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ABSTRACT

We study the problem of learning classifiers robust to universal adversarial per-
turbations. While prior work approaches this problem via robust optimization,
adversarial training, or input transformation, we instead phrase it as a two-player
zero-sum game. In this new formulation, both players simultaneously play the same
game, where one player chooses a classifier that minimizes a classification loss
whilst the other player creates an adversarial perturbation that increases the same
loss when applied to every sample in the training set. By observing that performing
a classification (respectively creating adversarial samples) is the best response
to the other player, we propose a novel extension of a game-theoretic algorithm,
namely fictitious play, to the domain of training robust classifiers. Finally, we
empirically show the robustness and versatility of our approach in two defence
scenarios where universal attacks are performed on several image classification
datasets – CIFAR10, CIFAR100 and ImageNet.

1 INTRODUCTION
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Table 1: Summary of defences against white
box attacks. The Xrepresents the settings
addressed in this paper.

Deep learning has shown a tremendous progress in
object recognition, and becomes a standard tool in
many areas of computer vision such as image clas-
sification, object detection, image captioning, or vi-
sual question answering (Krizhevsky et al., 2012;
Ren et al., 2015; Donahue et al., 2015; Malinowski
et al., 2017). At the same time, so called adversarial
samples, which can be perceptually indistinguishable
from input images, can easily fool the recognition
architectures by forcing them to predict wrong cate-
gories (Goodfellow et al., 2015; Moosavi-Dezfooli
et al., 2016; 2017; Szegedy et al., 2014). Due to the
ubiquity of deep learning, finding a robustification
method is an important research direction.

In contrast to the vast body of research dedicated to
per-sample adversarial perturbations (Szegedy et al.,
2014; Moosavi-Dezfooli et al., 2016; Goodfellow et al., 2015), we focus on universal adversarial
perturbations (Brown et al., 2017; Moosavi-Dezfooli et al., 2017). This choice is mainly motivated
by the following reasons. First, those perturbations can be transferred from one datum to another,
and between different architectures (Moosavi-Dezfooli et al., 2017). More specifically, they can be
used to create patches that, whenever attached to real-world objects, can fool the state-of-the-art
recognition architectures in the wild (Brown et al., 2017). Second, universal perturbations stand as a
subclass of per-sample perturbations that is still very effective to fool deep neural networks classifiers
and yet no defense strategy has addressed directly those specific perturbations. Therefore, in this
work (as shown in Table 1), we only seek robustness against such universal perturbations of the inputs
because we believe that they not only represent a realistic type of attacks that can easily be used
widely but also because it is a sufficiently well defined problem so that an efficient defense strategy
can potentially be found. We consider two categories of white-box attacks that produce universal
perturbations. The first one, termed universal perturbation, is meant to produce a single perturbation

1



Under review as a conference paper at ICLR 2019

for the whole dataset (Moosavi-Dezfooli et al., 2017). The second one, termed universal adversarial
patch (Brown et al., 2017), covers a part of the image with a circular patch.

To make classification more robust, we consider a novel form of adversarial training where adversarial
samples are continually included in the training protocol. However, in contrast to standard adversarial
training (Huang et al., 2015; Madry et al., 2017), we draw inspiration from game theory (Brown,
1951; Von Neumann and Morgenstern, 2007), and we model the adversarial training as a game
between two players, let us call them conman and classifier. Conman fools classifier by generating
adversarial perturbations, while at the same time, classifier makes robust predictions in the presence
of such perturbations. In this paradigm, standard adversarial training can be seen as an approximate
solution for this game, where classifier tries to be robust based on the most recent perturbations
produced by conman. Instead, inspired by a vast body of the research in game theory, we propose
to extend the so called fictitious play algorithm (Brown, 1951) that provides an optimal solution for
such a simultaneous game between two players. Fictitious play is a more general form of adversarial
training where previously generated adversarial samples are also taken into consideration.

Contributions: We propose a generalization of the adversarial training in the form of a simulta-
neous game between two players. Next, we show the framework is effective for two variants of
adversarial attacks: universal perturbation and adversarial patch. In particular, it is the first defense
mechanism against the adversarial patches. Compared to adversarial training, our method sacrifices
less accuracy for robustness to universal perturbations, and provides better robustness to universal
perturbations than the standard adversarial training. Finally, we show how our algorithm, which is
inspired by fictitious play, scales up to large datasets such as ImageNet.

2 RELATED WORK

On per-sample adversarial perturbations: The field of finding adversarial perturbations has grown
rapidly since Szegedy et al. (2014). However, this method relies on a rather expensive second-order
optimization method based on L-BFGS. Later on, Goodfellow et al. (2015) have discovered that
applying a single step of a sign gradient ascent (FGSM) is enough to fool a classifier. Kurakin et al.
(2016) have extended the same method to use more than one iteration (I-FGSM), and hence have
created a stronger, yet computationally cheap, method of attacks. Following such discoveries, more
optimization methods are proposed to reliably evaluate the robustness of classifiers to adversarial
samples. Whilst this area is very active, majority of methods are bench-marked and generalized
in Carlini and Wagner (2017).

On universal adversarial perturbations: Although the field started with per-example perturbations,
where each input image is separately perturbed, Moosavi-Dezfooli et al. (2017) have empirically
shown the existence of so called universal perturbations. In that case, a single perturbation is applied
to all the images in order to fool a classifier. This type of attack, where a single input transformation
is able to fool a neural network, has found many concerning applications. For instance, it can be used
to create space-bounded adversarial patches (Brown et al., 2017), or to print 3D objects that would be
missclassified (Athalye et al., 2017).

On adversarial training: This research area aims at making classifiers more robust to adversarial
attacks. To address this problem various strategies have been proposed, such as: input transforma-
tion (Liao et al., 2017; Guo et al., 2017), changing objective function (Sinha et al., 2017; Madry
et al., 2017), defensive distillation (Papernot et al., 2016), or robust optimization (Madry et al., 2017).
Most of these approaches have been tested against very sophisticated algorithms and very few seem
to provide robustness apart from adversarial training (Uesato et al., 2017). Finally, Tramèr et al.
(2017) recognize, as we do, the importance of augmenting training data with perturbations produced
for more than just the current model, but this work has only been applied for black-box per-sample
attacks on large datasets.

On game theory: Fictitious play is a game-theoretic algorithm meant to reach Nash equilibrium in
simultaneous games (Brown, 1951). Recent work in the area of multi-agent reinforcement learning has
made practical use of the fictitious play algorithm to learn in zero-sum or cooperative games (Heinrich
et al., 2015; Heinrich and Silver, 2016; Lanctot et al., 2017; Pérolat et al., 2018). Our algorithm
builds on these developments as it is an approximation of the Fictitious play process suited to the task
of learning against universal adversarial examples.
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3 METHOD

This section familiarizes the reader with our notations and some concepts thoroughly used in this
work. Next, we detail fictitious play together with our novel approximation thereof. Finally, we
present the various baselines used in Section 4.

3.1 NOTATIONS

Classifier: The classifier’s goal is to perform predictions based on the input data. This problem is
addressed as a standard classification task, where the goal is to learn a function f ∈ F from data,
mapping inputs to labels and generalizing well to unseen inputs, given a training dataset. This is
often set up as an optimization problem, where f is learned by minimizing some loss (Vapnik, 1998),
that is

f∗ ∈ argmin
f∈F

L(f,D),

where L(f,D) = 1
N

∑N
i=1 l(f(xi), yi) is the miss-classification loss (usually the cross entropy loss)

of the function f ∈ F over the training dataset D = {(xi, yi)}Ni=1.

Conman: The conman’s role is to fool classifier by producing a single perturbation that is applied
to every input in the training set. More formally, for a given classifier f ∈ F , conman constructs a
small enough perturbation ξf,ε so that the perturbed dataset Dξ remains ‘similar’ to the initial dataset
D by solving the following optimization problem

ξf,ε ∈ argmax
d(Dξ,D)<ε

L(f,Dξ),

where d(·, ·) captures dissimilarity between two sets, and is defined as:

d(D̃,D) = max
i
ρ(x̃i, xi),

where D̃ = {(x̃i, yi)}Ni=1, D = {(xi, yi)}Ni=1, ρ(·, ·) is a distance between samples, and ε is a
positive real number. More precisely, we consider two kinds of perturbations. First, universal
adversarial perturbations (Moosavi-Dezfooli et al., 2017) where the same perturbation ξ is applied
to all inputs, i.e. Dξ = {(xi + ξ, yi)}Ni=1 and ‖ξ‖ < ε. Second, adversarial patch ξ, where we first
sample a random location (a, b) in the image, an angle of rotation θ and a rescaling factor χ that
defines an affine transformation, then apply this transformation to the patch and finally overlay the
transformed patch on the original image. An example of this process is shown in Figure 1. Let us
call x̃i = A(a, b, χ, θ, xi, ξ) the perturbed image, then the perturbed dataset is Dξ = {(x̃i, yi)}Ni=1.
Learning a patch ξ is done by using a gradient ascent on the cross entropy loss and a term that predicts
a fixed class (see Section 3.4 for details). It is important to notice that storing a univerally-perturbed
dataset Dξ comes to storing a universal perturbation (or a patch) which is cheap memory-wise.

(a) Adversarial Patch (b) Raw Image (c) Perturbed Image

Figure 1: Example of an adversarial patch that changes the prediction of the neural network when
overlaid on the raw image. Here, we trained it to predict a toaster.

Robust classifier: We frame the training of a robust classifier as a game between classifier and
conman. This can also be expressed within an optimization framework as follows

f∗ ∈ argmin
f

max
ξ
L(f,Dξ).
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Intuitively, to train a robust classifier, we need to minimize the empirical risk knowing that conman
will attempt to maximize that risk by perturbing the dataset.

3.2 A GAME-THEORETIC APPROACH TO UNIVERSAL ATTACKS

Whilst popular approaches to robustification against universal adversarial attacks formulate the
problem of learning a robust classifier as a problem of robust optimization (Madry et al., 2017),
we phrase it as a game and take inspirations from the fictitious play algorithm (Brown, 1951). As
Figures 2 and 3 illustrate, the fictitious play algorithm sequentially builds best responses to a uniform
distribution over the past strategies of the opponent. For conman this means building a sequence
of perturbations ξn leading to new datasets Dn (Figure 2), and for the classifier this means to build
a sequence of classifiers fn (Figure 3). In the following, we refer to the process of finding best
responses as the outer-loop. At termination, the decision is taken uniformly based on the set of
learned classifiers. More formally, at iteration n ≥ 1, conman has to find a perturbation ξn that
maximizes the uniform average empirical loss over the past classifiers (Figure 2):

Lnconman(Dξ) =
1

n

n−1∑
i=0

L(fi,Dξ),

ξn = argmax
ξ
Lnconman(Dξ), Dn = Dξn .

Remark: Recall that, in the case of universal perturbations, finding Dn corresponds in finding a
universal perturbation (or a patch) ξn (see Section 3.4). Moreover, storing Dn consists in storing ξn
(a single image) which is cheap memory-wise.

Classifier on its side has to find a function fn that minimizes the uniform average loss over the past
datasets (Figure 3):

Lnclassifier(f) =
1

n

n−1∑
i=0

L(f,Di),

fn = argmin
f
Lnclassifier(f).

As a convention, we write L0
classifier(f) = L(f,D0), where D0 is the original dataset. At termi-

nation (after n steps), the strategy played f̂n is a uniform random variable over the set {fi}ni=0 of
learned classifiers. Symmetrically, we define the uniform random variable D̂n over the set {Di}ni=0
of perturbed datasets.

f0
f1

...
fn−1
fn

D0 D1
. . . Dn−1 Dn

f̂n−1

L(f,Dξ)

Figure 2: Illustration of the update of conman.

f0
f1

...
fn−1
fn

D0 D1
. . . Dn−1 Dn

D̂n−1

L(f,Dξ)

Figure 3: Illustration of the update of classifier.

Approximate Fictitious play: Direct application of fictitious play remains unpractical in our case for
mainly one reason: the computation of f̂n at test time requires the storage of every function {fi}ni=0.
Therefore all classifiers need to be stored in the dedicated memory (CPU or GPU memory) for rapid
access to do inference. This can be a real issue for large values of n as the required memory grows
linearly with the number of iterations. To alleviate this problem, we leverage the fact that only f̂n
needs to be known to find ξn+1 and for the inference. Thus, instead of storing all the classifiers
{fi}ni=0, we propose to learn an approximation f̃n of f̂n. Observing that f̂n is a uniform random
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variable over the set {fi}ni=0, where each fi minimises the loss Liclassifier, we approximate f̂n by

the function f̃n that minimizes:

L(f, {Di}i∈{0,...,n−1}) =
1

n+ 1

n∑
i=0

Liclassifier(f),

f̃n = argmin
f
L(f, {Di}i∈{0,...,n−1}).

By paying the price of this approximation, we circumvent the main drawback of fictitious play. Note
that the second step of finding a perturbation is delegated to a separated algorithm described in
Section 3.4.

Algorithm 1 Fictitious play for adversarial perturbation (FP)

INPUT: a dataset D0 = D, an initial classifier f0, a number of iteration N and a number of steps
K

1: for n = 1, . . . , N : do
2: Perform K steps of stochastic gradient descent on the loss L(f, {Di}i∈{0,...,n−1}),
3: Find a universal perturbation ξn (and its corresponding dataset Dn) that perturbs f . In the

experiment we typically use 20000 steps of SGD (the rest of the hyper-parameters are summarized
in Table 4).

4: end for
5: RETURN: f

3.3 RELATED APPROACHES AND BASELINES

Work on classifiers’ robustness to adversarial perturbations mainly focuses on per-sample perturba-
tions. Out of many defence approaches, the most successful is adversarial training (Madry et al.,
2017) which is used as the first baseline in our experiments. Whilst the evaluation of the robustness of
defence methods is still an active area of research, the robustness of this method has been assessed by
two independent studies (Athalye et al., 2018; Uesato et al., 2017). It augments the batch of examples
to train the network with a batch of adversarial examples Df,ε. It can be seen as a stochastic gradient
descent on 1

2L(f,D) + 1
2L(f,Df,ε) (see Algorithm 2).

Adversarial training computes per-sample perturbations of the current neural network for each batch
of data to perform one gradient update. In comparison, our approach sequentially produces new
perturbed data that augment the training dataset. Moreover, in our case, the perturbed datasets depend
on past classifiers rather than only on the current one. As Section 3.4 shows in more details, a
universal perturbation is computed in one step of the outer-loop in Algorithm 2.

The second baseline we use is the standard Stochastic Gradient Descent (SGD) on the loss L(f,D).
(Algorithm 3).

Algorithm 2 Adversarial Training (AT)

INPUT: a dataset D0 = D, an initial classifier f0, a number of iteration N and a number of steps
K

1: for n = 1, . . . , N : do
2: for k = 1, . . . ,K : do
3: Sample a batch of examples {(xi, yi)}i∈Bk,n ,
4: Compute adversarial examples {(x̃i, yi)}i∈Bk,n (same procedure as in (Madry et al.,

2017)),
5: Perform gradient descent step on 1

2

∑
i∈Bk,n

l(f(xi), yi) + l(f(x̃i), yi)

6: end for
7: end for
8: RETURN: f

5



Under review as a conference paper at ICLR 2019

Algorithm 3 Stochastic Gradient Descent (SGD)

INPUT: a dataset D, an initial classifier f0, a number of iteration N and a number of steps K
1: for n = 1, . . . , N : do
2: Perform K steps of stochastic gradient descent on the loss L(f,D),
3: end for
4: RETURN: f

3.4 LEARNING UNIVERSAL ADVERSARIAL PERTURBATIONS

The state-of-the-art algorithm developed to learn universal adversarial perturbations is based on
Deepfool (Moosavi-Dezfooli et al., 2017) as a subroutine and is meant to make the classifier to switch
classes. This objective is different from the one that we are following in our work as we wish to find
a single perturbation ξ that maximizes the loss function Lnconman(Dξ) = 1

n

∑n−1
i=1 l(f(xi + ξ), yi).

Thus, to find such an adversarial perturbation, we do a projected stochastic gradient ascent on the
loss function with respect to the variable ξ. The corresponding update is:

ξk+1 = Γε

(
ξk +

α

|Bk|
∑
i∈Bk

sgn (∇ξl(f(xi + ξk), yi))

)
,

where Γε is the projection in L+∞-norm of size ε and Bk is a random batch of samples of D.

To learn an adversarial patch, we use a similar approach. Applying a patch consists in an affine
transformation of the patch and overlaying it into the image. Precisely, for a random location (a, b),
rotation (θ) and re-scaling (χ), we apply the canonical affine transformation defined by (a, b, χ, θ)
to the patch and overlay it on the image. This operation is differentiable. Let us note the resulting
perturbed image x̃i = A(a, b, χ, θ, x, ξ). Therefore, we can find an adversarial patch that can fool
the current network with the following update:

ξk+1 = Ea,b,χ,θ

(
ξk +

α

|Bk|
∑
i∈Bk

∇ξl (f(A(a, b, χ, θ, xi, ξk), yi))

)
,

where Ea,b,χ,θ is the expectation over the parameters of the afine transformation applied to the patch.
In practice, we handle this expectation by sampling uniformly and independently the localization
over the image, the angle θ, and the re-scaling parameter (χ) over a range defined in Table 4.

4 EXPERIMENTS AND RESULTS

This section presents our empirical findings and the metrics we use to assess them.

Datasets considered: CIFAR10, CIFAR100 (Krizhevsky, 2009) and ImageNet (Russakovsky et al.,
2015). The last one is a large-scale dataset that is often used to benchmark recognition architectures.
Moreover, models trained on this dataset are frequently believed to capture important visual features
that are transferred to other computer vision problems.

Architecture and Optimizer: We run experiments using the same architecture (see Appendix. B) on
both CIFAR10 and CIFAR100. This architecture is inspired by the VGG (Simonyan and Zisserman,
2014b) architecture without the max-pooling adjusted to work on CIFAR scaled images. However,
when it comes to ImageNet, we use a Resnet 50 architecture (He et al., 2016). We use a stochastic
gradient descent with momentum of 0.9 as our optimizer.

Metric: In all the figures, we report the accuracy of the network at the end of the iteration of the outer
loop (which corresponds to 5000 steps of SGD). The accuracy (dotted line in the plots) is the fraction
of examples that have been correctly classified for a batch of 10000 samples randomly chosen in the
train, validation and test sets. The other metric we track is the adv accuracy. This metric represents
the accuracy of the network under the presence of the most recent universal adversarial perturbation.
Thus, the perturbation used to evaluate the performance of the network has not been used during
training.

Choice of baselines: We compare our work to two baselines. The first one is adversarial training as
this method has empirically proven it’s robustness against several white box per-sample adversarial
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attack and has been tested thoroughly (Uesato et al., 2017; Athalye et al., 2018). The second is
standard Stochastic gradient descent as it provides a baseline when no training is done. A baseline
that could have been considered would have been to adapt adversarial training by using an algorithm
to generate universal adversarial perturbations. However, as generating a universal adversarial
perturbation takes several order of magnitude more time than per sample perturbation, this approach
is unfeasible in practice since a new perturbation needs to be generated per batch in adversarial
training.

4.1 UNIVERSAL PERTURBATION EXPERIMENT

The first experiment is reported in Figure 4 which shows the different metrics along the learning
process on the CIFAR10 dataset. This perturbation is quite large (16 pixels) compared to the ones
used to train robust networks on per sample perturbation. For the classical accuracy metric, SGD
performs better than the two other methods. Our fictitious play method suffers from a slightly worse
accuracy but better than the adversarial training (Madry et al., 2017). However, for the accuracy
under universal perturbation1 our method performs better than the two others. SGD does not perform
well as expected and surprisingly standard adversarial training does not provide any robustness. This
can be explained by the fact that we use large perturbations (16 pixels) compared to what is usually
done in the literature. Therefore, the resulting network is robust to universal perturbations only with
the fictitious play training. On CIFAR100 (Figure 5), we run the same experiment but on smaller

Figure 4: Results on CIFAR10 for universal adversarial perturbation. It presents the accuracy and
adversarial accuracy of: Fictitious Play (FP), Stochastic Gradient Descent (SGD), and Adversarial
Training (AT).

perturbations (8 pixels) instead of 16 pixels (on CIFAR10). It turns out smaller perturbations are
sufficient to fool the vanilla network. In general, robustness against a class of adversarial examples
seems to come at the cost of accuracy and, the larger the class of adversarial examples we try to
be robust against, the larger that cost becomes. According to adversarial accuracy, our method
performs well against universal perturbations (almost matching the standard accuracy). As expected
the adversarial accuracy of SGD is low.

4.2 ADVERSARIAL PATCHES EXPERIMENT

We run a similar experiment for adversarial patches (Brown et al., 2017) and compare it with SGD
as, to the best of our knowledge, there isn’t any other method in the literature designed to be robust
against adversarial patches. The first experiment on CIFAR100 leads to similar conclusions as the
experiment on universal perturbations. The accuracy of SGD is slightly better than the one of fictitious
play but the adversarial accuracy of our method surpasses the one of SGD. We scaled up this approach
to the ImageNet dataset, and again, our approach significantly improves robustness to adversarial
patches.

1Recall that we evaluate our training methods against universal perturbations whilst the majority of the work
in that field focuses on per-sample perturbation.
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Figure 5: Results of our experiment on CIFAR100 for universal adversarial perturbation.

Figure 6: Results of our experiment on ImageNet for universal adversarial perturbations.

5 CONCLUSION

We presented a method for building classifiers robust to universal adversarial perturbations. As
opposed to previous work, our method is able to learn classifiers robust to white-box attacks on
large datasets whilst previous work was only able to scale on black-box attacks. Our method
provides such a robustness by sequentially including universal perturbations in the training dataset.
Our method surpasses standard adversarial training (Madry et al., 2017) when evaluated against
universal adversarial perturbations. Moreover, our method does not only provide robustness against
perturbations bounded by L+∞-norm but also bounded in space, leading (as far as we know) to the
first method that addresses robustness to adversarial patches. Many extensions of this work could be
studied in other domains such as image segmentation (Metzen et al., 2017). We hope this work will
help to develop a larger variety of defences against adversarial perturbations that does not only focus
on per-sample perturbations but also on simpler but still realistic scenarios of universal attacks.
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Figure 7: Results on CIFAR100 for an adversarial patch appearing at a random position on the image
of a diameter 0.4 times the size of the image.

Figure 8: Results on ImageNet for an adversarial patch appearing at a random position on the image
of a diameter 0.5 times the size of the image.
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A HYPERPARAMETERS

In this section, we sum up the hyper-parameters used for each experiments:

Scale
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Learning algorithm
regularization 0.0002 0.0002 0.0002 0.0002 0.0002

inner loop step K 10000 10000 5000 5000 5000

start learning rate 0.01 0.01 0.01 0.01 0.01

decay K 0.1 0.1 0.1 0.1 0.1

schedule (104) (15, 30, 45) (15, 30, 45) (10, 20, 40) (10, 20, 40) (10, 20, 40)

Batch size 256 256 256 256 256

Perturbations loop

initial learning rate 210−5 210−5 510−4 1.0 1.0

size universal perturbation
for learning (in pixels) 16 8 24 / /

diameter of the patch (in
percentage of the image) at
test χ

/ / / 0.4 0.5

rotation θ / / / 20.0◦ 20.0◦

iterations number 20000 20000 10000 10000 10000

Batch size BK 100 100 100 100 100

Table 2: table of hyper-parameters.

B NETWORK

Architecture Used
Input 32 × 32 RGB image

3 × 3 conv. 64 ReLU stride 1
3 × 3 conv. 64 ReLU stride 1

3 × 3 conv. 128 ReLU stride 2
3 × 3 conv. 128 ReLU stride 1
3 × 3 conv. 128 ReLU stride 1
3 × 3 conv. 256 ReLU stride 2
3 × 3 conv. 256 ReLU stride 1
3 × 3 conv. 256 ReLU stride 1
3 × 3 conv. 512 ReLU stride 2
3 × 3 conv. 512 ReLU stride 1
3 × 3 conv. 512 ReLU stride 1

Fully connected layer

Table 3: We have adapted VGG16 Simonyan and Zisserman (2014a) to the CIFAR dataset. We use
batch normalization between every convolutional layer and the ReLU activation function.
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C DATASET

Scale

size
Dataset T

R
A

IN

T
E

ST

VA
L

ID

Cifar 10 40000 10000 10000

Cifar 100 40000 10000 10000

ImageNet 1271167 50000 10000

Table 4: Description of the datasets used.

13


	Introduction
	Related Work
	Method
	Notations
	A Game-Theoretic Approach to Universal Attacks
	Related Approaches and Baselines
	Learning Universal Adversarial Perturbations

	Experiments and Results
	Universal Perturbation Experiment
	Adversarial Patches Experiment

	Conclusion
	Hyperparameters
	Network
	Dataset

