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ABSTRACT

We formulate learning of a binary autoencoder as a biconvex optimization problem
which learns from the pairwise correlations between encoded and decoded bits.
Among all possible algorithms that use this information, ours finds the autoencoder
that reconstructs its inputs with worst-case optimal loss. The optimal decoder
is a single layer of artificial neurons, emerging entirely from the minimax loss
minimization, and with weights learned by convex optimization. All this is reflected
in competitive experimental results, demonstrating that binary autoencoding can
be done efficiently by conveying information in pairwise correlations in an optimal
fashion.

1 INTRODUCTION

Consider a general autoencoding scenario, in which an algorithm learns a compression scheme for
independently, identically distributed (i.i.d.) V -dimensional bit vector data

{
x̂(1), . . . , x̂(n)

}
. For

some encoding dimension H , the algorithm encodes each data example x̂(i) = (x̂
(i)
1 , . . . , x̂

(i)
V )>

into an H-dimensional representation e(i), with H < V . It then decodes each e(i) back into a
reconstructed example x̃(i) using some small amount of additional memory, and is evaluated on the
quality of the reconstruction by the cross-entropy loss commonly used to compare bit vectors. A
good autoencoder learns to compress the data into H bits so as to reconstruct it with low loss.

When the loss is squared reconstruction error and the goal is to compress data in RV to RH , this is
often accomplished with principal component analysis (PCA), which projects the input data on the
top H eigenvectors of their covariance matrix (Bourlard & Kamp (1988); Baldi & Hornik (1989)).
These eigenvectors in RV constitute V H real values of additional memory needed to decode the
compressed data in RH back to the reconstructions in RV , which are linear combinations of the
eigenvectors. Crucially, this total additional memory does not depend on the amount of data n,
making it applicable when data are abundant.

This paper considers a similar problem, except using bit-vector data and the cross-entropy recon-
struction loss. Since we are compressing samples of i.i.d. V -bit data into H-bit encodings, a natural
approach is to remember the pairwise statistics: the V H average correlations between pairs of bits in
the encoding and decoding, constituting as much additional memory as the eigenvectors used in PCA.
The decoder uses these along with the H-bit encoded data, to produce V -bit reconstructions.

We show how to efficiently learn the autoencoder with the worst-case optimal loss in this scenario,
without any further assumptions, parametric or otherwise. It has some striking properties.

The decoding function is identical in form to the one used in a standard binary autoencoder with one
hidden layer (Bengio et al. (2013a)) and cross-entropy reconstruction loss. Specifically, each bit v
of the decoding is the output of a logistic sigmoid artificial neuron of the encoded bits, with some
learned weights wv ∈ RH . This form emerges as the uniquely optimal decoding function, and is not
assumed as part of any explicit model.

We show that the worst-case optimal reconstruction loss suffered by the autoencoder is convex in
these decoding weights W = {wv}v∈[V ], and in the encoded representations E. Though it is not

∗Most of the work was done as a PhD student at UC San Diego.
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jointly convex in both, the situation still admits a natural and efficient optimization algorithm in
which the loss is alternately minimized in E and W while the other is held fixed. The algorithm
is practical and performs well empirically, learning incrementally from minibatches of data in a
stochastic optimization setting.

1.1 NOTATION

The observed data and encodings can be written in matrix form, representing bits as ±1:

X̂ =

x̂
(1)
1 · · · x̂

(n)
1

...
. . .

...
x̂
(1)
V · · · x̂

(n)
V

 ∈ [−1, 1]V×n , E =

e
(1)
1 · · · e

(n)
1

...
. . .

...
e
(1)
H · · · e

(n)
H

 ∈ [−1, 1]H×n (1)

Here the encodings are allowed to be randomized, represented by values in [−1, 1] instead of just the
two values {−1, 1}; e.g. e(1)i = 1

2 is +1 w.p. 3
4 and −1 w.p. 1

4 . The data in X are also allowed to be
randomized, which we will see essentially loses no generality (Appendix B). We write the columns of
X̂,E as x̂(i), e(i) for i ∈ [n] (where [s] := {1, . . . , s}), representing the data. The rows are written
as x̂v = (x

(1)
v , . . . , x

(n)
v )> for v ∈ [V ] and eh = (e

(1)
h , . . . , e

(n)
h )> for h ∈ [H].

We also consider the correlation of each bit h of the encoding with each decoded bit v over the data,
i.e. bv,h := 1

n

∑n
i=1 x

(i)
v e

(i)
h . This too can be written in matrix form as B := 1

nX̂E> ∈ RV×H ,
whose rows and columns we respectively write as bv = (bv,1, . . . , bv,H)> over v ∈ [V ] and
bh = (b1,h, . . . , bV,h)> over h ∈ [H]; the indexing will be clear from context.

As alluded to earlier, the loss incurred on any example x(i) is the cross-entropy between the exam-
ple and its reconstruction x̃(i), in expectation over the randomness in x(i). Defining `±(x̃

(i)
v ) =

ln
(

2

1±x̃(i)
v

)
(the partial losses to true labels ±1), the loss is written as:

`(x(i), x̃(i)) :=

V∑
v=1

[(
1 + x

(i)
v

2

)
`+(x̃(i)v ) +

(
1− x(i)v

2

)
`−(x̃(i)v )

]
(2)

In addition, define a potential well Ψ(m) := ln (1 + em) + ln (1 + e−m) with derivative Ψ′(m) :=
1−e−m

1+e−m . Univariate functions like this are applied componentwise to matrices in this paper.

1.2 PROBLEM SETUP

With these definitions, the autoencoding problem we address can be precisely stated as two tasks,
encoding and decoding. These share only the side information B. Our goal is to perform these steps
so as to achieve the best possible guarantee on reconstruction loss, with no further assumptions. This
can be written as a zero-sum game of an autoencoding algorithm seeking to minimize loss against an
adversary, by playing encodings and reconstructions:

• Using X̂, algorithm plays (randomized) encodings E, resulting in pairwise correlations B.

• Using E and B, algorithm plays reconstructions X̃ =
(
x̃(1); . . . ; x̃(n)

)
∈ [−1, 1]V×n.

• Given X̃,E,B, adversary plays X ∈ [−1, 1]V×n to maximize reconstruction loss
1
n

∑n
i=1 `(x

(i), x̃(i)).

To incur low loss, the algorithm must use an E and B such that no adversary playing X can inflict
higher loss. The algorithm never sees X, which represents the worst the data could be given the
algorithm’s incomplete memory of it (E,B) and reconstructions (X̃).

We find the autoencoding algorithm’s best strategy in two parts. First, we find the optimal decoding
function of any encodings E given B, in Section 2. Then, we use the resulting optimal reconstruction
function to outline the best encoding procedure, i.e. one that finds the E,B that lead to the best
reconstruction, in Section 3.1. Combining these ideas yields an autoencoding algorithm in Section
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3.2 (Algorithm 1), where its implementation and interpretation are specified. Further discussion and
related work in Section 4 are followed by more extensions of the framework in Section 5. Experiments
in Section 6 show extremely competitive results with equivalent fully-connected autoencoders trained
with backpropagation.

2 OPTIMALLY DECODING AN ENCODED REPRESENTATION

To address the game of Section 1.2, we first assume E and B are fixed, and derive the optimal
decoding rule given this information. We show in this section that the form of this optimal decoder is
precisely the same as in a classical autoencoder: having learned a weight vector wv ∈ RH for each
v ∈ [V ], the vth bit of each reconstruction x̃i is expressed as a logistic function of a wv-weighted
combination of the H encoded bits ei – a logistic artificial neuron with weights wv. The weight
vectors are learned by convex optimization, despite the nonconvexity of the transfer functions.

To develop this, we minimize the worst-case reconstruction error, where X is constrained by our prior
knowledge that B = 1

nXE>, i.e. 1
nExv = bv ∀v ∈ [V ]. This can be written as a function of E:

L∗B(E) := min
x̃(1),...,x̃(n)∈[−1,1]V

max
x(1),...,x(n)∈[−1,1]V ,
∀v∈[V ]: 1

nExv=bv

1

n

n∑
i=1

`(x(i), x̃(i)) (3)

We solve this minimax problem for the optimal reconstructions played by the minimizing player in
(3), written as x̃(1)∗, . . . , x̃(n)∗.

Theorem 1. Define the bitwise slack function γE(w,b) := −b>w + 1
n

∑n
i=1 Ψ(w>e(i)), which is

convex in w. W.r.t. any bv, this has minimizing weights w∗v := w∗v(E,B) := arg min
w∈RH

γE(w,bv).

Then the minimax value of the game (3) is L∗B(E) =
1

2

V∑
v=1

γE(w∗v,bv). For any example i ∈ [n],

the minimax optimal reconstruction can be written for any bit v as x̃(i)∗v := 1−e−w∗>v e(i)

1+e−w∗>v e(i)
.

This tells us that the optimization problem of finding the minimax optimal reconstructions x̃(i) is
extremely convenient in several respects. The learning problem decomposes over the V bits in the
decoding, reducing to solving for a weight vector w∗v ∈ RH for each bit v, by optimizing each bitwise
slack function. Given the weights, the optimal reconstruction of any example i can be specified by a
layer of logistic sigmoid artificial neurons of its encoded bits, with w∗>v e(i) as the bitwise logits.

Hereafter, we write W ∈ RV×H as the matrix of decoding weights, with rows {wv}Vv=1. In particular,
the optimal decoding weights W∗(E,B) are the matrix with rows {w∗v(E,B)}Vv=1.

3 LEARNING AN AUTOENCODER

3.1 FINDING AN ENCODED REPRESENTATION

Having computed the optimal decoding function in the previous section given any E and B, we
now switch perspectives to the encoder, which seeks to compress the input data X̂ into encoded
representations E (from which B is easily calculated to pass to the decoder). We seek to find (E,B)
to ensure the lowest worst-case reconstruction loss after decoding; recall that this is L∗B(E) from (3).

Observe that 1
nX̂E> = B by definition, and that the encoder is given X̂. Therefore, by using Thm. 1

and substituting bv = 1
nEx̂v ∀v ∈ [V ],

L∗B(E) =
1

2n

n∑
i=1

V∑
v=1

[
−x̂(i)v (w∗>v e(i)) + Ψ(w∗>v e(i))

]
:= L(W∗,E) (4)
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So it is convenient to define the feature distortion 1 for any v ∈ [V ] with respect to W, between any
example x and its encoding e:

βW
v (e,x) := −xvw>v e + Ψ(w>v e) (5)

From the above discussion, the best E given any decoding W, written as E∗(W), solves the
minimization

min
E∈[−1,1]H×n

L(W,E) =
1

2n

n∑
i=1

min
e(i)∈[−1,1]H

V∑
v=1

βW
v (e(i), x̂(i))

which immediately yields the following result.

Proposition 2. Define the optimal encodings for decoding weights W as E∗(W) :=
arg min

E∈[−1,1]H×n

L(W,E). Then e(i)∗(W) can be computed separately for each example x̂(i) ∈

[−1, 1]V , minimizing its total feature distortion over the decoded bits w.r.t. W:

ENC(x̂(i);W) := e(i)∗(W) := arg min
e∈[−1,1]H

V∑
v=1

βW
v (e, x̂(i)) (6)

Observe that the encoding function ENC(x̂(i);W) can be efficiently computed to any desired pre-
cision since the feature distortion βW

v (e, x̂(i)) of each bit v is convex and Lipschitz in e; an L1

error of ε can be reached in O(ε−2) linear-time first-order optimization iterations. Note that the
encodings need not be bits, and can be e.g. unconstrained ∈ RH instead; the proof of Thm. 1 assumes
no structure on them, and the optimization will proceed as above but without projecting into the
hypercube.

3.2 AN AUTOENCODER LEARNING ALGORITHM

Our ultimate goal is to minimize the worst-case reconstruction loss. As we have seen in (3) and (6),
it is convex in the encoding E and in the decoding parameters W, each of which can be fixed while
minimizing with respect to the other. This suggests a learning algorithm that alternately performs two
steps: finding encodings E that minimize L(W,E) as in (6) with a fixed W, and finding decoding
parameters W∗(E,B), as given in Algorithm 1.

Algorithm 1 Pairwise Correlation Autoencoder (PC-AE)

Input: Size-n dataset X̂, number of epochs T
Initialize W0 (e.g. with each element being i.i.d. ∼ N (0, 1))
for t = 1 to T do

Encode each example to ensure accurate reconstruction using weights Wt−1, and compute the
associated pairwise bit correlations Bt:

∀i ∈ [n] : [e(i)]t = ENC(x̂(i);Wt−1) , Bt =
1

n
X̂E>t

Update weight vectors [wv]t for each v ∈ [V ] to minimize slack function, using encodings Et:

∀v ∈ [V ] : [wv]t = arg min
w∈RH

[
−[bv]

>
t w +

1

n

n∑
i=1

Ψ(w>e
(i)
t )

]
end for
Output: Weights WT

1Noting that Ψ(w>v e) ≈
∣∣w>v e

∣∣, we see that βW
v (e, x̂) ≈ w>v e

(
sgn(w>v e) − x̂v

)
. So the optimizer tends

to change e so that w>v e matches signs with x̂v , motivating the name.
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3.3 EFFICIENT IMPLEMENTATION

Our derivation of the encoding and decoding functions involves no model assumptions at all, only
using the minimax structure and pairwise statistics that the algorithm is allowed to remember.
Nevertheless, the (en/de)coders can be learned and implemented efficiently.

Decoding is a convex optimization in H dimensions, which can be done in parallel for each bit
v ∈ [V ]. This is relatively easy to solve in the parameter regime of primary interest when data are
abundant, in which H < V � n. Similarly, encoding is also a convex optimization problem in
only H dimensions. If the data examples are instead sampled in minibatches of size n, they can
be encoded in parallel, with a new minibatch being sampled to start each epoch t. The number of
examples n (per batch) is essentially only limited by nH , the number of compressed representations
that fit in memory.

So far in this paper, we have stated our results in the transductive setting, in which all data are given
together a priori, with no assumptions whatsoever made about the interdependences between the
V features. However, PC-AE operates much more efficiently than this might suggest. Crucially,
the encoding and decoding tasks both depend on n only to average a function of x(i) or e(i) over
i ∈ [n], so they can both be solved by stochastic optimization methods that use first-order gradient
information, like variants of stochastic gradient descent (SGD). We find it remarkable that the
minimax optimal encoding and decoding can be efficiently learned by such methods, which do not
scale computationally in n. Note that the result of each of these steps involves Ω(n) outputs (E and
X̃), which are all coupled together in complex ways.

Furthermore, efficient first-order convex optimization methods for both encoding and decoding steps
manipulate more intermediate gradient-related quantities, with facile interpretations. For details, see
Appendix A.2.

3.4 CONVERGENCE AND WEIGHT REGULARIZATION

As we noted previously, the objective function of the optimization is biconvex. This means that the
alternating minimization algorithm we specify is an instance of alternating convex search, shown
in that literature to converge under broad conditions (Gorski et al. (2007)). It is not guaranteed
to converge to the global optimum, but each iteration will monotonically decrease the objective
function. In light of our introductory discussion, the properties and rate of such convergence would
be interesting to compare to stochastic optimization algorithms for PCA, which converge efficiently
under broad conditions (Balsubramani et al. (2013); Shamir (2016)).

The basic game used so far has assumed perfect knowledge of the pairwise correlations, leading to
equality constraints ∀v ∈ [V ] : 1

nExv = bv. This makes sense in PC-AE, where the encoding
phase of each epoch gives the exact Bt for the decoding phase. However, in other stochastic settings
as for denoising autoencoders (see Sec. 5.2), it may be necessary to relax this constraint. A relaxed
constraint of

∥∥ 1
nExv − bv

∥∥
∞ ≤ ε exactly corresponds to an extra additive regularization term of

ε ‖wv‖1 on the corresponding weights in the convex optimization used to find W (Appendix D.1).
Such regularization leads to provably better generalization (Bartlett (1998)) and is often practical to
use, e.g. to encourage sparsity. But we do not use it for our PC-AE experiments in this paper.

4 DISCUSSION AND RELATED WORK

Our approach PC-AE is quite different from existing autoencoding work in several ways.

First and foremost, we posit no explicit decision rule, and avoid optimizing the highly non-convex
decision surface traversed by traditional autoencoding algorithms that learn with backpropagation
(Rumelhart et al. (1986)). The decoding function, given the encodings, is a single layer of artificial
neurons only because of the minimax structure of the problem when minimizing worst-case loss. This
differs from reasoning typically used in neural net work (see Jordan (1995)), in which the loss is the
negative log-likelihood (NLL) of the joint probability, which is assumed to follow a form specified
by logistic artificial neurons and their weights. We instead interpret the loss in the usual direct way as
the NLL of the predicted probability of the data given the visible bits, and avoid any assumptions on
the decision rule (e.g. not monotonicity in the score w>v e

(i), or even dependence on such a score).
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This justification of artificial neurons – as the minimax optimal decision rules given information on
pairwise correlations – is one of our more distinctive contributions (see Sec. 5.1).

Crucially, we make no assumptions whatsoever on the form of the encoding or decoding, except
on the memory used by the decoding. Some such “regularizing" restriction is necessary to rule out
the autoencoder just memorizing the data, and is typically expressed by assuming a model class of
compositions of artificial neuron layers. We instead impose it axiomiatically by limiting the amount
of information transmitted through B, which does not scale in n; but we do not restrict how this
information is used. This confers a clear theoretical advantage, allowing us to attain the strongest
robust loss guarantee among all possible autoencoders that use the correlations B.

More importantly in practice, avoiding an explicit model class means that we do not have to optimize
the typically non-convex model, which has long been a central issue for backpropagation-based
learning methods (e.g. Dauphin et al. (2014)). Prior work related in spirit has attempted to avoid
this through convex relaxations, including for multi-layer optimization under various structural
assumptions (Aslan et al. (2014); Zhang et al. (2016)), and when the number of hidden units is varied
by the algorithm (Bengio et al. (2005); Bach (2014)).

Our approach also isolates the benefit of higher n in dealing with overfitting, as the pairwise
correlations B can be measured progressively more accurately as n increases. In this respect, we
follow a line of research using such pairwise correlations to model arbitary higher-order structure
among visible units, rooted in early work on (restricted) Boltzmann Machines (Ackley et al. (1985);
Smolensky (1986); Rumelhart & McClelland (1987); Freund & Haussler (1992)). More recently,
theoretical algorithms have been developed with the perspective of learning from the correlations
between units in a network, under various assumptions on the activation function, architecture, and
weights, for both deep (Arora et al. (2014)) and shallow networks (using tensor decompositions,
e.g. Livni et al. (2014); Janzamin et al. (2015)). Our use of ensemble aggregation techniques (from
Balsubramani & Freund (2015a; 2016)) to study these problems is anticipated in spirit by prior work
as well, as discussed at length by Bengio (2009) in the context of distributed representations.

4.1 OPTIMALITY, OTHER ARCHITECTURES, AND DEPTH

We have established that a single layer of logistic artificial neurons is an optimal decoder, given
only indirect information about the data through pairwise correlations. This is not a claim that
autoencoders need only a single-layer architecture in the worst case. Sec. 3.1 establishes that the best
representations E are the solution to a convex optimization, with no artificial neurons involved in
computing them from the data. Unlike the decoding function, the optimal encoding function ENC
cannot be written explicitly in terms of artificial neurons, and is incomparable to existing architectures
(though it is analogous to PCA in prescribing an efficient operation that yields the encodings from
unlabeled data). Also, the encodings are only optimal given the pairwise correlations; training
algorithms like backpropagation, which communicate other knowledge of the data through derivative
composition, can learn final decoding layers that outperform ours, as we see in experiments.

In our framework so far, we explore using all the pairwise correlations between hidden and visible
bits to inform learning by constraining the adversary, resulting in a Lagrange parameter – a weight –
for each constraint. These V H weights W constitute the parameters of the optimal decoding layer,
describing a fully connected architecture. If just a select few of these correlations were used, only
they would constrain the adversary in the minimax problem of Sec. 2, so weights would only be
introduced for them, giving rise to sparser architectures.

Our central choices – to store only pairwise correlations and minimize worst-case reconstruction
loss – play a similar regularizing role to explicit model assumptions, and other autoencoding methods
may achieve better performance on data for which these choices are too conservative, by e.g. making
distributional assumptions on the data. From our perspective, other architectures with more layers
– particularly highly successful ones like convolutional, recurrent, residual, and ladder networks
(LeCun et al. (2015); He et al. (2015); Rasmus et al. (2015)) – lend the autoencoding algorithm more
power by allowing it to measure more nuanced correlations using more parameters, which decreases
the worst-case loss. Applying our approach with these would be interesting future work.

Extending this paper’s convenient minimax characterization to deep representations with empirical
success is a very interesting open problem. Prior work on stacking autoencoders/RBMs (Vincent et al.
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(2010)) and our learning algorithm PC-AE suggest that we could train a deep network in alternating
forward and backward passes. Using this paper’s ideas, the forward pass would learn the weights to
each layer given the previous layer’s activations (and inter-layer pairwise correlations) by minimizing
the slack function, with the backward pass learning the activations for each layer given the weights to
/ activations of the next layer by convex optimization (as we learn E). Both passes would consist
of successive convex optimizations dictated by our approach, quite distinct from backpropagation,
though loosely resembling the wake-sleep algorithm (Hinton et al. (1995)).

4.2 GENERATIVE APPLICATIONS

Particularly recently, autoencoders have been of interest largely for their many applications beyond
compression, especially for their generative uses. The most directly relevant to us involve repurposing
denoising autoencoders (Bengio et al. (2013b); see Sec. 5.2); moment matching among hidden and
visible units (Li et al. (2015)); and generative adversarial network ideas (Goodfellow et al. (2014);
Makhzani et al. (2015)), the latter particularly since the techniques of this paper have been applied to
binary classification (Balsubramani & Freund (2015a;b)). These are outside this paper’s scope, but
suggest themselves as future extensions of our approach.

5 EXTENSIONS

5.1 OTHER RECONSTRUCTION LOSSES

It may make sense to use another reconstruction loss other than cross-entropy, for instance the
expected Hamming distance between x(i) and x̃(i). It turns out that the minimax manipulations we
use work under very broad conditions, for nearly any loss that additively decomposes over the V bits
as cross-entropy does. In such cases, all that is required is that the partial losses `+(x̃

(i)
v ), `−(x̃

(i)
v ) are

monotonically decreasing and increasing respectively (recall that for cross-entropy loss, this is true as
`±(x̃

(i)
v ) = ln

(
2

1±x̃(i)
v

)
); they need not even be convex. This monotonicity is a natural condition,

because the loss measures the discrepancy to the true label, and holds for all losses in common use.

Changing the partial losses only changes the structure of the minimax solution in two respects: by
altering the form of the transfer function on the decoding neurons, and the univariate potential well Ψ
optimized to learn the decoding weights. Otherwise, the problem remains convex and the algorithm
is identical. Formal statements of these general results are in Appendix E.

5.2 DENOISING AUTOENCODING

Our framework can be easily applied to learn a denoising autoencoder (DAE; Vincent et al. (2008;
2010)), which uses noise-corrupted data (call it Ẋ) for training, and uncorrupted data for evaluation.
From our perspective, this corresponds to leaving the learning of W unchanged, but using corrupted
data when learning E. Consequently, the minimization problem over encodings must be changed to
account for the bias on B introduced by the noise; so the algorithm plays given the noisy data, but to
minimize loss against X. This is easiest to see for zero-mean noise, for which our algorithms are
completely unchanged because B does not change (in expectation) after the noise is added.

Another common scenario illustrating this technique is to mask a ρ fraction of the input bits uniformly
at random (in our notation, changing 1s to−1s). This masking noise changes each pairwise correlation
bv,h by an amount δv,h := 1

n

∑n
i=1(ẋ

(i)
v −x(i)v )e

(i)
h . Therefore, the optimand Eq. (4) must be modified

by subtracting this factor δv,h. This δv,h can be estimated (w.h.p.) given ẋv, eh, ρ,xv . But even with
just the noisy data and not xv , we can estimate δv,h w.h.p. by extrapolating the correlation of the bits
of ẋv that are left as +1 (a 1− ρ fraction) with the corresponding values in eh (see Appendix C).
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Table 1: Cross-entropy reconstruction losses for PC-AE and a vanilla single-layer autoencoder, with
binary and unconstrained real-valued encodings, and significant results in bold. The PC-AE results
are significantly better (see Appendix A) than the AE results.

PC-AE (bin.) PC-AE (real) AE (bin.) AE (real) PCA

MNIST, H = 32 51.9 53.8 65.2 64.3 86.6
MNIST, H = 100 9.2 9.9 26.8 25.0 52.7
Omniglot, H = 32 76.1 77.2 93.1 90.6 102.8
Omniglot, H = 100 12.1 13.2 46.6 45.4 63.6

Caltech-101, H = 32 54.5 54.9 97.5 87.6 118.7
Caltech-101, H = 100 7.1 7.1 64.3 45.4 75.2

notMNIST, H = 32 121.9 122.4 149.6 141.8 174.0
notMNIST, H = 100 62.2 63.0 99.6 92.1 115.5

Adult, H = 10 7.7 7.8 9.3 8.1 13.5
Adult, H = 20 0.65 0.64 2.5 1.5 7.9

6 EXPERIMENTS

In this section we compare our approach 2 empirically to a standard autoencoder with one hidden layer
(termed AE here) trained with backpropagation, and a thresholded PCA baseline. Our goal is simply
to verify that our approach, though very different, is competitive in reconstruction performance.

The datasets we use are first normalized to [0, 1], and then binarized by sampling each pixel stochasti-
cally in proportion to its intensity, following prior work (Salakhutdinov & Murray (2008)). Changing
between binary and real-valued encodings in PC-AE requires just a line of code, to project the en-
codings into [−1, 1]H after convex optimization updates to compute ENC(·). We use Adagrad (Duchi
et al. (2011)) for the convex minimizations of our algorithms; we observed that their performance is
not very sensitive to the choice of optimization method, explained by our approach’s convexity.

We compare to a basic AE with a single hidden layer, trained using the Adam method with default
parameters (Kingma & Ba (2014)). Other models like variational autoencoders (Kingma & Welling
(2013)) are not shown here because they do not aim to optimize reconstruction loss or are not
comparably general autoencoding architectures. We also use a sign-thresholded PCA baseline
(essentially a completely linear autoencoder, but with the output layer thresholded to be in [−1, 1]);
see Appendix A for more details. We vary the number of hidden units H for all algorithms, and
try both binary and unconstrained real-valued encodings where appropriate; the respective AE uses
logistic sigmoid and ReLU transfer functions for the encoding neurons. The results are in Table 1.

The reconstruction performance of PC-AE indicates that it can encode information very well using
pairwise correlations, compared to the directly learned AE and PCA approaches. Loss can become
extremely low when H is raised, giving B the capacity to robustly encode almost all the information
in the input bits X̂. The performance is roughly equal between binary hidden units and unconstrained
ones, which is expected by our derivations.

We also try learning just the decoding layer of Sec. 2, on the encoded representation of the AE. This
is motivated by the fact that Sec. 2 establishes our decoding method to be worst-case optimal given
any E and B. We find the results to be significantly worse than the AE alone in all datasets used (e.g.
reconstruction loss of ∼ 171/133 on MNIST, and ∼ 211/134 on Omniglot, with 32/100 hidden
units respectively). This reflects the AE’s training backpropagating information about the data beyond
pairwise correlations, through non-convex function compositions – however, this comes at the cost
of being more difficult to optimize. The representations learned by the ENC function of PC-AE are
quite different and capture much more of the pairwise correlation information, which is used by the
decoding layer in a worst-case optimal fashion. We attempt to visually depict the differences between
the representations in Fig. 3.

As discussed in Sec. 4, we do not claim that this paper’s method will always achieve the best empirical
reconstruction loss, even among single-layer autoencoders. We would like to make the encoding

2TensorFlow code available at https://github.com/aikanor/pc-autoencoder .
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Figure 1: Top row: randomly chosen test images from Caltech-101 silhouettes. Middle and bottom
rows: corresponding reconstructions of PC-AE and AE with H = 32 binary hidden units.

Figure 2: As Fig. 2, with H = 100 on Omniglot. Difference in quality is particularly noticeable in
the 1st, 5th, 8th, and 11th columns.

function quicker to compute, as well. But we believe this paper’s results, especially when H is high,
illustrate the potential of using pairwise correlations for autoencoding as in our approach, learning to
encode with alternating convex minimization and extremely strong worst-case robustness guarantees.
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A EXPERIMENTAL DETAILS

In addition to MNIST, we use the preprocessed version of the Omniglot dataset found in Burda et al.
(2016), split 1 of the Caltech-101 Silhouettes dataset, the small notMNIST dataset, and the UCI Adult
(a1a) dataset. The results reported are the mean of 10 Monte Carlo runs, and the PC-AE significance
results use 95% Monte Carlo confidence intervals. Only notMNIST comes without a predefined split,
so the displayed results use 10-fold cross-validation. Non-binarized versions of all datasets (grayscale
pixels) resulted in nearly identical PC-AE performance (not shown); this is as expected from its
derivation using expected pairwise correlations, which with high probability are nearly invariant
under binarization (by e.g. Hoeffding bounds).

We used minibatches of size 250. All standard autoencoders use the ’Xavier’ initialization and trained
for 500 epochs or using early stopping on the test set. The “PCA" baseline was run on exactly
the same input data as the others; it finds decodings by mean-centering this input, finding the top
H principal components with standard PCA, reconstructing the mean-centered input with these
components, adding back the means, and finally thresholding the result to [−1, 1]V .

We did not evaluate against other types of autoencoders which regularize (Kingma & Welling
(2013)) or are otherwise not trained for direct reconstruction loss minimization. Also, not shown is
the performance of a standard convolutional autoencoder (32-bit representation, depth-3 64-64-32
(en/de)coder) which performs better than the standard autoencoder, but is still outperformed by
PC-AE on our image-based datasets. A deeper architecture could quite possibly achieve superior
performance, but the greater number of channels through which information is propagated makes fair
comparison with our flat fully-connected approach difficult. We consider extension of our PC-AE
approach to such architectures to be fascinating future work.

A.1 FURTHER RESULTS

Our bound on worst-case loss is invariably quite tight, as shown in Fig. 4. Similar results are found
on all datasets. This is consistent with our conclusions about the nature of the PC-AE representations
– conveying almost exactly the information available in pairwise correlations.

Figure 4: Actual reconstruction loss to real data (red) and slack function [objective function] value
(dotted green), during Adagrad optimization to learn W using the optimal E,B. Monotonicity is
expected since this is a convex optimization. The objective function value theoretically upper-bounds
the actual loss, and practically tracks it nearly perfectly.

A 2D visualization of MNIST is in Fig. 6, showing that even with just two hidden units there is
enough information in pairwise correlations for PC-AE to learn a sensible embedding. We also
include more pictures of our autoencoders’ reconstructions, and visualizations of the hidden units
when H = 100 in Fig. 5.
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Figure 5: Visualizations of all the hidden units of PC-AE (left) and AE (right) from Omniglot for
H = 100, as in Fig. 3.

Figure 6: AE (left) and PC-AE (right) visualizations of a random subset of MNIST test data, with
H = 2 real-valued hidden units, and colors corresponding to class labels (legend at left). PC-AE’s
loss is ∼ 189 here, and that of AE is ∼ 179.

A.2 PC-AE INTERPRETATION AND IMPLEMENTATION DETAILS

Here we give some details that are useful for interpretation and implementation of the proposed
method.
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Figure 7: As Fig. 2, with H = 100 on Caltech-101 silhouettes.

Figure 8: As Fig. 2, with H = 100 on MNIST.

A.2.1 ENCODING

Proposition 2 defines the encoding function for any data example x as the vector that minimizes the
total feature distortion, summed over the bits in the decoding, rewritten here for convenience:

ENC(x(i);W) := arg min
e∈[−1,1]H

V∑
v=1

[
−x(i)v w>v e

(i) + Ψ(w>v e
(i))
]

(7)

Doing this on multiple examples at once (in memory as a minibatch) can be much faster than on
each example separately. We can now compute the gradient of the objective function w.r.t. each
example i ∈ [n], writing the gradient w.r.t. example i as column i of a matrix G ∈ RH×n. G can be
calculated efficiently in a number of ways, for example as follows:

• Compute matrix of hallucinated data X̆ := Ψ′(WE) ∈ RV×n.

• Subtract X to compute residuals R := X̆−X ∈ RV×n.
• Compute G = 1

nW
>R ∈ RH×n.

Optimization then proceeds with gradient descent using G, with the step size found using line
search. Note that since the objective function is convex, the optimum E∗ leads to optimal residuals
R∗ ∈ RV×n such that G = 1

nW
>R∗ = 0H×n, so each column of R∗ is in the null space of W>,

which maps the residual vectors to the encoded space. We conclude that although the compression is
not perfect (so the optimal residuals R∗ 6= 0V×n in general), each column of R∗ is orthogonal to
the decoding weights at an equilibrium towards which the convex minimization problem of (7) is
guaranteed to stably converge.

A.2.2 DECODING

The decoding step finds W to ensure accurate decoding of the given encodings E with correlations
B, solving the convex minimization problem:

W∗ = arg min
W∈RV×H

V∑
v=1

[
−b>v wv +

1

n

n∑
i=1

Ψ(w>v e
(i))

]
(8)

This can be minimized by first-order convex optimization. The gradient of (8) at W is:

−B +
1

n
[Ψ′(WE)]E> (9)
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Figure 9: As Fig. 2, with H = 32 on notMNIST.

The second term can be understood as “hallucinated" pairwise correlations B̆, between bits of the
encoded examples E and bits of their decodings under the current weights, X̆ := Ψ′(WE). The
hallucinated correlations can be written as B̆ := 1

nX̆E>. Therefore, (9) can be interpreted as the
residual correlations B̆ −B. Since the slack function of (8) is convex, the optimum W∗ leads to
hallucinated correlations B̆∗ = B, which is the limit reached by the optimization algorithm after
many iterations.

B ALLOWING RANDOMIZED DATA AND ENCODINGS

In this paper, we represent the bit-vector data in a randomized way in [−1, 1]V . Randomizing the data
only relaxes the constraints on the adversary in the game we play; so at worst we are working with an
upper bound on worst-case loss, instead of the exact minimax loss itself, erring on the conservative
side. Here we briefly justify the bound as being essentially tight, which we also see empirically in
this paper’s experiments.

In the formulation of Section 2, the only information we have about the data is its pairwise correlations
with the encoding units. When the data are abundant (n large), then w.h.p. these correlations are close
to their expected values over the data’s internal randomization, so representing them as continuous
values w.h.p. results in the same B and therefore the same solutions for E,W. We are effectively
allowing the adversary to play each bit’s conditional probability of firing, rather than the binary
realization of that probability.

This allows us to apply minimax theory and duality to considerably simplify the problem to a convex
optimization, when it would otherwise be nonconvex, and computationally hard (Baldi (2012)). The
fact that we are only using information about the data through its expected pairwise correlations with
the hidden units makes this possible.

The above also applies to the encodings and their internal randomization, allowing us to learn binary
randomized encodings by projecting to the convex set [−1, 1]H .

C DENOISING AUTOENCODER WITH MASKING NOISE: DETAILS

This section elaborates on the discussion of Sec. 5.2.

Recall the correlation correction term δv,h from Sec. 5.2:

δv,h =
1

n

n∑
i=1

(ẋ(i)v − x(i)v )e
(i)
h

Here, we express this in terms of the known quantities ẋv, eh, ρ, and not the unknown denoised data
xv .

Consider that

(ẋ(i)v − x(i)v )e
(i)
h = 1

(
x(i)v = −1

)
(ẋ(i)v − x(i)v )e

(i)
h + 1

(
x(i)v = +1

)
(ẋ(i)v − x(i)v )e

(i)
h
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Now if x(i)v = −1, then ẋ(i)v = −1, so (ẋ
(i)
v − x(i)v )e

(i)
h = 0. Therefore the first term above is zero,

and the expression can be simplified:

(ẋ(i)v − x(i)v )e
(i)
h = 1

(
x(i)v = +1

)
(ẋ(i)v − x(i)v )e

(i)
h = 1

(
x(i)v = +1 ∧ ẋ(i)v = −1

)
(−2)e

(i)
h (10)

Now on any example i, independent of the value of e(i)h , a ρ fraction of the bits where x(i)v = +1 are
flipped to get ẋ(i)v . Therefore,

1

ρ

n∑
i=1

1
(
x(i)v = +1 ∧ ẋ(i)v = −1

)
e
(i)
h ≈

1

1− ρ

n∑
i=1

1
(
x(i)v = +1 ∧ ẋ(i)v = +1

)
e
(i)
h

Putting it all together,

δv,h =
1

n

n∑
i=1

(ẋ(i)v − x(i)v )e
(i)
h = − 2

n

n∑
i=1

1
(
x(i)v = +1 ∧ ẋ(i)v = −1

)
e
(i)
h

≈ − 2

n

ρ

1− ρ

n∑
i=1

1
(
x(i)v = +1 ∧ ẋ(i)v = +1

)
e
(i)
h = − 2

n

ρ

1− ρ

n∑
i=1

1
(
ẋ(i)v = +1

)
e
(i)
h

D PROOFS

Proof of Theorem 1. Writing Γ(x̃
(i)
v ) := `−(x̃

(i)
v ) − `+(x̃

(i)
v ) = ln

(
1+x̃(i)

v

1−x̃(i)
v

)
for convenience, we

can simplify L∗, using the definition of the loss (2), and Lagrange duality for all V H constraints
involving B.

This leads to the following chain of equalities, where for brevity the constraint sets are sometimes
omitted when clear, and we write X as shorthand for the data x(1), . . . ,x(n) and X̃ analogously for
the reconstructions.

L∗ =
1

2
min

x̃(1),...,x̃(n)

∈[−1,1]V

max
x(1),...,x(n)∈[−1,1]V ,
∀v∈[V ]: 1

nExv=bv

1

n

n∑
i=1

V∑
v=1

[(
1 + x(i)v

)
`+(x̃(i)v ) +

(
1− x(i)v

)
`−(x̃(i)v )

]

=
1

2
min
X̃

max
X

min
W∈RV×H

[
1

n

n∑
i=1

V∑
v=1

(
`+(x̃(i)v ) + `−(x̃(i)v )− x(i)v Γ(x̃(i)v )

)
+

V∑
v=1

w>v

(
1

n
Exv − bv

)]
(a)
=

1

2
min

w1,...,wV

[
−

V∑
v=1

b>v wv +
1

n
min
X̃

max
X

V∑
v=1

[
n∑
i=1

(
`+(x̃(i)v ) + `−(x̃(i)v )− x(i)v Γ(x̃(i)v )

)
+ w>v Exv

]]

=
1

2
min

w1,...,wV

[
−

V∑
v=1

b>v wv +
1

n
min
X̃

n∑
i=1

V∑
v=1

[
`+(x̃(i)v ) + `−(x̃(i)v ) + max

x(i)∈[−1,1]V
x(i)v

(
w>v e

(i) − Γ(x̃(i)v )
)]]

(11)

where (a) uses the minimax theorem (Cesa-Bianchi & Lugosi (2006)), which can be applied as in
linear programming, because the objective function is linear in x(i) and wv. Note that the weights
are introduced merely as Lagrange parameters for the pairwise correlation constraints, not as model
assumptions.

The strategy x(i) which solves the inner maximization of (11) is to simply match signs with w>v e
(i)−

Γ(x̃
(i)
v ) coordinate-wise for each v ∈ [V ]. Substituting this into the above,

L∗ =
1

2
min

w1,...,wV

[
−

V∑
v=1

b>v wv +
1

n

n∑
i=1

min
x̃(i)∈[−1,1]V

V∑
v=1

(
`+(x̃(i)v ) + `−(x̃(i)v ) +

∣∣∣w>v e(i) − Γ(x̃(i)v )
∣∣∣)]

=
1

2

V∑
v=1

min
wv∈RH

[
−b>v wv +

1

n

n∑
i=1

min
x̃
(i)
v ∈[−1,1]

(
`+(x̃(i)v ) + `−(x̃(i)v ) +

∣∣∣w>v e(i) − Γ(x̃(i)v )
∣∣∣)]
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The absolute value breaks down into two cases, so the inner minimization’s objective can be simplified:

`+(x̃(i)v ) + `−(x̃(i)v ) +
∣∣∣w>v e(i) − Γ(x̃(i)v )

∣∣∣ =

{
2`+(x̃

(i)
v ) + w>v e

(i) if w>v e
(i) ≥ Γ(x̃

(i)
v )

2`−(x̃
(i)
v )−w>v e

(i) if w>v e
(i) < Γ(x̃

(i)
v )

(12)

Suppose x̃(i)v falls in the first case of (12), so that w>v e
(i) ≥ Γ(x̃

(i)
v ). By definition of `+(·),

2`+(x̃
(i)
v ) +w>v e

(i) is decreasing in x̃(i)v , so it is minimized for the greatest x̃(i)∗v ≤ 1 s.t. Γ(x̃
(i)∗
v ) ≤

w>v e
(i). This means Γ(x̃

(i)∗
v ) = w>v e

(i), so the minimand (12) is `+(x̃
(i)∗
v ) + `−(x̃

(i)∗
v ), where

x̃i∗v = 1−e−w>v e(i)

1+e−w>v e(i)
.

A precisely analogous argument holds if x̃(i)v falls in the second case of (12), where w>v e
(i) < Γ(x̃

(i)
v ).

Putting the cases together, we have shown the form of the summand Ψ. We have also shown the
dependence of x̃(i)∗v on w∗>v e(i), where w∗v is the minimizer of the outer minimization of (11). This
completes the proof.

D.1 L∞ CORRELATION CONSTRAINTS AND L1 WEIGHT REGULARIZATION

Here we formalize the discussion of Sec. 3.4 with the following result.
Theorem 3.

min
x̃(1),...,x̃(n)∈[−1,1]V

max
x(1),...,x(n)∈[−1,1]V ,

∀v∈[V ]: ‖ 1
nExv−bv‖∞≤εv

1

n

n∑
i=1

`(x(i), x̃(i))

=
1

2

V∑
v=1

min
wv∈RH

[
−b>v wv +

1

n

n∑
i=1

Ψ(w>v e
(i)) + εv ‖wv‖1

]

For each v, i, the minimizing x̃
(i)
v is a logistic function of the encoding e(i) with weights equal to the

minimizing w∗v above, exactly as in Theorem 1.

Proof. The proof adapts the proof of Theorem 1, following the result on L1 regularization in
Balsubramani & Freund (2016) in a very straightforward way; we describe this here.

We break each L∞ constraint into two one-sided constraints for each v, i.e. 1
nExv − bv ≤ εv1n and

1
nExv − bv ≥ −εv1n. These respectively give rise to two sets of Lagrange parameters λv, ξv ≥ 0H

for each v, replacing the unconstrained Lagrange parameters wv ∈ RH .

The conditions for the minimax theorem apply here just as in the proof of Theorem 1, so that (11) is
replaced by

1

2
min

λ1,...,λV
ξ1,...,ξV

[
−

V∑
v=1

(
b>v (ξv − λv)− εv1>(ξv + λv)

)
(13)

+
1

n
min
X̃

n∑
i=1

V∑
v=1

[
`+(x̃(i)v ) + `−(x̃(i)v ) + max

x(i)
x(i)v

(
(ξv − λv)>e(i) − Γ(x̃(i)v )

)]]
(14)

Suppose for some h ∈ [H] that ξv,h > 0 and λv,h > 0. Then subtracting min(ξv,h, λv,h) from both
does not affect the value [ξv − λv]h, but always decreases [ξv + λv]h, and therefore always decreases
the objective function. Therefore, we can w.l.o.g. assume that ∀h ∈ [H] : min(ξv,h, λv,h) = 0.
Defining wv = ξv − λv (so that ξv,h = [wv,h]+ and λv,h = [wv,h]− for all h), we see that the term
εv1
>(ξv + λv) in (13) can be replaced by εv ‖wv‖1.

Proceeding as in the proof of Theorem 1 gives the result.
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E GENERAL RECONSTRUCTION LOSSES

In this section we extend Theorem 1 to a larger class of reconstruction losses for binary autoencoding,
of which cross-entropy loss is a special case. This uses techniques recently employed by Balsubramani
& Freund (2016) for binary classification.

Since the data X are still randomized binary, we first broaden the definition of (2), rewritten here:

`(x(i), x̃(i)) :=

V∑
v=1

[(
1 + x

(i)
v

2

)
`+(x̃(i)v ) +

(
1− x(i)v

2

)
`−(x̃(i)v )

]
(15)

We do this by redefining the partial losses `±(x̃
(i)
v ), to any functions satisfying the following mono-

tonicity conditions.
Assumption 1. Over the interval (−1, 1), `+(·) is decreasing and `−(·) is increasing, and both are
twice differentiable.

Assumption 1 is a very natural one and includes many non-convex losses (see Balsubramani & Freund
(2016) for a more detailed discussion, much of which applies bitwise here). This and the additive
decomposability of (15) over the V bits are the only assumptions we make on the reconstruction loss
`(x(i), x̃(i)). The latter decomposability assumption is often natural when the loss is a log-likelihood,
where it is tantamount to conditional independence of the visible bits given the hidden ones.

Given such a reconstruction loss, define the increasing function Γ(y) := `−(y)−`+(y) : [−1, 1] 7→ R,
for which there exists an increasing (pseudo)inverse Γ−1. Using this we broaden the definition of the
potential function Ψ in terms of `±:

Ψ(m) :=


−m+ 2`−(−1) if m ≤ Γ(−1)

`+(Γ−1(m)) + `−(Γ−1(m)) if m ∈ (Γ(−1),Γ(1))

m+ 2`+(1) if m ≥ Γ(1)

Then we may state the following result, describing the optimal decoding function for a general
reconstruction loss.
Theorem 4. Define the potential function

min
x̃(1),...,x̃(n)∈[−1,1]V

max
x(1),...,x(n)∈[−1,1]V ,
∀v∈[V ]: 1

nExv=bv

1

n

n∑
i=1

`(x(i), x̃(i))

=
1

2

V∑
v=1

min
wv∈RH

[
−b>v wv +

1

n

n∑
i=1

Ψ(w>v e
(i))

]

For each v ∈ [V ], i ∈ [n], the minimizing x̃
(i)
v is a sigmoid function of the encoding e(i) with weights

equal to the minimizing w∗v above, as in Theorem 1. The sigmoid is defined as

x̃(i)∗
v :=


−1 if w∗v

>e(i) ≤ Γ(−1)

Γ−1(w∗v
>e(i)) if w∗v

>e(i) ∈ (Γ(−1),Γ(1))

1 if w∗v
>e(i) ≥ Γ(1)

(16)

The proof is nearly identical to that of the main theorem of Balsubramani & Freund (2016). That
proof is essentially recapitulated here for each bit v ∈ [V ] due to the additive decomposability of the
loss, through algebraic manipulations (and one application of the minimax theorem) identical to the
proof of Theorem 1, but using the more general specifications of Ψ and Γ in this section. So we do
not rewrite it in full here.

A notable special case of interest is the Hamming loss, for which `±(x̃
(i)
v ) = 1

2

(
1∓ x̃(i)v

)
,

where the reconstructions are allowed to be randomized binary values. In this case, we have
Ψ(m) = max(|m| , 1), and the sigmoid used for each decoding neuron is the clipped linearity
max(−1,min(w∗v

>e(i), 1)).
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F ALTERNATE APPROACHES

We made some technical choices in the derivation of PC-AE, which prompt possible alternatives
not explored here for a variety of reasons. Recounting these choices gives more insight into our
framework.

The output reconstructions could have restricted pairwise correlations, i.e. 1
nX̃E> = B. One

option is to impose such restrictions instead of the existing constraints on X, leaving X unrestricted.
However, this is not in the spirit of this paper, because B is our means of indirectly conveying
information to the decoder about how X is decoded.

Another option is to restrict both X̃ and X. This is possible and may be useful in propagating
correlation information between layers of deeper architectures while learning, but its minimax
solution does not have the conveniently clean structure of the PC-AE derivation.

In a similar vein, we could restrict E during the encoding phase, using B and X. As B is changed
only during this phase to better conform to the true data X, this tactic fixes B during the optimization,
which is not in the spirit of this paper’s approach. It also performed significantly worse in our
experiments.
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