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Abstract

Capsule networks have recently gained a great deal of interest as a new architecture
of neural networks that can be more robust to input perturbations than similar-sized
CNNs. Capsule networks have two major distinctions from the conventional CNNs:
(i) each layer consists of a set of capsules that specialize in disjoint regions of the
feature space and (ii) the routing-by-agreement coordinates connections between
adjacent capsule layers. Although the routing-by-agreement is capable of filtering
out noisy predictions of capsules by dynamically adjusting their influences, its
unsupervised clustering nature causes two weaknesses: (i) high computational
complexity and (ii) cluster assumption that may not hold in presence of heavy
input noise. In this work, we propose a novel and surprisingly simple routing
strategy called self-routing where each capsule is routed independently by its subor-
dinate routing network. Therefore, the agreement between capsules is not required
anymore but both poses and activations of upper-level capsules are obtained in a
way similar to Mixture-of-Experts. Our experiments on CIFAR-10, SVHN and
SmallINORB show that the self-routing performs more robustly against white-box
adversarial attacks and affine transformations, requiring less computation.

1 Introduction

In the past years, deep convolutional neural networks (CNNs) have become the de-facto standard
architecture in image classification tasks, thanks to their high representational power. However, an
important yet unanswered question is whether deep networks can truly generalize. Well-trained
networks can be catastrophically fooled by the images with carefully designed perturbations that
are even unrecognizable by human eyes [23| 29/ 137, 138]]. Furthermore, natural, non-adversarial pose
changes of familiar objects are enough to trick deep networks [1} |8]]. The later is more depressing
since natural pose changes are universal in the real world.

Some research [} [15] has argued that neural networks should aim for equivariance, not invariance.
The reasoning is that, by preserving variations of an entity in a group of neurons (equivariance) rather
than only detecting its existence (invariance), it would be easier to learn the underlying spatial relations
and thus yield better generalization. Following this argument, a new network architecture called
capsule networks (CapsNets) and a mechanism called routing-by-agreement have been introduced
[16,134]. In this design of networks, each capsule contains a pose (or instantiation parameters) for
encoding patterns of its responsible entity. Active capsules in one layer make pose predictions for
capsules in the next layer via transformation matrices. Then, the routing algorithm finds a center-
of-mass among the predictions via iterative clustering and ensures that only the majority opinion is
passed down to the next layer.

While the routing-by-agreement [[16, [34] has shown to be effective, its unsupervised clustering nature
causes two inherent weaknesses. First, it requires repeatedly computing means and membership
scores of prediction vectors. This makes CapsNets much computationally heavier than one-pass
feed-forward CNNs. Second, it makes assumptions on cluster distributions of predictions. This might

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



not be a problem if the training of CapsNets successfully learns to fit the weights to the assumptions.
However, it is likely that the routing-by-agreement tends to fail when a number of prediction vectors
become noisy so that they are clustered in an unexpected form.

In this work, we aim to overcome the above limitations by proposing a new and surprisingly simple
routing strategy that does not involve agreement anymore. In our algorithm, the contribution of a
lower-level capsule to a higher-level capsule is determined by its activation and the routing decision
by its subordinate routing network. We refer to this design of routing as self-routing. To the best of
our knowledge, there is no previous literature of removing the routing-by-agreement from CapsNets.

Our method is motivated by the structural resemblance between CapsNets and Mixture-of-Experts
(MoE) [118 [7 136} 20]. They are similar in that their composing units (i.e. capsules and experts)
specialize in different regions of input space and that their contributions are adjusted differently
per example. One key difference is that, in CapsNets, gating values are dynamically adjusted to
suppress potentially unreliable submodules via the routing-by-agreement. However, if the robustness
of CapsNets can be retained without the routing-by-agreement, then we might be able to safely
remove the unsupervised clustering part that causes the two aforementioned weaknesses.

For evaluation, we compare our self-routing to the two most prominent routing-by-agreement,
dynamic [34] and EM [16] routing on CIFAR-10 [22]], SVHN [42] and SmalINORB [24] datasets.
We compare not only classification accuracies but also robustness under adversarial attacks and
viewpoint changes. For fairness, we use the same CNN base architectures (e.g. 7-layer CNN and
ResNet-20) and replace only the last layers of the original networks to respective capsule layers.

Compared to the previous routing-by-agreement methods [[16, [34], the self-routing achieves better
classification performance in most cases while using significantly less computations in FLOPs.
Moreover, it shows stronger robustness under both perturbations of adversarial attacks and viewpoint
changes. We also show that our self-routing benefits more the CapsNets from the increase in model
sizes (i.e. wider capsule layers), while the previous methods often degrade.

2 Related Work

Capsule networks. Recently, capsule networks have been actively applied to many domains such
as generative models [19], object localization [27] and graph networks [40], to name a few. Hinton
et al. [[15]] first introduced the idea of capsules and equivariance in neural networks. In their work,
autoencoders are trained to generate images with a desired transformation; yet the model requires
transformation parameters to be supplied externally. Later, Sabour et al. [34] proposed a more
complete model in which transformations are directly learnable from the data. To control the
information flow between adjacent capsule layers, they employed a mechanism named dynamic
routing. Ever since, alternative routing methods have been suggested. Hinton ez al. [16] proposed to
use Gaussian-mixture clustering. Bahadori et al. [3] made convergence faster via eigendecomposition
of prediction vectors. Wang et al. [41] formalized the routing process to suggest a theoretically
refined version. Li et al. [25] approximated the routing process with interaction between master and
aide branches. Compared to all of previous work, our routing approach is free from agreement but
focuses on its ability of mixture-of-experts.

Mixture-of-experts. There have been many attempts to incorporate mixture-of-experts (MoE) into
deep network models. Eigen ef al. [[7] stacked multiple layers of MoE to create exponentially
increasing number of inference paths. Shazeer et al. [36] used sparsely-gated MoE between stacked
LSTM layers to expand model capacity with only a minor loss in computational efficiency. In [30],
architectural diversity is added by allowing experts to be an identity function or a pooling operation.
Kirsch et al. [21] modularized a network so that neural modules can be selected on a per-example
basis. In [33]], a routing network is trained to choose appropriate function blocks for the input and task.
This work interprets the origin of CapsNet’s strengths as the behavior of MoE, and such perspective
leads to our self-routing design.

CNN fragility. Despite of the great success of CNNs, many recent studies have raised concerns on
their robustness [8} 9} [14]]. Unlike humans, CNNs easily yield incorrect answers when presented
with rotated images [8, 19]. Surprisingly, little improvement is observed in terms of noise robustness
even for recent deep CNNs that are highly successful on image classification tasks [14]. However,
their fragility may be hard to overcome by data augmentation techniques [9)]. There are also a



number of methods called adversarial attacks, that fool CNNs by creating images whose fabrication
is hardly perceivable even to human [23} 29] 138}, 37]. In this work, we evaluate the robustness of
CapsNets, which are proposed as an alternative or a supplement for deep CNNs. In section [5] we
demonstrate that augmenting only one routing layer structured by capsules can significantly improve
the robustness to adversarial attacks and affine transformations.

3 Preliminaries

We first review the basics of capsule networks and two most popular routing algorithms: dynamic
[34] and EM routing [16].

3.1 Capsule Formulation

A capsule network [[16, [34] is composed of layers of capsules. Let €2; denote the sets of capsules
in layer [. Each capsule i€ € hasa pose vector u; and an activation scalar a;. In addition, a
weight matrix W}, for every capsule j € ;41 predicts pose changes: t;; = W}, “u;. The pose
vector of capsule j is a linear combination (or together with an activation function) of the prediction
vectors: u; = ), ¢;;0;);, where c;; is a routing coefficient determined by an routing algorithm. In
the convolutional case, capsules within K x K neighborhood in €2; define a capsule in £2;; where K
is the kernel size. The formulation of capsules varies according to the design of the routing algorithm.
In dynamic routing [34]], the pose is defined as a vector and its length is used as its activation. In EM
routing [[16], the pose is defined as a matrix and the activation scalar is separately defined. In our
method, we use a vector for the pose with separated activation scalar.

3.2 Dynamic and EM Routing

A capsule is activated when multiple predictions by lower-level capsules agree. In other words, the
activation depends on how tight the prediction vectors are clustered. The routing coefficients from a
lower-level capsule to all upper-level capsules sum to 1 (e.g. > jCij = 1), and are iteratively adjusted
so that the lower-level capsule ¢ has more influence on the upper-level capsule j when ¢-th prediction
is close to the mean of the predictions that j receives. We below review how the two most popular
routing methods compute the routing coefficient ¢;; from capsule 7 to j.

In dynamic routing [34], the cosine similarity is used to measure the agreement. The routing logits
b;; are initialized to 0 and adjusted iteratively by the following equation:
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In EM routing [[16], it is assumed that the probability density of u;); follows the j’s Gaussian
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where cost; = > o ¢ij(Bu — logp(Qy:)), agt) = sigmoid()\(ﬂa— cost§ ))), a; = aﬁk) and
u; = ugk). B, and 3, are learned discriminatively and ) is a hyperparameter that increases during
training with a fixed schedule.

4 Approach

In section 4.1} we discuss the two distinctive strengths of CapsNets. In section[d.2] we propose our
approach of self-routing, whose motivation is to maximize the merits of CapsNets while minimizing
undesired side effects.
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Figure 1: Comparison between (a) capsule networks and (b) mixture-of-experts. Given routing coefficients, the
only computational difference is that capsule networks use disjoint input representations for each capsule unit.
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Figure 2: Conceptual comparison between (a) routing-by-agreement and (b) our proposed self-routing. In
self-routing, subordinate routing networks W, fed pose vectors u; are used to obtain routing coefficients c;;
rather than unsupervised clustering on prediction vectors @ |;.

4.1 Motivation

We view that CapsNets have two distinctive characteristics compared to the conventional CNNss: (i)
the behavior of mixture-of-experts (MoE) and (ii) the noise filtering mechanism.

Behavior of MoE. Capsules specialize in disjoint regions of feature space and make multiple
predictions based on information available to them for the regions. In each capsule layer, this
structure naturally forms an ensemble of submodules that are activated differently per example, in a
way similar to Mixture-of-Experts (MoE) [18 (7,136, 20]]. Compared to MoE, the division of labor is
more explicit as different capsules do not share the same feature space (see Figure[T). Nonetheless,
the discriminative power of each capsule may not be as strong as in CNNs where entire feature map
in each layer are utilized to produce single output of the layer. However, by aggregating predictions
from weaker modules that have different parameters, it effectively prevents overfitting and thus can
reduce the output variance with respect to small input variations.

Noise filtering mechanism. In CapsNets, initial gating values (i.e. activation scalars) of capsules
are dynamically adjusted. The routing-by-agreement ensures that the predictions far from general
consensus have lesser influence on the output of each layer. In other words, the process can effectively
filter out the contribution of submodules having possibly noisy information. Additionally, output
capsules of which predictions have high variance are further suppressed. On the other hand, CNNs
have no mechanism of segmenting potentially noisy channels from unnoisy ones.

In this work, we aim to design a routing method that mainly focuses on the first characteristic of
CapsNets. The second property is beneficial but brought by the agreement-based routing, which
unfortunately causes two critical side effects: (i) high computational complexity and (ii) assumptions
on cluster distribution of prediction vectors. Specifically, the previous routing methods assume
spherical or normal distribution of prediction vectors, which is unlikely to hold due to high variability
and noisiness of real-world data. In fact, clustering noisy data is still a challenging task. Hence,
the key to our intuition is to remove the notion of agreement from the routing process but introduce
a learnable routing network for each capsule instead (section d.2)). Although the clustering in the
agreement-based routing can help reducing the variance of output, we empirically observe that, even
without the routing-by-agreement, the simple weight average of the new routing method can have a
similar effect. That is, the unreliability of a single prediction can be mitigated by ensemble averaging,
since the errors of the submodules (capsules) average out to provide a stable combined output.



4.2 Self-Routing

We name the CapsNet model with our proposed self-routing as SR-CapsNet. Figure 2[a)—(b) illustrate
the high-level difference between the self-routing and the routing-by-agreement. In the self-routing,
each capsule determines its routing coefficients by itself without coordinating the agreement with peer
capsules. Instead, each capsule is endowed higher modeling power by a subordinate routing network.
Following the MoE literature [36], we design the routing network as single-layer perceptrons,
although it is straightforward to extend it to an MLP. The routing coefficients also work as the
predicted activations of output capsules. That is, an upper-level capsule is more likely to be activated
if more capsules have high routing coefficients to it.

The self-routing involves two learnable weight matrices, W™ and WP which are used to
compute routing coefficients c;; and predictions 1;;, respectively. Each layer of the routing network
multiplies the pose vector u; by a trainable weight matrix Wi°"*® and outputs the routing coefficients
ci+ via a softmax layer. The routing coefficients c;; are then multiplied by the capsule’s activation
scalar a; to generate weighted votes. The activation a; of a upper-layer capsule is simply the
summation of the weighted votes of lower-level capsules over spatial dimensions H x W (or K x K
when using convolution). In summary,
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o ciiait

N , o, Cigail;li

o, = Wi, u; = =54 i 4)
2ic, Cij%i

¢;j = softmax(Wi*"w;),;, a; =

3)

S Experiments

In experiments, we focus on comparing our self-routing scheme with the two most impor-
tant agreement-based routing algorithms from multiple perspectives. We first evaluate the im-
age classification performance (section [5.2). We then compare the robustness against unseen
input perturbations, since such generalization abilities have been the key motivation of Cap-
sNets. Especially, we experiment the robustness against adversarial examples (section [5.3) and
viewpoint changes by affine transformation (section [5.4). Our full source code is available at
http://vision.snu.ac.kr/projects/self-routing.

5.1 Experimental Settings

Datasets. Following CapsNet literature, we mostly use two classification benchmarks of CIFAR-10
[22] and SVHN [42] and additionally SmalINORB [24] for the affine transformation tests. During
training on CIFAR-10 and SVHN, we augment using random crop, random horizontal flip and
normalization. For SmalNORB, we follow the setting of [16]; we downsample training images to
48 x 48, randomly crop 32 x 32 patches, and add random brightness and contrast. Test images are
center cropped after downsampled.

Architectures. For fair comparison, we let all routing algorithms share the same base CNN archi-
tecture. We choose ResNet-20 [13]] designed for CIFAR-10 classification for the following two
reasons. First, the ResNet is one of the best performing CNN architectures in various computer
vision applications [4} 11} 26, |31} 32]]. It would be interesting to verify whether employing capsule
strucutres can benefit the mainstream CNNs. Second, the ResNet is mostly composed of Conv layers,
which makes it easy to implement CapsNets due to the similar structure between them. Note that
CapsNets consist of only Conv layers and capsule layers. Given that ResNet-20 [13]] consists of 19
Conv layers followed by the last average pooling and FC layers, we can simply build a CapsNet
on top of it by replacing the last two layers by primary capsule (PrimaryCaps) and fully-connected
capsule (FCCaps) layers, respectively. However, SmalINORB dataset is much less complex than
CIFAR-10/SVHN and its training set is relatively small (16200 samples), we use a 7-layer CNN,
which is a simpler network with no shortcut connection. It consists of 6 CONV layers, followed by
AvgPool and FC layers.

We also experiment the performance variation according to the depth and width of capsule layers. The
depth means how many routing layers are inserted after PrimaryCaps layer. Thus, depth of 1 means
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Table 1: Comparison of number of parameters (M), FLOPs (M) and error rates (%) between routing algorithms
of CapsNets and CNN models. We use ResNet-20 as the base network. DR, EM and SR stands for dynamic
[34], EM [16] and self-routing, respectively. The number following (method-) is the number of stacked capsule
layers on top of Conv layers. All CapsNets have 32 capsules in each layer. We test each model 5 times with
different random seeds. Error rates reported below are their averages.

Methods ~ # Param. (M) #FLOPs (M) CIFAR-10 SVHN

AvgPool 0.3 41.3 7.94+0.21 3.55 +0.11
Conv 0.9 61.0 10.014+0.99  3.98 +0.15
DR-1 5.8 73.5 8.4640.27 3.49 4+0.69
DR-2 4.2 232.1 7.86+0.21 3.17 +0.09
EM-1 0.9 76.6 10.254+0.45  3.85 +0.13
EM-2 0.8 173.8 12.52+0.32  3.70 +0.35
SR-1 0.9 62.2 8.1740.18 3.34 +0.08
SR-2 3.2 140.3 7.86+0.12 3.12 +0.13

the final layers of the network are PrimaryCaps+FCCaps, between which the routing is performed
once. The depth of 2 indicates the final layers are PrimaryCaps+ConvCaps+FCCaps so that the
routing is performed twice between consecutive capsule layers. Therefore, depth of d involves d — 1
ConvCaps inserted between PrimaryCaps and FCCaps. All ConvCaps layers have a kernel size of 3
and a stride of 1 except for the first ConvCaps layer that has a stride of 2. The width indicates the
number of capsules in each capsule layer; for example, the width of 8 means there are 8 capsules in
all Primary/ConvCaps layers of the architecture.

CNN baselines. We also test two variants of CNNs for comparison between CapsNets and conven-
tional CNNs. Since the former CONV layers of the base networks are shared by all the models, we
vary the last two layers as (1) AvgPool+FC as the original architecture and (2) Conv+FC for verifying
whether the performance obtained by CapsNets is simply caused by using more parameters, not by
their structures or routing algorithms.

We describe more details of experiments in Appendix |B} including architectures and optimization.

5.2 Results of Image Classification

We compare the image classification performance of self-routing with two agreement-based routing
algorithms on SVHN [42] and CIFAR-10 [22]. Table E] summarizes the error rates as well as
memory and computation overheads of each method. Self-routing and dynamic routing [34] show
similar classification accuracies to CNN baselines, while EM routing [16] degrades the performances.
Importantly, the computation overheads of self-routing in FLOPs are less than those of other routing
baselines, since it requires no iterative routing computations. In terms of the parameter size, EM
routing is the most efficient due to its matrix representations. Yet, we find that it is hard to train the
networks with stacked EM routing layers on more complex datasets than originally tested ones [[16]]
(e.g. SmalINORB). It seems that the constraint of 4 x 4 weight matrix multiplications is too strong to
learn good representations from complex data with multi-level routing layers. Dynamic routing is
comparable to our self-routing in performance, but it requires much more FLOPs for computation.
We find that all CapsNet variants are better than CNN baselines but the margins are not large. It
seems that the benefit from using the ensemble of weak submodules is rather weak, since the degree
of required specialization is small for the task and the datasets. In fact, MoE-style deep models
are commonly strong in the tasks that require obvious specializations such as multi-task learning
[2,133,130].

5.3 Robustness to Adversarial Examples

Adversarial examples are the inputs that are intentionally crafted to trick recognition models into
misclassification. Numerous defensive methods for such attacks have been suggested [6} 28]]. In
[L6], CapsNets have shown considerable robustness to such attacks without any reactive modification.
Therefore, we evaluate our model’s robustness to adversarial examples. We use the targeted and
untargeted white-box Fast Gradient Sign Method (FGSM) [10]] to generate adversarial examples.
FGSM first computes the gradient of the loss with respect to the input pixels, and adds the signs of
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Figure 3: Success rates (%) of untargeted and targeted FGSM attacks against different routing methods of
CapsNets and CNN models. The lower value indicates the better robustness. All CapsNets have 32 capsules in
each layer. We set € = 0.1 for all FGSM attacks. Results are obtained with 5 random seeds.
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Figure 4: The variation of success rates of untargeted and targeted FGSM attacks according to the number of
capsules per layer. The lower value is the better. The self-routing improves the robustness of CapsNets against
adversarial attacks as the number of capsules increases, since the routing coefficients are obtained by routing
networks, not unsupervised clustering unlike routing-by-agreement methods. We set ¢ = 0.1 for all FGSM
attacks. Results are obtained with 5 random seeds.

the obtained tensor to the input pixels by a fixed amount €. For fair comparison, we attack images for
which predictions of each model are correct.

Figure 3] summarizes the results. CNN baselines are significantly more vulnerable against both
general and targeted FGSM attacks than the CapsNets, among which our SR-CapsNets are the most
robust. Figure[d] shows that adding more capsules per layer further improves the robustness of our
SR-CapsNets, while stacking more capsule layers helps against the untargeted attack only. We cannot
find the similar pattern in other routing algorithms. Often, their performance degrades when more
capsules are used. This suggests that the agreement-by-routing struggles clustering the predictions
whose large portions involve noisy information.

We also attach the results obtained by another adversarial attack of the BIM [23] in Appendix [C]
5.4 Robustness to Affine Transformation

One of CapsNets’ known strengths is their generalization ability to novel viewpoints [16]. To
demonstrate this, we measure the classification performance on the SmalINORB [24] test sets with



Table 2: Comparison of error rates (%) on the SmalINORB test set with the 7-layer CNN as the base architecture.
Familiar and Novel denote the results on the test samples with seen and unseen viewpoints during training,
respectively. All CapsNets have 32 capsules in each layer. Results are obtained with 10 random seeds.

Methods Azimuth Elevation
Familiar Novel Familiar Novel
AvgPool  8.494+0.45 21.76+1.18  5.68+0.72  17.7240.30
Conv 8.394+0.56  22.07+1.02  7.51+1.09 18.7840.67
DR-1 6.86+0.50 20.33+1.32  5.78+0.48  16.3740.90
EM-1 7.36+0.89  20.16+£0.96  5.97+0.98 17.51%1.52
SR-1 7.6240.95 19.86+1.03 5.96+0.46 15.91+1.09
Familiar Viewpoint Novel Viewpoint
12.93 26.58 27.67 DR
S 157 12t 257 o 301 i1 11[70 . 29 EM
K 078 10.54 +0.90 I +0.31 T 098 60 SR
8 16.33 tux.ll = +ox.17
g1 : o | 20
2
g 5 10
=
w2
. 0 .
Azimuth Elevation Azimuth Elevation

Figure 5: Comparison of error rates (%) on the SmallNORB test set with no CNN base. Results are obtained
with 5 random seeds.

novel viewpoints. Following the experimental protocol of [16], we train all models on 1/3 of training
data with azimuths of 0, 20, 40, 300, 320, 340 degrees and test them on 2/3 of test data with other
azimuths. In another experiment, models are trained on 1/3 of training data with elevations of 30, 35,
40 degrees from the horizontal and tested on 2/3 of test data with other elevations.

Table [2] shows the results where capsule-based models generalize better than the CNN baselines.
Specifically, self-routing has the best performance for the images with novel azimuths and eleva-
tions. The results suggest that viewpoint generalization is not the unique strength of the routing-by-
agreement. We also find weak correlation between increase in model size (i.e. depth and width of
capsule layers) and generalization performance but the improvement is small.

Although the experiments with the 7-layer CNN base show that CapsNets generalize better than
CNNss, the margins between different routing methods are not significant. Thus, we conduct additional
experiments on SmallNORB with a smaller network that consists of only one convolution layer
followed by three consecutive capsule layers of PrimaryCaps+ConvCaps+FCCaps. The capsule
layers are composed of 16 capsules, each with 16 neurons. Figure [5] shows the results that our
self-routing (SR) outperforms Dynamic and EM routing with significant margins in both tasks. That
is, using shallow feature extractors, the previous routing techniques could struggle to learn good
representations.

6 Conclusion

We proposed a supervised, non-iterative routing method for capsule-based models with better com-
putational efficiency. We conducted systemic experiments for the comparison between the existing
routing methods and our self-routing. The experiments verified that our method achieves competitive
performance on adversarial defense and viewpoint generalization that are the two proposed strengths
of CapsNets. Moreover, our method generally performs better when more capsules are used per
layer, while the previous methods often behave unstably. The results suggested that the routing-by-
agreement may not be a requirement for CapsNet’s robustness. As future work, it is interesting to
look for a method that can bring residual connections to our models, since it has been shown that
residual networks behave like ensembles of networks with different depths [39]]. It can be synergetic
with our models where capsules take different paths of the same depth.
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A Self-Routing Example
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Figure 6: A simple example of the self-routing mechanism where the number of capsules per layer is
2. See section 4.2 of the main paper for the details.

We visualize an example of self-routing in Figure [f] The routing coefficients are obtained by
forwarding the input poses to the routing networks, each of which has a similar role to a gating
network in MoE. The routing coefficients are then multiplied by input activations to obtain weighted
votes. Output activations are the mean of weighted votes. The weighted votes are also multiplied by
pose predictions and are averaged to get output poses.

B Implementation Details

B.1 Architectures

Table 3H4] describe the architecture of the 7-layer CNN used for SmalINORB [24]] and the CapsNet
headers for CIFAR-10 [22]] and SVHN [42]. The header of Conv+FC is designed as a siamese of
SR-1 with 32 capsules; it consists of a 3 x 3 Conv layer with 512(= 32 x 16) channels, stride of
1, and 1 x 1 padding with a ReLU non-linearity and a FC layer with nclass activations. We use
batch normalization [[L7] for fast training.

Table 3: The architecture of
the 7-layer CNN used for

Table 4: The capsule layers that replace AvgPool and FC layers in
SmallINORB.

the ResNet-20 and the 7-layer CNN. We below show the capsule
layers at depth of 2. No ConvCap layer is used at depth of 1. nc and
nclass denote the number of capsules per layer and the number of
classes on the dataset, respectively. For PrimaryCaps and ConvCaps,
we use 1 X 1 padding.

Conv 3 x 3, ReLLU 16
stride 1, padding 1, BN

Conv 3 x 3, ReLU 32
stride 2, padding 1, BN

Conv 3 x 3, ReLU 32 Layer Dynamic Routing EM Routing Self-Routing
stride 1, padding 1, BN 3x3,stridel 3 x 3,stride 1 3 x 3, stride 1
Conv 3 x 3, ReLU 64 PrimaryCaps nccaps,dim 16 nccaps,dim16  nc caps, dim 16
stride 2, padding 1, BN BN . BN . BN
Squash Sigmoid (act. only) Sigmoid (act. only)

Conv 3 x 3, ReLU 64 : - -
stride 1, padding 1, BN 3 x 3, strl.de 2 3 x 3, strllde 2 3 %3, strl.de 2

ConvCaps nccaps,dim 16 nccaps,dim16  nc caps, dim 16
Conv 3 x 3, ReLU 128 Squash BN (pose only) BN (pose only)
stride 2, padding 1, BN

FCCaps nclass caps nclass caps nclass caps
AvgPool 4 x 4 P dim 16 dim 16

no pose

FC5

B.2 Optimization

We train all models using SGD optimizer for 350 epochs for CIFAR-10, 200 epochs for SVHN, and
100 epochs for SmalINORB. We set the initial learning rate in the range of [0.1, 0.01, 0,001], and
divide it by 10 at 150 and 250 epochs for CIFAR-10, at 100 and 150 epochs for SVHN, and at 50 and
75 epochs for SmalINORB.
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For CIFAR-10 and SVHN, on which adversarial robustness is measured, we train all models with the
cross entropy loss, since the type of the loss function is a nuisance factor in adversarial tests [35]]. For
SmalINORB, we use the margin loss [34] for dynamic routing, the spread loss [[16] for EM routing,
since they are the recommended losses in the original papers. We use the cross entropy loss for all
other models. In order to calculate the cross entropy, we use the softmax function for CNN baselines,
whereas we divide final activations by their sum instead of using the softmax for capsule baselines,
since the activations are in [0, 1]. Our method guarantees the sum of activations in a location to
be 1; hence no normalization is used. For faster training, we also use batch normalization [17]] on
augmented convolutional and Primary/ConvCaps layers with which the pooling layer is replaced.
We do not use batch normalization on pose vectors of ConvCaps layers for dynamic routing and
activation scalars of EM and self routing, since their scales are enforced to be in [0, 1]. The number
of iteration is set to 3 for both dynamic and EM routing. We use He uniform initialization [12] to
initialize all weights except the routing networks, for which we set the initial weights to 0.

C More Results on White-Box Attacks

C.1 Results of Untargeted and Targeted FGSM Attacks

Table [5] shows the additional results on of FGSM adversarial attacks with more € values. Regardless
of the choice of ¢, CapsNets outperforms CNN baselines and SR-CapsNets enjoy the best robustness
among them. Note that the robustness of SR-CapsNet improves further, as the number of capsules
increases.

Table 5: Success rates (%) of untargeted (upper) and targeted FGSM attacks (lower) against different routing
methods of CapsNets and CNN models. The lower value indicates the better robustness. Results are obtained
with 5 random seeds.

Methods CIFAR-10 SVHN

e=0.1 e=0.2 e=20.3 e=0.1 e=0.2 e=20.3
AvgPool 62.7 71.8 76.6 44.4 57.6 65.1
Conv 60.6 71.2 75.7 44.5 58.3 65.6

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32
DR-1 48.2 48.2 47.7 57.1 58.6 57.5 64.1 66.5 65.1 30.2 26.1 28.8 39.1 34.2 37.3 46.6 42.8 45.2

DR-2 — - 508 — — 59.8 — -  67.1 — - 358 — — 49.0 — — 579
EM-1 54.1 54.1 54.6 65.3 66.4 65.9 72.1 72.5 71.4 29.1 32.4 26.1 43.5 47.1 39.9 54.6 57.3 52.3
EM-2 — - 56.3 — - 69.2 — — 776 — - 339 -— — 488 — — 585
SR-1 53.2 49.4 41.2 64.0 59.2 51.7 70.7 66.4 60.8 31.9 26.4 21.6 44.7 36.1 31.2 54.1 44.9 41.9
SR-2 — - 341 - — 459 — — 56.9 — - 19.2 — - 281 -— — 89.0

Methods CIFAR-10 SVHN

e=0.1 e=0.2 e=10.3 e=0.1 e=10.2 e=10.3
AvgPool 18.5 17.7 15.6 15.4 19.3 19.5
Conv 21.6 23.6 22.0 17.9 22.8 23.0

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

DR-1 73 72 74 77 76 78 78 79 81 6.6 59 69 84 7.3 88 9.3 80 9.6
DR-2 - - 99 - - 96 - = 92 - - 92 - - 119 - - 12.7
EM-1 9.3 9.2 100 9.2 9.6 102 95 94 93 5.0 7.2 57 6.5 102 7.1 80 11.0 84
EM-2 - - 84 - - 87 - — 85 - - 57 - 6.9 — - 8.2
SR-1 84 7.7 56 86 78 6.1 86 81 6.7 6.8 55 3.7 92 7.1 49 103 8.0 6.2
SR-2 - - 62 - - 71 - = 74 - - 49 - - 69 — - 8.3

C.2 Results of Untargeted and Targeted BIM Attacks

Table [6] additional reports the results of adversarial tests based on the untargeted and targeted Basic
Iterative Method (BIM) [23]] attacks. The BIM applies the FGSM multiple times with a small step
size. All CapsNets outperforms CNN baselines on the BIM adversarial attacks and SR-CapsNets
enjoy the best robustness among them. Note that the robustness of SR-CapsNet improves further, as
the number of capsules increases. It is consistent to the results obtained by the FGSM attack in the
main draft. We fix the number of iterations as 10 for all experiments.
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Table 6: Success rates (%) of untargeted (upper) and fargeted BIM attacks (lower) against different routing
methods of CapsNets and CNN models. The lower value indicates the better robustness. Results are obtained
with 5 random seeds.

Methods CIFAR-10 SVHN
e=0.1 e=10.2 e=10.3 e=0.1 e=0.2 e=10.3
AvgPool 84.9 93.2 95.5 62.2 79.8 86.2
Conv 82.0 93.1 95.8 62.6 80.1 86.9
8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

DR-1  56.2 54.7 54.4 67.6 64.2 64.2 72.1 69.7 69.2 39.2 344 353 50.1 44.4 450 56.8 50.8 50.5
DR2 - — 631 — — 747 — — - - - - - -
EM-1  54.5 53.0 63.6 64.2 65.4 75.9 71.6 73.9 83.1 32.0 39.6 33.5 41.4 52.1 45.1 49.0 60.4 53.9
EM2 - - - - - - - - - - 563 - -
SR-1  68.4 62.4 50.5 78.6 73.7 60.2 83.3 79.2 66.4 50.5 39.9 30.5 66.9 54.2 39.7 74.1 62.5 45.8
SR-2 - - 497 - - 634 - — 709 — — 314 — — 440 -— — 521

AvgPool 45.4 59.4 66.9 42.6 62.9 69.2
Conv 42.8 57.0 64.8 41.8 58.4 65.6
8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

DR-1 17.7 15.9 17.3 27.4 24.5 26.6 34.0 31.0 33.1 18.5 17.6 16.6 30.3 28.3 27.5 38.5 36.0 35.0

EM-1 19.0 18.0 24.1 27.6 27.4 359 33.8 33.7 44.0 11.0 19.2 16.0 41.4 52.1 45.1 23.7 39.2 35.5

— - — — — - 30.7 — — — — - —
SR-1 28.1 21.8 12.1 40.7 33.3 17.1 48.5 40.1 20.6 23.3 15.2 8.6 39.8 26.1 13.8 50.1 34.1 17.9
SR-2 — - 150 — - 239 - —  29.8 — - 153 - - 278 - — 36.0

C.3 Generated Adversarial Images

We depict some examples of adversarial images generated by the untargeted and targeted white-box
FGSM attack in Figure[7TH8] Although no significant difference is observed on the adversarial images,
our model shows better performance than the baselines with significant margins.

(a) (b) (© (@) (e) ® (€9) (h) ® @ & ®

Figure 7: Generated adversarial images of (a) AvgPool+FC, (b) MaxPool+FC, (c) CONV+FC, (d) DR-1, (e)
EM-1, and (f) SR-1 on CIFAR-10 and (g) AvgPool+FC, (h) MaxPool+FC, (i) CONV+FC, (j) DR-1, (k) EM-1,
and (1) SR-1 on SVHN by the untargeted FGSM attack. We use ResNet-20 as a base network at e = 0.1. The
results of CapsNets are obtained with the width of 32.

(a) () (©) (d (e) ® (€9) (h) ® @ & ®

Figure 8: Generated adversarial images of (a) AvgPool+FC, (b) MaxPool+FC, (c) CONV+FC, (d) DR-1, (e)
EM-1, and (f) SR-1 on CIFAR-10 and (g) AvgPool+FC, (h) MaxPool+FC, (i) CONV+FC, (j) DR-1, (k) EM-1,
and (1) SR-1 on SVHN by the fargeted FGSM attack. We use ResNet-20 as a base network at e = 0.1. The
results of CapsNets are obtained with the width of 32.
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