, we study the effect of the variations in network elements. In particular, we compare
the performance of iSparse (iS) against DropConnect (DC) and Retraining-Free (RF) for different
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Figure 8: Robustness to the layer order while sparsifying the network with iSparse (train-with)

hidden activation functions and network optimizers. Table 3 presents classification performances
for networks that rely on different activation functions (tanh and ReLU) and for optimizers (Adam
and RMSProp). As we see in these two tables, iSparse remains the alternative which provides the
best classification accuracy under different activation/optimization configurations.

5.6 ROBUSTNESS TO THE VARIATIONS IN SPARSIFICATION ORDER

We next investigate the performance of iSparseunder different orders in which the network layers
are sparsified. In particular, we considerthree sparsification orders: (a) input-to-output layer order:
this is the most intuitive approach as it does not require edge significance scores to be revised based
on sparsified edges in layers closer to the input; (b) output-to-input layer-order: in this case, edges
in layers closer to the network output are sparsified first – but, this implies that edge significance
scores are updated in the earlier layers in the network to account for changes in the overall edge
contributions to the network; (c) random layer order: in this case, to order of the layers to be
sparsified is selected randomly. Figure 8 presents the sparsification results for different orders, data
sets, and sparsification rates. As we see in the figure, the performance of iSparse is not sensitive to
the sparsification order of the network layers.

5.7 IMPACT OF SPARSIFICATION ON CLASSIFICATION TIME

In Figure 5, we investigate the impact of edge sparsification on the classification time. As we see
in this Figure, edge sparsification rate has a direct impact on the classification time of the resulting
model. When we consider that iSparse allows for ∼ 30 − 50% edge sparsification without any
major impact on classification accuracies, this indicates that iSparse has the potential to provide
significant performance gains. What is especially interesting to note in Figure 5 is that, while all
three sparsification methods, iSparse, DropConnect, and Retraining-Free, all have the same number
of sparsified edges for a given sparsification factor, the proposed iSparse approach leads to the least
execution times among the three alternatives. We argue that this is because the output informed
sparsification provided by iSparse allows for more efficient computations in the sparsified space 5.

6 CONCLUSIONS

In this paper, we proposed iSparse, a novel output-informed, framework for edge sparsification
in deep neural networks (DNNs). In particular, we propose a novel edge significance score that
quantifies the significance of each edge in the network relative to its contribution to the final network
output. iSparse leverages this edge significance score to minimize the redundancy in the network
by sparsifying those edges that contribute least to the final network output. Experiments, with 11
benchmark datasets and using two well-know network architectures have shown that the proposed
iSparse framework enables 30 − 50% network sparsification with minimal impact on the model
classification accuracy. Experiments have also shown that the iSparse is highly robust to variations
in network elements (activation and model optimization functions) and that iSparse provides a much
better accuracy/classification-time trade-off against competitors.

5Hardware configuration can be found in Section 5.1
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Table 4: Model accuracies under different strategies for initializing neuron importance score - CI-
FAR10 dataset - for different sparsification factors; Base = 0%

VGG ResNet
Factor IDN PCA InfFS IDN PCA InfFS

Base (0%) 84.14 84.14 84.14 73.61 73.61 73.61
5% 82.94 83.96 84.66 73.25 73.20 74.13

10% 81.59 83.85 84.35 73.46 73.86 74.28
15% 81.24 83.45 83.69 73.32 73.57 74.12
20% 82.67 84.65 85.81 74.52 74.21 75.01
25% 81.42 83.98 84.56 74.86 74.45 74.95
30% 80.64 82.96 84.48 73.72 73.80 74.36
35% 80.45 81.56 85.42 73.53 73.99 74.01
40% 78.48 79.54 82.21 74.94 75.09 75.27
45% 80.23 81.24 82.83 73.06 72.39 73.39
50% 80.85 82.68 84.53 74.19 74.19 74.21

A APPENDIX

A.1 ABLATION STUDIES FOR NEURON SCORE INITIALIZATION

In this section, we evaluate the performance on iSparse framework with different type of neuron
score initialization strategies). We evaluate the following scoring strategies:

– Identity score (IDN) (all scores are “1”)

– Principal Component Analysis (PCA) (Pearson (1901))

– Infinite Feature Selection (InfFS) (Roffo & et. al. (2015))

In Table 4, we observed that the iSparse framework with InfFS as a mechanism to determine the
neuron scores for the final layers leads to a better performance opposed to the other strategies. Intu-
itively, this is because InfFS effectively identifies the importance of an individual features (neurons),
while considering all possible subset of features. We believe this is a very highly desirable property:
conventional feature selection strategies, such as PCA, ranks features based on their discriminatory
power irrespective of how features relate with each other. Similarly, using same importance score
(identity) treats each feature in a mutually exclusive fashion. In contrast, the way InfFS approaches
the ”feature selection” problem is highly appropriate to NNs, where the neuron output for the true
label will be high, but we will also see low/small output for false labels.

A.2 PERFORMANCE EVALUATION FOR THE RESNET ARCHITECTURE

In this section, we evaluate iSparse for the ResNet-18 architecture (He et al. (2016)) for both,
sparsify-with (no retraining after sparsification) and train-with (retraining after sparsification) con-
figurations Results are presented in Tables 5 and 6.

A.2.1 SPARSIFY-WITH FOR RESNET

As observed in Table 5, iSparse for ResNet demonstrates significant robustness to edge sparsifi-
cation. iSparse outperforms DropConnect, and Retrain-Free, thus highlighting the importance of
accounting edge’s significance to subsequent network along with edge weight. .

A.2.2 TRAIN-WITH FOR RESNET

As we can see in the Table 6, the iSparse framework outperforms the competitors, such as Dropout,
L1, DropConnect, Retraining-Free, and Lottery Winning Hypothesis (Frankle & Carbin (2019)).
iSparse ability to account for edge significance based on both, edge weights and edge contributions
to the final network output, leads to more robust and superior results.
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Table 5: Model accuracy vs sparsification factor (sparsify-with) for ResNet architecture - CIFAR10
Factor DropConnect Retraining-Free iSparse

Base (0%) 73.61 73.61 73.61
5% 69.19 73.61 73.61

10% 63.48 73.61 73.61
15% 52.89 73.52 73.58
20% 41.38 72.85 73.47
25% 32.60 71.45 72.98
30% 21.23 71.07 72.77
35% 16.38 70.53 72.36
40% 12.88 68.41 72.05
45% 10.45 67.98 71.85
50% 10.00 65.48 71.01

Table 6: Model accuracy vs sparsification factor (train-with) for ResNet architecture - CIFAR10
Factor Dropout L1 DropConnect Retraning-Free Lottery iSparse

Base (0%) 73.61 73.98 73.61 73.61 73.61 73.61
5% 73.83 N.A. 73.72 74.35 74.10 74.43

10% 74.52 N.A. 73.22 74.49 74.31 74.78
15% 73.18 N.A. 73.69 73.82 74.40 74.12
20% 75.42 N.A. 69.84 73.08 73.38 75.01
25% 75.97 N.A. 72.43 73.75 73.77 74.95
30% 74.69 N.A. 72.43 74.10 73.39 74.36
35% 73.5 N.A. 72.59 74.07 73.99 74.01
40% 67.89 N.A. 70.38 73.15 74.10 75.27
45% 71.52 N.A. 67.07 72.37 74.15 73.39
50% 66.2 N.A. 71.35 72.69 74.13 74.21

A.2.3 ADDITIONAL TRAIN-WITH RESULTS FOR VGG

In Table 7, we present model accuracies for iSparse along with Dropout, L1, Retraining-Free, and
Lottery winning hypothesis sparsification strategies. iSparse’s informed sparsification leads to a
superior performance in this model architecture as well.

Table 7: Model accuracy vs sparsification factor (train-with) for VGG architecture - CIFAR10

Factor Dropout L1 DropConnect Retraining-Free Lottery iSparse
Base (0%) 84.14 84.51 84.14 84.14 84.14 84.14

5% 85.13 N.A. 84.21 84.56 84.29 84.66
10% 84.77 N.A. 84.35 84.33 84.23 84.35
15% 86.81 N.A. 83.43 83.51 84.88 83.69
20% 77.81 N.A. 82.83 85.04 84.68 85.81
25% 73.42 N.A. 84.07 84.32 84.87 84.56
30% 76.16 N.A. 83.41 84.17 83.48 84.48
35% 79.28 N.A. 83.06 84.95 84.79 85.42
40% 77.51 N.A. 83.96 82.01 81.37 82.21
45% 73.51 N.A. 83.96 82.01 81.37 82.21
50% 69.21 N.A. 83.44 84.15 81.59 84.53
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