
Published as a conference paper at ICLR 2020

A CONSTRUCTIVE PREDICTION OF THE
GENERALIZATION ERROR ACROSS SCALES

Jonathan S. Rosenfeld1 Amir Rosenfeld2 Yonatan Belinkov13 Nir Shavit145

{jonsr,belinkov,shanir}@csail.mit.edu amir@cse.yorku.ca

1 Massachusetts Institute of Technology 2 York University 3 Harvard University
4 Neural Magic Inc 5 Tel Aviv University

ABSTRACT

The dependency of the generalization error of neural networks on model and
dataset size is of critical importance both in practice and for understanding the
theory of neural networks. Nevertheless, the functional form of this dependency
remains elusive. In this work, we present a functional form which approximates
well the generalization error in practice. Capitalizing on the successful concept of
model scaling (e.g., width, depth), we are able to simultaneously construct such
a form and specify the exact models which can attain it across model/data scales.
Our construction follows insights obtained from observations conducted over a
range of model/data scales, in various model types and datasets, in vision and lan-
guage tasks. We show that the form both fits the observations well across scales,
and provides accurate predictions from small- to large-scale models and data.

1 INTRODUCTION

With the success and heightened adoption of neural networks for real world tasks, some questions
remain poorly answered. For a given task and model architecture, how much data would one require
to reach a prescribed performance level? How big a model would be needed?

Addressing such questions is made especially difficult by the mounting evidence that large, deep
neural networks trained on large-scale data outperform their smaller counterparts, rendering the
training of high performance models prohibitively costly. Indeed, in the absence of practical an-
swers to the above questions, surrogate approaches have proven useful. One such common approach
is model scaling, where one designs and compares small-scale models, and applies the obtained ar-
chitectural principles at a larger scale (e.g., Liu et al., 2018; Real et al., 2018; Zoph et al., 2018).
Despite these heuristics being widely used to various degrees of success, the relation between the
performance of a model in the small- and large-scale settings is not well understood. Hence, explor-
ing the limitations or improving the efficiency of such methods remains subject to trial and error.

In this work we circle back to the fundamental question: what is the (functional) relation between
generalization error and model and dataset sizes? Critically, we capitalize on the concept of model
scaling in its strictest form: we consider the case where there is some given scaling policy that
completely defines how to scale up a model from small to large scales. We include in this context
all model parameters, such that traversing from one scale (in which all parameters are known) to
another requires no additional resources for specifying the model (e.g., architecture search/design).

We empirically explore the behavior of the generalization error over a wide range of datasets and
models in vision and language tasks. While the error landscape seems fairly complex at first glance,
we observe the emergence of several key characteristics shared across benchmarks and domains.
Chief among these characteristics is the emergence of regions where power-law behavior approxi-
mates the error well both with respect to data size, when holding model size fixed, and vice versa.

Motivated by these observations, we establish criteria which a function approximating the error
landscape should meet. We propose an intuitive candidate for such a function and evaluate its
quality, both in explaining the observed error landscapes and in extrapolating from small scale (seen)
to large scale (unseen) errors. Critically, our functional approximation of the error depends on both

1

Published as a conference paper at ICLR 2020

model and data sizes. We find that this function leads to a high quality fit and extrapolation. For
instance, the mean and standard deviation of the relative errors are under 2% when fitting across
all scales investigated and under 5% when extrapolating from a slimmed-down model (1/16 of the
parameters) on a fraction of the training data (1/8 of the examples) on the ImageNet (Russakovsky
et al., 2015) and WikiText-103 (Merity et al., 2016) datasets, with similar results for other datasets.

To the best of our knowledge, this is the first work that provides simultaneously:

• A joint functional form of the generalization error landscape—as dependent on both data
and model size—with few, interpretable degrees of freedom (section 5).

• Direct and complete specification (via the scaling policy) of the model configuration attain-
ing said generalization error across model and dataset sizes.

• Highly accurate approximation of error measurements across model and data scales via the
functional form, evaluated on different models, datasets, and tasks (section 6).

• Highly accurate error prediction from small to large model and data (section 7).

We conclude with a discussion of some implications of our findings as a practical and principled tool
for understanding network design at small scale and for efficient computation and trade-off design
in general. We hope this work also provides a useful empirical leg to stand on and an invitation to
search for a theory of generalization error which accounts for our findings.

2 RELATED WORK

Model scaling: A number of studies have explored the effect of model scaling on performance.
For instance, image classification networks can be scaled by depth (number of layers; He et al., 2016)
or width (number of channels; Zagoruyko & Komodakis, 2016; Howard et al., 2017). More recently,
Tan & Le (2019) demonstrated how scaling width, depth, and input resolution has combined positive
effects larger than scaling each factor in isolation. However, this relationship has yet to be quantified
in a predictive form – by how much will error change with model scaling? In this work, we focus
on finding a constructive functional form for determining the model given a specified performance.

Data scaling: It has long been recognized that more data improves performance, and various
studies report such trends in both computer vision (e.g., Zhu et al., 2012; Sun et al., 2017) and
language processing tasks (e.g., Banko & Brill, 2001; Talmor & Berant, 2019). A number of prior
studies observed power-law relations between the generalization error and training data size (Cho
et al., 2015; Miceli Barone et al., 2017; Johnson et al., 2018). Most relevant to our work, Hestness
et al. (2017) explored the effect of data size on the generalization error in vision, language, and
speech tasks, and observed a strikingly consistent power-law behavior in a large set of experiments.
However, while these studies point to the empirical existence of a power law in terms of data, they
do not offer tools for predicting the performance given a specified model. Nor do they offer low-cost
methods to specify the model configuration which would attain the power law with data dependency.
Indeed, Hestness et al. had to search over models and their configurations at large scale to exhibit
their findings, incurring prohibitive computational costs.

In contrast, we demonstrate a constructive recipe, where we directly predict the test performance at
large scale and specify the full model configuration which attains it (with no need for large-scale
search), given performance at small scale.

Predicting model performance: Since training models at full data/model scale may be compu-
tationally prohibitive, a line of work tries to predict the performance of a given model on a given
dataset, without training the model, for example by using a bank of previously trained models,
dataset, and their associated performances (Istrate et al., 2019). Others have proposed to estimate
performance on small data (Klein et al., 2017) or model sizes (Zoph et al., 2018; Real et al., 2019)
in the context of neural architecture search (NAS). In this case, the small-scale evaluation is used
to compare models at small cost, to expedite the search process; see Elsken et al. (2019) for a re-
cent survey. Our work complements previous approaches by demonstrating a functional form that
can predict large-scale performance from small-scale measurements. Moreover, our method may be
integrated in NAS, addressing some of its current limitations (as discussed in section 8).

2

Published as a conference paper at ICLR 2020

Table 1: The datasets and models used in this work, along with their original training data size and
the range of explored scales. For more information, see appendix A.
(a) Training data size (number of words) and model size (number of parameters excluding word embeddings)
for language modeling tasks.

Dataset Size (N) Scales (n) Base Model Size (M) Scales (m)

PTB 0.9M }
2−kN ,
0 ≤ k ≤ 5

AWD-LSTM 20M }
4−kM ,
0 ≤ k ≤ 6

WikiText-2 2M AWD-LSTM 20M
WikiText-103 100M Transformer-XL 41M

(b) Training data size (number of images) and model size (number of parameters) for image classification tasks.

Dataset Size
(N) Scales (n) Base Model Size

(M) Scales (m)

ImageNet 1.2M 2−kN , 0 ≤ k ≤ 6 ResNet-50 25.5M 4−kM , 0 ≤ k ≤ 6
CIFAR10 60K

2−kN ,
0 ≤ k ≤ 5

WRN-44-16 0.7M 4−kM , −3 ≤ k ≤ 4
CIFAR100 60K WRN-44-16 0.7M

 4−kM ,
−2 ≤ k ≤ 4

DTD 5640 WRN-44-16 0.7M
Aircraft 10K WRN-44-16 0.7M
UCF101 13K WRN-44-16 0.7M

Theoretical error bounds: Much attention has been given to theoretical explanations of the gener-
alization capabilities of deep neural networks (Neyshabur et al., 2017a;b; Allen-Zhu et al., 2018a;b;
Arora et al., 2018). While fully engaging with this literature is beyond our scope, we note that recent
studies have derived bounds involving power-law dependencies in both model (Yarotsky, 2018) and
data size (Liang et al., 2019). We leave it as an open question for future work to find theoretical
explanations for the empirical behavior and the functional form we investigate in this work.

3 EXPERIMENTAL SETUP

Notation: Let Dn = {xi, yi}ni=1 denote a labeled (training) dataset with n samples or datapoints.
Let fm denote a neural network whose size is the number of parameters m, such that ŷ = fm(x) is
the predicted label. Let ε (n,m) be the generalization error as a function of n and m, measured by
a performance metric (e.g., top-1 accuracy or cross-entropy loss) on a held-out test set. We refer to
this error function as the error landscape.

3.1 SCALING POLICIES

Dataset scaling: We wish to scale datasets while preserving the original distribution. For image
classification, we uniformly subsample all classes by a constant ratio, thus preserving the relative
sample size per class. We limit the maximal sub-sampling to avoid eradicating any class. For
language modeling, where the number of classes (vocabulary items) has a very long tail distribution,
we randomly sample sentences such that the total number of sampled words will be a certain fraction
of the original dataset. Table 1 reports the data scales we use. In all tasks the held-out test set remains
untouched for evaluating the error.

Model scaling: We are critically interested in a method where moving across scales is defined by
some scaling function, such that no additional significant computation would be incurred. We thus
consider the case where the model architecture is given and the model size determines how to scale
it. For instance, one may scale width (number of channels in convolutional networks, hidden state
size in recurrent networks), depth (number of layers), do compound scaling (Tan & Le, 2019), or
more generally define a function tying the model degrees of freedom and size. We focus primarily
on width scaling in our experiments; the model scales are reported in Table 1. We also perform
selected depth scaling to demonstrate flexibility with respect to the scaling method.

3

Published as a conference paper at ICLR 2020

log2(data fraction)

5
4

3
2

1
0 log

2(m
od

el
fra

cti
on

)

12
10

8
6

4
2

0

lo
g1

0(
er

r)

0.55

0.60

0.65

0.70

0.75

0.80

wiki103: actual test loss

(a) Wiki103 error (cross entropy) landscape.

log2(data fraction)

5
4

3
2

1
0 log

2(m
od

el
fra

cti
on

)

8
6

4
2
0

2
4

6

lo
g1

0(
er

r)

1.2

1.0

0.8

0.6

0.4

cifar10: actual test err

(b) CIFAR10 error (top1) landscape.

Figure 1: Error landscapes in log-log-log scale. Each point (blue dot) is the error resulting from
training with a model/data configuration m,n. The surface is a linear interpolation between the
points, which is then projected on the (m, ε), (n, ε) and (m,n) planes. See Appendix C for details.

4 2 0
log2(data fraction)

0.55

0.60

0.65

0.70

0.75

0.80

lo
g1

0(
 c

ro
ss

 e
nt

ro
py

 lo
ss

)

log2(m/M)
-12.0
-10.0
-8.0
-6.0
-4.0
-2.0
0.0

12 10 8 6 4 2 0
log2(model fraction)

log2(n/N)
-5.0
-4.0
-3.0
-2.0
-1.0
0.0

(a) Wiki103 cross entropy vs. data and model size.

4 2 0
log2(data fraction)

1.4

1.2

1.0

0.8

0.6

0.4

0.2
lo

g1
0(

 to
p1

 e
rro

r)

log2(m/M)
-10.0
-8.0
-6.0
-4.0
-2.0
0.0
2.0
4.0

10 8 6 4 2 0 2 4
log2(model fraction)

log2(n/N)
-5.0
-4.0
-3.0
-2.0
-1.0
0.0

(b) CIFAR10 top1 error vs. data and model size.

Figure 2: Error vs. data size (left part of each subfigure) and model size (right part) for Wiki103 and
CIFAR10. Solid dots are measurements, dashed lines are best fit to saturating power-law.

Hyper-parameters: For similar reasons we wish to avoid hyper-paramater search at large scales,
and thus avoid the temptation to tune hyper-parameters accordingly (learning rate, regularization,
etc.). Therefore, we hold all hyper-parameters fixed. This enables us to construct a functional form
that fits the error landscape and can be used to predict the error across scales while completely defin-
ing the model attaining it. We consider pros and cons of this approach in the discussion (section 8).

3.2 TASKS, MODELS, OPTIMIZERS AND DATASETS

We experiment with both vision and language tasks. We use 6 benchmark datasets for image classi-
fication and 3 for language modeling. For image classification, we train ResNet (He et al., 2016) and
WRN models (Zagoruyko & Komodakis, 2016) with stochastic gradient decent (SGD). In section
6.2 we explore the effect of varying architectures and optimizers for a fixed task (CIFAR100), adding
VGG16 (Simonyan & Zisserman, 2014) and DenseNet (Huang et al., 2017) models trained with both
Adam (Kingma & Ba, 2015) and SGD. For language modeling, we train AWD-LSTM (Merity et al.,
2018) and Transformer-XL models (Dai et al., 2019) with SGD and Adam optimizers respectively.
Summary statistics are shown in Table 1, along with the range of explored scales. Appendix A gives
additional information.

4

Published as a conference paper at ICLR 2020

4 OBSERVATIONS ON THE ERROR LANDSCAPE

Figures 1a and 1b respectively show an example test error landscape for width scaling of
Transformer-XL on WikiText-103 and WRN-44-16 on CIFAR10. Various additional such land-
scapes are found in appendix C, showing largely consistent patterns. Examining the error landscapes
yields the following observations:

O1 Model Scaling
O1.1 For a given dataset size, scaling up the model results in an initial decrease in test error, which

then saturates to a level determined by the dataset size.1 This behavior has been noted by
Tan & Le (2019) across varied model scaling methods, although they have not engaged with
the dependency on dataset size.

O1.2 The rate of error decrease with model size appears well approximated by a power-law.

These two observations together can be summarized as the following relation:

ε(m,n) ≈ b(n)m−β(n) + cm(n) (1)

where b, β, cm may depend on the data size n, s.t. as m grows, ε→ cm. Example fits to this
form (allowing b, β, cm to be fit per n) are seen in figure 2a (right) and figure 2b (right).

O2 Data scaling
O2.1 For a given model size, scaling up the dataset results in an initial increase in performance,

which then saturates to a level determined by the model size.
O2.2 The rate of error decrease with dataset size appears well approximated by a power-law. Hes-

tness et al. (2017) also noted a similar relationship, but did not functionally tie the saturation
level to the dataset size.

These two observations together can be summarized as the following relation:

ε(m,n) ≈ a(m)n−α(m) + cn(m) (2)

where a, α, cn may depend on the model size m, s.t. as n grows, ε → cn. Example fits to
this form (allowing a, α, cn to be fit per m) are seen in figure 2a (left) and figure 2b (left).

O3 Joint properties The behavior of the error when scaling model size while holding data size
fixed, and vice versa, extends to the entire error landscape in a well-behaved manner, such that
the manifold ε(m,n) is smooth everywhere as a function of both model and data scales.

5 FUNCTIONAL APPROXIMATION OF THE GENERALIZATION ERROR

5.1 CRITERIA

Motivated by the above observations, we now consider a functional approximation for the error land-
scape. In particular, let us consider function families meeting the following criteria which augment
and restrict our observations:

C1 As either model or dataset size goes to zero, the expected performance is equivalent to a
random-guess error level ε0.2

C2 For a given dataset size, scaling up the model will result in an initial increase in perfor-
mance, which will then saturate, taking the form in equation 1.

C3 For a given model size, scaling up the dataset will result in an initial increase in perfor-
mance, which will then saturate, taking the form in equation 2.

C4 There exists an irreducible error ε∞, intrinsic to the dataset.
C5 The function must be smooth everywhere and monotonic non-increasing in terms of model

and data size (observation O3).

While there are many possible function families meeting the above criteria, below we propose a
simple function family for our evaluation. We do not claim that this is in fact the true underlying
dependency, but rather that it serves as a good approximation of the error landscape—consistent
with these criteria.

1At some point error increase ensues; this point differs between datasets, see Appendix C for examples.
2Best guess when m→ 0 (ε0n) or n→ 0 (εm0) need not coincide, but can, e.g., in a balanced dataset.

5

Published as a conference paper at ICLR 2020

5.2 PROPOSED FUNCTION FAMILY

As a first insightful step, consider the implications of satisfying C2 and C3 simultaneously. By
examining the limiting behavior as m or n grow, we have:

As m grows large: cm(n) ≈ a(m)n−α(m) + cn(m)

As n grows large: cn(m) ≈ b(n)m−β(n) + cm(n)

Thus, a consistent form satisfying C2 and C3 simultaneously is:

ε(m,n) ≈ a(m)n−α(m) + b(n)m−β(n) + c∞ (3)

where c∞ is a constant not dependent on either m or n.

Let us now examine the simplified case where a, b, α, β are constant:

ε̃(m,n) = an−α + bm−β + c∞ (4)

where α ≥ 0 and β ≥ 0 control the global rate at which error decreases with data and model size,
respectively, a > 0 and b > 0 are a form of unit conversion between data and model sizes and error,
and c∞ > 0 is the asymptotic lower value attainable. This function is a special case of equation 3
and meets criteria C2 and C3 by construction. Importantly C4 and C5 are also met.

However, by giving up the dependence of a, b, α, β onm,n, this function does not meet criterion C1.
We thus need to model the transition from the initial random-guess level to the power-law region.
We propose to parameterize the transition using the following envelope (complex) function:

ε̂(m,n) = ε0

∥∥∥∥ ε̃(m,n)

ε̃(m,n)− iη

∥∥∥∥ = ε0

∥∥∥∥ an−α + bm−β + c∞
an−α + bm−β + c∞ − iη

∥∥∥∥ (5)

where i =
√
−1. Here the simple pole at η controls the transition point from the initial random-guess

level ε0 as (m,n) increase. As (m,n) grow, ε̃→ c∞ and the final irreducible error ε∞ , ε0c∞η
−1

is approached. The random-guess error, ε0, is a known parameter determined by dataset statistics
(e.g, (Nclasses−1)/Nclasses for a balanced dataset). Note that due to our choice of rational envelope,
we can divide by a constant the form in equation 4. Without loss of generality, let us choose a = 1.

Note that while the forms in equations 3 and 4 are well motivated, the approach taken for modeling
the transition is solely a convenience one. In fact, the transition(s) as function of m and n may
be captured in the functional forms of a, b, α, β or another envelope mechanism. We leave a more
refined investigation of the nature of the transitions to future work.

6 ERROR LANDSCAPE ESTIMATION

We wish to empirically estimate the quality of the proposed functional parameterization as a fit to the
true error landscape. Let ε̂(n,m;θ) be the parametric function family (equation 5) approximating
the error landscape ε (n,m), where θ = {α, β, b, c∞, η}.3 Define the divergence δ(n,m;θ) as the
relative difference between the estimated error ε̂(m,n;θ) and the true error ε(m,n):

δ(n,m;θ) ,
ε̂(m,n;θ)− ε(m,n)

ε(m,n)

We fit a least squares regression model to find the best parameters minimizing the divergence. In this
section, we fit the function using 10-fold cross-validation across all model/data configurations m,n
(see Table 1) and evaluate the fit quality. (In the next section, we perform extrapolation experiments,
from seen to unseen points.) We perform the fit separately for each dataset and evaluate its quality
by the mean µ and standard deviation σ of the divergence δ over all points (m,n). See Appendix B.1
for experimental details.

As figure 3 shows, estimated test accuracy is highly correlated with actual test accuracy for various
datasets, with worst-case values µ < 1% and σ < 5% . Note that the number of free parameters is
small (|θ| ≤ 6) compared to the number of points (42–49 model-data configurations), demonstrating
the appropriateness of the proposed function for modeling the complex error landscape.

6

Published as a conference paper at ICLR 2020

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
measured test loss

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

es
tim

at
ed

 te
st

 lo
ss

fit: language modeling
wiki103 : :-0.1±1.3 % :1.2±0.3 %
PTB : :-0.0±0.3 % :0.7±0.3 %
wiki2 : :-0.0±0.2 % :0.4±0.2 %

(a) Estimated vs. actual cross-entropy loss
for various language modeling datasets.

0.0 0.2 0.4 0.6 0.8 1.0
measured top1 error

0.0

0.2

0.4

0.6

0.8

1.0

es
tim

at
ed

 to
p1

 e
rro

r

fit: image classification
aircraft: :0.5±0.1 % :1.5±0.2 %
dtd : :0.2±0.1 % :1.5±0.0 %
ucf101 : :-0.5±1.6 % :4.4±0.7 %
cifar10 : :0.1±0.1 % :4.5±0.1 %
imagenet: :0.3±0.3 % :1.9±0.5 %
cifar100: :0.7±0.2 % :2.2±0.1 %

(b) Estimated vs. actual test error for various
image classification datasets.

Figure 3: Error estimation results, using 10-fold cross-validation on all configurations in each
dataset. For reference, in blue is the identity line. The legend shows mean µ and standard devi-
ation σ of the divergence δ (± one std). See Appendix C for the actual and estimated landscapes in
each dataset.

log2(DS fraction)

5
4

3
2

1
0 log

2(m
od

el
fra

cti
on

)

3
2

1
0

1

lo
g1

0(
er

r)

1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4

cifar10: actual test err

(a) Error landscape when scaling depth
(at constant baseline width).

0.0 0.2 0.4 0.6 0.8 1.0
measured top1 error

0.0

0.2

0.4

0.6

0.8

1.0

es
tim

at
ed

 to
p1

 e
rro

r

fit: cifar10 width scaling
D=8: 0.4/4.2
D=14: 0.3/4.3
D=32: 1.2/5.3
D=44: 1.7/5.2
D=62: 0.4/4.4
D=128: 0.1/5.8

(b) Width scaling fit at different
constant depths (D).

0.0 0.2 0.4 0.6 0.8 1.0
measured top1 error

0.0

0.2

0.4

0.6

0.8

1.0

es
tim

at
ed

 to
p1

 e
rro

r

fit: cifar10 depth scaling
W=1: 0.1/4.0
W=2: 2.3/5.8
W=4: 0.6/4.9
W=8: -0.1/2.6

W=16: 0.3/2.9
W=32: 0.7/4.1
W=64: 0.6/4.1
W=128: 0.8/7.4

(c) Depth scaling fit at different
constant widths (W).

Figure 4: Error landscape estimation results on CIFAR10 for width and depth scaling, showing small
and comparable fit errors in both cases. Numbers in legends denote mean/variance of the estimation
divergence.

6.1 A PROBE INTO DEPTH SCALING

Here we verify that our results extend to another canonical scaling policy, namely depth scaling.
Figure 4a shows the error landscape with depth scaling on CIFAR10, exhibiting the same character-
istics as width scaling. Figures 4b and 4c show error landscape estimation results for both cases of
width and depth scaling, exhibiting small and comparable fit errors (confidence intervals < 3%).

Since the difference in approximation quality is effectively indistinguishable when scaling depth or
width orthogonally, we expect compound scaling to adhere to the same functional form. Indeed, we
verified this on the publicly available (model scaling only) results for EfficientNet (Tan & Le, 2019).

6.2 ON THE VARIETY OF OPTIMIZERS AND ARCHITECTURES

Our study covers a deliberate variety of architectures (ResNet, WRN, LSTM, Trans-
former) and optimizers (Adam, SGD variants), following standard implementations
in the literature as recommended for each dataset/model setting; see Appendix A.

3 For image classification, we set ε0 = (Nclasses − 1)/Nclasses (the balanced dataset case). For language
modeling, we estimate ε0 as another parameter, such that θ = {α, β, b, c∞, η, ε0} in this case.

7

Published as a conference paper at ICLR 2020

6 5 4 3 2 1 0
data fraction: log2(n/N)

12

10

8

6

4

2

0

m
od

el
 fr

ac
tio

n:
 lo

g2
(m

/M
)

extrapolation points

(a) Illustration.

0.0 0.2 0.4 0.6 0.8 1.0
measured top1 error

0.0

0.2

0.4

0.6

0.8

1.0

es
tim

at
ed

 to
p1

 e
rro

r

model fraction 1/16
 data fraction 1/8

:-4.5%
:4.681%

extrapolation, imagenet
fit
extrapolated

(b) Extrapolation on ImageNet

3 4 5 6 7
measured test loss

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

es
tim

at
ed

 te
st

 lo
ss

model fraction 1/16
 data fraction 1/8

:0.5%
:1.689%

extrapolation, wiki103
fit
extrapolated

(c) Extrapolation on WikiText-103.

Figure 6: Extrapolation results. (a) Illustration of the extrapolation setup, where we fit on a subset
of the points (in green) and predict on larger points (in red). (b) and (c) show example results on one
configuration in two benchmark datasets. Comprehensive results are given in Appendix D.

0.0 0.2 0.4 0.6 0.8 1.0
measured top1 error

0.0

0.2

0.4

0.6

0.8

1.0

es
tim

at
ed

 to
p1

 e
rro

r

fit: image classification

wrn/sgd : :0.0±0.8 % :1.4±0.5 %
vgg/adam: :0.0±1.4 % :1.3±0.6 %
vgg/sgd : :0.0±1.5 % :1.3±0.9 %
densenet/sgd: :0.5±3.2 % :4.5±2.7 %
densenet/adam: :0.5±2.6 % :5.2±2.7 %

Figure 5: CIFAR100 Error estimation re-
sults with three architectures (WRN, VGG,
DenseNet) and two optimizers (SGD, Adam).

However, the model/optimizer settings differ in
multiple aspects across the different tasks , ren-
dering the comparison of, say, different optimiz-
ers, challenging. In this section we verify that the
functional form holds when varying the optimizer
and/or the architecture on the same task, namely
image classification on CIFAR100.

In addition to the previously examined setting of
WRN with SGD, we add four more settings: two
well known architectures (VGG and DenseNet),
each trained with both SGD and Adam optimizers.
See Appendix A for experimental details. Figure 5
exhibits consistent, accurate, fit values across all ar-
chitecture/optimizer settings, with mean divergence
of µ < 1% (std: σ < 6%; confidence intervals
< 4%).

7 EXTRAPOLATION

In this section, we evaluate the ability of our functional approximation to extrapolate beyond seen
model/data configurations. The primary question we ask is: can we predict the error of a large
model/data configuration from the errors of smaller-scale model/data configurations? To do this,
we fit the least squares regression on a subset of the configurations and predict the error on larger,
unseen configurations. More formally, let (mi, nj) denote a given model/data configuration. We first
estimate parameters θij by fitting the function in equation 5 on all points of at most that size (m ≤
mi, n ≤ nj). Then we predict the error ε(m,n) in all points corresponding to larger configurations
(m > mi, n > nj) using estimated θij . Finally, we measure the divergence δ(m,n) between the
estimated error and the actual error at all larger configurations. This process is illustrated in figure 6a.

Figure 6b shows the results of one such extrapolation experiment, on ImageNet. In this case, we
have fit the functional form on all configurations of model size m ≤ mi = M/16 and data size
n ≤ nj = N/8, and predicted the error on all larger configurations. As the figure shows, the
extrapolation is highly accurate, with a mean divergence of µ = 4.5% (std: σ = 4.7%). Figure 6c
reports a similar experiment on WikiText-103. Here, again, we see very good extrapolation, with a
mean divergence of µ = 0.5% (std: σ = 1.7%). Note that each extrapolation is run 10 times with
different random initializations of θij in the least squares with negligible effect on the prediction.

8

Published as a conference paper at ICLR 2020

In practice, we may be interested in extrapolation quality with different subsets of configurations.
Appendix D provides detailed extrapolation results on multiple subsets of configurations, for both
vision and language datasets. Generally, the extrapolation performs well once not ill-posed, which
may be caused by lack of signal in the region of the initial “random-guess” level, or in degenerate
cases like having fewer measurements than the number of free parameters in θ.

8 DISCUSSION AND CONCLUSION

In this work, through insights gained by the joint examination of the dependencies of generalization
error on both model and data size, we arrive at criteria for functions consistent with the form of the
generalization error under a given scaling policy. We consider one such function and find it to be
in very good agreement with the actual behavior of the error landscape. Indeed, the agreement is
strong enough that extrapolation from small to large scale becomes feasible: the function predicts
the behavior of the generalization error in practice for the practical case of scaling models and data.
We discuss several example implications of knowing such a functional form.

Small-scale network development: At the core of small fidelity searches is the notion of perfor-
mance rank comparison between models. However, small scale and large scale ranks are not assured
to be consistent. If indeed a functional form such as empirically found in this work holds very gen-
erally, then in contrast, one can safely assess scaling rank between models at small scale, with the
assurance that it remains consistent. This suggests that one would be well served by searching over
scaling policies; a pertinent example of such a success is Tan & Le (2019). The functional form also
explains the limitation of small-scale search: once reaching the random-guess error level, where the
sensitivity to scaling vanishes, the informativeness of ranking diminishes. Finally, the functional
form allows direct usage of differentiable methods for NAS.

Principled design: Knowing the error landscape function facilitates reasoning about the choice
of (m,n) attaining a specified error level. In other words, for any given error level, one can solve
Eq. 5 for m,n based on small-scale measurements. Thus, one can quantitatively answer design
questions regarding the expected (in particular, large-scale) relations between m, n, and ε. In fact,
Eq. 5 provides direct ansewrs to questions such as ”how much data would one require to reach a
prescribed performance level?” or ”how big a model would be needed?” Imposing constraints is also
straightforward. For instance, consider the following question: ”What is the maximal model size
possibly needed (useful), when the data is limited in size, n = nlim (for a given model architecture
and scaling policy)?” For a fixed dataset size, model scaling eventually contributes marginally to
error reduction and becomes negligible when bm−β � n−αlim (Eq. 5). Define the relative contribution

threshold T as satisfying T =
n−α
lim

bm−β
max

. (For example, T = 10.) Then the maximal useful model size
meeting threshold T is:

mmax(T) = (bT)
1/β

n
α/β
lim

Similarly, The maximal useful amount of data for a limited sized model mlim is:

nmax(T) = (1/bT)
1/α

m
β/α
lim

Moreover, Eq. 5 allows for complex design trade-offs. Generally, given some design-tradeoff cost
function C(m,n, ε), one can minimize such cost s.t. Eq. 5. For example, consider the case of opti-
mizing for efficient computation which has both practical and environmental importance (Schwartz
et al., 2019). Since the number of FLOPs during training is ∝ m · n (for constant epoch budget),
the trade-off cost function may be formulated as C(FLOPS, ε) = C(mn, ε). Further, since constant
error contour is very well approximated by c = 1

nα + b
mβ

(Eq. 5), dataset and models may be scaled
with optimal resource efficiency with no effect on performance by solving for:

argmin
m,n

m · n s.t. c =
1

nα
+

b

mβ

The solution gives us the optimal-computational-efficiency ratio of model to data size: bβα
nα

mβ
= 1.

9

Published as a conference paper at ICLR 2020

Limitations: We have made a few simplifying assumptions in our choice of approximating func-
tion, in particular in how to model the transition from the initial random-guess error level and the
union of the random-guess level of the two scenarios (small model with large data and large model
with small data). We leave a more detailed examination of the behavior of the transitions from
random-guess error levels and refinements of the functional form to future work.

Critically, the restrictive nature of our scaling framework (all parameters and hyperparameters de-
scribed by a policy) is both a blessing and a challenge. The blessing comes in fulfilling the goal
of finding simultaneously both the form of the generalization error and the full specification of the
model and hyperparameters that attain it across scales. The challenge is that we have demonstrated
in this work only the case of constant hyper-parameters. We conjecture that the relation between
model configuration and hyperparameter choice (Zela et al., 2018) may entail the potential to for-
mulate hyperparameter-scaling policies similar in nature to the model-scaling polices, and that these
too fall under the scope of the form we find in this work. This too will be the subject of future work.

We hope that this work will bring the actual functional form of the generalization error in this
practical case of scaling to the fore, both in practice and as an empirical leg to stand on in the quest
for its theoretical origins.

ACKNOWLEDGMENTS

We thank Alexander Rakhlin, Alexander Madry, Kai Xiao, Lu Mi, Viaks Garg, Dan Alistrah, and
Tommi Jaakkola for discussions and their help. We also thank the anonymous reviewers for their
valuable feedback. J.R. was partly supported by the Eli and Dorothy Berman Fellowship as well
as grants NSF IIS-1447786, NSF CCF-1563880 and China-Singapore Suzhou Industrial Park. A.R.
was partially supported by the Air Force Office of Scientific Research USA (FA9550-18-1-0054)
though a grant to John K. Tsotsos. Y.B. was partly supported by the Harvard Mind ,Brain, and
Behavior Initiative.

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameter-
ized neural networks, going beyond two layers. arXiv preprint arXiv:1811.04918, 2018a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural
networks. arXiv preprint arXiv:1810.12065, 2018b.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. arXiv preprint arXiv:1802.05296, 2018.

Michele Banko and Eric Brill. Mitigating the paucity-of-data problem: Exploring the effect of
training corpus size on classifier performance for natural language processing. In Proceedings of
the first international conference on Human language technology research, pp. 1–5. Association
for Computational Linguistics, 2001.

Hakan Bilen, Basura Fernando, Efstratios Gavves, Andrea Vedaldi, and Stephen Gould. Dynamic
image networks for action recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3034–3042, 2016.

James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. Quasi-recurrent neural net-
works. In International Conference on Learning Representations, 2017.

Junghwan Cho, Kyewook Lee, Ellie Shin, Garry Choy, and Synho Do. How much data is needed to
train a medical image deep learning system to achieve necessary high accuracy? arXiv preprint
arXiv:1511.06348, 2015.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3606–3613, 2014.

10

Published as a conference paper at ICLR 2020

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-XL: Attentive language models beyond a fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 2978–2988, Florence,
Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1285. URL
https://www.aclweb.org/anthology/P19-1285.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1–21, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. pp. 770–778, 2016.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Patwary, Mostofa Ali, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Fix your classifier: the marginal value of training
the last weight layer. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=S1Dh8Tg0-.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. 1(2):3, 2017.

Roxana Istrate, Florian Scheidegger, Giovanni Mariani, Dimitrios Nikolopoulos, Costas Bekas, and
A Cristiano I Malossi. Tapas: Train-less accuracy predictor for architecture search. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 3927–3934, 2019.

Mark Johnson, Peter Anderson, Mark Dras, and Mark Steedman. Predicting accuracy on large
datasets from smaller pilot data. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp. 450–455, Melbourne, Australia, July
2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-2072. URL https:
//www.aclweb.org/anthology/P18-2072.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 2015.

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast bayesian op-
timization of machine learning hyperparameters on large datasets. In Artificial Intelligence and
Statistics, pp. 528–536, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Tengyuan Liang, Alexander Rakhlin, and Xiyu Zhai. On the risk of minimum-norm interpolants
and restricted lower isometry of kernels. arXiv preprint arXiv:1908.10292, 2019.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM
language models. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=SyyGPP0TZ.

11

https://www.aclweb.org/anthology/P19-1285
https://openreview.net/forum?id=S1Dh8Tg0-
https://www.aclweb.org/anthology/P18-2072
https://www.aclweb.org/anthology/P18-2072
https://openreview.net/forum?id=SyyGPP0TZ
https://openreview.net/forum?id=SyyGPP0TZ

Published as a conference paper at ICLR 2020

Antonio Valerio Miceli Barone, Barry Haddow, Ulrich Germann, and Rico Sennrich. Regularization
techniques for fine-tuning in neural machine translation. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, pp. 1489–1494, Copenhagen, Denmark,
September 2017. Association for Computational Linguistics. doi: 10.18653/v1/D17-1156. URL
https://www.aclweb.org/anthology/D17-1156.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Eleventh Annual Conference of the International Speech
Communication Association, 2010.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring general-
ization in deep learning. In Advances in Neural Information Processing Systems, pp. 5947–5956,
2017a.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian approach to
spectrally-normalized margin bounds for neural networks. arXiv preprint arXiv:1707.09564,
2017b.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In NIPS Autodiff Workshop, 2017.

E Real, A Aggarwal, Y Huang, and QV Le. Aging evolution for image classifier architecture search.
In AAAI Conference on Artificial Intelligence, 2019.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. arXiv preprint arXiv:1802.01548, 2018.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
residual adapters. In Advances in Neural Information Processing Systems, pp. 506–516, 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. arXiv preprint
arXiv:1907.10597, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable ef-
fectiveness of data in deep learning era. In Proceedings of the IEEE international conference on
computer vision, pp. 843–852, 2017.

Alon Talmor and Jonathan Berant. MultiQA: An empirical investigation of generalization and
transfer in reading comprehension. In Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 4911–4921, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1485. URL https://www.aclweb.org/
anthology/P19-1485.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International Conference on Machine Learning, pp. 6105–6114, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neu-
ral Information Processing Systems 30, pp. 5998–6008. Curran Associates, Inc., 2017. URL
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

12

https://www.aclweb.org/anthology/D17-1156
https://www.aclweb.org/anthology/P19-1485
https://www.aclweb.org/anthology/P19-1485
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Published as a conference paper at ICLR 2020

Zifeng Wu, Chunhua Shen, and Anton van den Hengel. Wider or deeper: Revisiting the resnet
model for visual recognition. arXiv preprint arXiv:1611.10080, 2016.

Dmitry Yarotsky. Optimal approximation of continuous functions by very deep relu networks. arXiv
preprint arXiv:1802.03620, 2018.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Arber Zela, Aaron Klein, Stefan Falkner, and Frank Hutter. Towards automated deep learning:
Efficient joint neural architecture and hyperparameter search. arXiv preprint arXiv:1807.06906,
2018.

Xiangxin Zhu, Carl Vondrick, Deva Ramanan, and Charless C Fowlkes. Do we need more training
data or better models for object detection?. In BMVC, volume 3, pp. 5. Citeseer, 2012.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

13

Published as a conference paper at ICLR 2020

A DATASETS AND MODELS

A.1 IMAGE CLASSIFICATION

A.1.1 DATASETS

We evaluated our predictions on several popular image classification datasets: ImageNet (Rus-
sakovsky et al., 2015): a large-scale recognition benchmark consisting of natural images of 1000 ob-
ject categories with 1.28M training images spread roughly uniformly over the categories. It has 50K
validation and 100K testing images. It has been the most popular large-scale benchmark for image
classification methods for the better part of the last decade. CIFAR10/100 (Krizhevsky et al., 2009):
60K natural RGB images of 10 classes (100 for CIFAR100) with a train/test split of 50K/10K. For
each of the following datasets, we use the version collated, resized, and split into train/validation/test
sets by Rebuffi et al. (2017). DTD (Cimpoi et al., 2014): a texture database of 47 categories and
5640 images. Aircraft (Maji et al., 2013): 10K images of 100 different aircraft classes. UCF101
(Soomro et al., 2012): originally a video action recognition dataset, converted using the method of
Bilen et al. (2016) into a single image per video. It contains 13,320 images of 101 action classes.

A.1.2 MODELS

We experiment with four models for image classification. We use different variants of the popular
ResNet architecture (He et al., 2016) in the main experiments. For ImageNet we use ResNet-50
and build on the code from the PyTorch framework (Paszke et al., 2017) to vary the model width.
For all other datasets we use WRN-44-16 (Wu et al., 2016) of varying widths, modified from the
implementation of Hoffer et al. (2018).

Scaling the models’ width is performed by multiplying the number of channels in each convolutional
layer and the width of the hidden linear layers by a constant factor and rounding to the nearest integer.
The ranges of width scales (and data scales) for the main experiments are detailed in Table 1b.

In section 6.2, we perform width scaling for two additional architectures, VGG16bn (Simonyan &
Zisserman, 2014) and DenseNet (L=40, k=32) (Huang et al., 2017). The VGG and DenseNet models
were also modified for width scaling from the implementation of Hoffer et al. (2018). The model
scales in this case are 4−k, 0 ≤ k ≤ 5, for both VGG and DenseNEt.

Depth-scaling, in the CIFAR10 case (section 6.1), is performed by appending extra layers within
each block.

A.1.3 TRAINING

In the main experiments, training is done via SGD with a momentum of 0.9, weight decay of 1e-4
and initial learning rate of 0.1. For ImageNet we train for 90 epochs, decreasing the learning rate
by a multiplicative factor of 0.1 after and 30 and after 60 epochs. We use a batch size of 16. For all
other vision datasets we use a batch-size of 128. We begin training with a learning rate of 0.1, run
for 200 epochs, and reduce by a multiplicative factor of 0.1 after 80, 120, and 160 epochs.

For the VGG and DenseNet experiments on CIFAR100 in section 6.2, we train with both SGD and
Adam optimizers. We train VGG for 170 epochs and Densenet for 300 epochs. Adam hyperparam-
eters are default, with an initial learning rate of 1e-3. When training with SGD, we retain initial
learning rate, batch size, momentum, and weight-decay, as in the main experiment (at 0.1, 128, 0.9,
and 1e-4 respectively) and follow standard stepped learning rate schedules: For VGG, learning rate
multiplicative factor of 0.1 after 80, 120, and 160 epochs; For DenseNet, learning rate multiplicative
factor of 0.1 after 150 and 225 epochs.

A.2 LANGUAGE MODELING

A.2.1 DATASETS

We evaluate on several datasets commonly used for (word-level) language modeling: Penn Tree-
bank (Mikolov et al., 2010), WikiText-2 (Bradbury et al., 2017), and WikiText-103 (Merity et al.,
2016). The PTB is a relatively small language modeling dataset of news texts, with a vocabu-

14

Published as a conference paper at ICLR 2020

lary of 10K unique words and about 900K/70K/80K training/validation/test words. WikiText-2 is
drawn from Wikipedia articles and it is both larger and richer, with a vocabulary of 33K words and
2M/210K/240K training/validation/test words. WikiText-103 is also based on Wikipedia, but larger
still, with a vocabulary of 270K words and 100M training words (and the same validation and test
sets as WikiText-2).

A.2.2 MODELS

We experiment with two standard models for language modeling: Transformer-XL (Dai et al., 2019)
and AWD-LSTM (Merity et al., 2018). Transformer-XL is a recent language modeling architecture
that is based on transformer self-attention (Vaswani et al., 2017), but modified to better learn de-
pendencies beyond a fixed length by adding a segment-level recurrence mechanism. It has achieved
state-of-the-art results on multiple benchmarks. We use the official PyTorch implementation4 with
their base configuration: 16 layers, embedding size of 410, inner dimension of 2100 in the fully-
connected layers, and 10 attention heads. Training is done with Adam. See the implementation for
other details. For scaling experiments, we decimate the inner dimension. We use Transformer-XL
for WikiText-103.

AWD-LSTM is a long short-term memory (Hochreiter & Schmidhuber, 1997) language model with
adaptive weight averaging. We use the official implementation5 with the recommended configura-
tion: 3 layers, embedding size of 400, and hidden state size of 1150. Training is done with SGD.
We use AWD-LSTM for PTB and WikiText-2 and follow the recommended settings for these two
datasets. For scaling experiments, we decimate the hidden state size.

4https://github.com/kimiyoung/transformer-xl
5https://github.com/salesforce/awd-lstm-lm

15

https://github.com/kimiyoung/transformer-xl
https://github.com/salesforce/awd-lstm-lm

Published as a conference paper at ICLR 2020

B ERROR ESTIMATION EXPERIMENT

B.1 EXPERIMENTAL DETAILS

In the experiment described in section 6, we fit a least squares regression model to find the best
parameters minimizing the divergence δ(m,n) - evaluated at configurations m,n as in Table 1:

θ∗ = argmin
θ

∑
n,m

|δ(m,n;θ)|2

We quantify the quality of the fit by the mean µ and standard deviation σ of the fitted divergence
by performing standard 10-fold cross validation over all points (m,n) with confidence intervals
reported as ±1 std over the folds.

B.2 FOUND THETA VALUES

Table 2: Optimal values of θ as found by the least squres regression fitting the functional form.

(a) Image classification (fitting top 1 error).

α β b c∞ η

ImageNet 0.75 0.61 0.76 3.63 18.50
CIFAR10 0.66 0.53 5.87 · 10−02 7.14 · 10−14 19.77
CIFAR100 0.70 0.51 0.15 0.71 6.93
DTD 0.40 1.16 4.30 · 10−05 1.27 · 10−09 0.85
Aircraft 1.10 0.83 3.47 · 10−03 5.16 · 10−10 1.13
UFC101 0.93 0.54 4.68 · 10−02 1.16 · 10−09 2.98

(b) Language modeling (fitting cross entropy loss).

α β b c∞ η ε0

PTB 0.81 0.34 0.15 5.00 6.27 6.10
WikiText-2 1.01 0.22 0.99 8.23 10.38 6.21
WikiText-103 0.74 0.56 0.33 9.04 16.34 6.60

16

Published as a conference paper at ICLR 2020

C ADDITIONAL ERROR LANDSCAPE MEASUREMENTS AND ESTIMATIONS

In this appendix, we provide error landscape measurements and estimations for all datasets, corre-
sponding to the experiment in section 6. The results are shown in 3D graphs similar to figure 1. In
each such graph, the z-axis is the logarithm of the generalization error as a function of two indepen-
dent variables: the model size m and the data size n.

The 3D graph is deliberately portrayed in log-log-log scale, as we cover a very large range of data
scales and model scales and a correspondingly wide range of errors. This view is a useful one when
one wishes to evaluate both large dynamic ranges (simultaneously both very large and very small
values) and is especially vivid in portraying power-law like dependencies; a power-law naturally
forms a straight line in a log-log view.

In each figure, subfigure (a) shows the measured error landscape is in log-log-log scale, where each
point (blue dot) is the error resulting from training with a model/data configuration m,n. Subfigure
(b) shows the best-fit estimated error landscape. The surface is a linear interpolation between the
points, which is then projected on the model-error (m, ε), data-error (n, ε), and model-data (m,n)
planes. The contour plots on each one of these planes are the projections of the error landscape
surface, and are useful in considering the behavior of the surface when holding one dimension
constant.

We call to attention several interesting observations on the datasets explored:

• As quantified rigorously in section 6, the fits perform well across error ranges. In these
surfaces, one also gets qualitative sense of the fit adequacy across the wide ranges of the
dataset and model scales directly. While perhaps slightly difficult to asses the surface di-
rectly, a helpful view is to consider the similarity between the projections of the actual and
projected surfaces.

• With increasing model size, indeed typically the error does remain saturated. However, in
one of our tested datasets (figure 12) there was a renewed slight increase. We verify that
this is indeed over-fitting, in the sense that there is no corresponding increase in the training
error. We note that the functional form we find can actually be used to veer clear of the
m,n regions where such over-fitting may occur.

• The simplifying approach taken by considering the random guess levels (and associated
transitions) for small models or small data as identical, seems to work fairly well with
some deviation apparent by examining figure 15. Indeed the simplification can hold well
for balanced datasets, but need not for imbalanced ones such as in the task of language
modeling. Thus, a relaxation of this simplification is expected to be important conceptually
and practically.

17

Published as a conference paper at ICLR 2020

log2(DS fraction)

6 5 4 3 2 1 0 log
2(#

pa
ram

)

16
18

20
22

24

lo
g1

0(
er

r)

0.5

0.4

0.3

0.2

0.1

imagenet: actual test err

(a) Actual error landscape.

log2(DS fraction)

6 5 4 3 2 1 0 log
2(#

pa
ram

)

16
18

20
22

24

lo
g1

0(
er

r)

0.5

0.4

0.3

0.2

0.1

imagenet: estimated test err

(b) Estimated error landscape.

Figure 7: ImageNet error landscape.

log2(DS fraction)

5
4

3
2

1
0 log

2(#
pa

ram
)

12
14

16
18

20
22

24
26

lo
g1

0(
er

r)

1.2

1.0

0.8

0.6

0.4

cifar10: actual test err

(a) Actual error landscape.

log2(DS fraction)

5
4

3
2

1
0 log

2(#
pa

ram
)

12
14

16
18

20
22

24
26

lo
g1

0(
er

r)

1.2

1.0

0.8

0.6

0.4

cifar10: estimated test err

(b) Estimated error landscape.

Figure 8: CIFAR10 error landscape.

log2(DS fraction)

5
4

3
2

1
0 log

2(#
pa

ram
)

12
14

16
18

20
22

lo
g1

0(
er

r)

0.5

0.4

0.3

0.2

0.1

decathlon_cifar100: actual test err

(a) Actual error landscape.

log2(DS fraction)

5
4

3
2

1
0 log

2(#
pa

ram
)

12
14

16
18

20
22

lo
g1

0(
er

r)

0.5

0.4

0.3

0.2

0.1

decathlon_cifar100: estimated test err

(b) Estimated error landscape.

Figure 9: CIFAR100 error landscape.

18

Published as a conference paper at ICLR 2020

log2(DS fraction)

5
4

3
2

1
0 log

2(#
pa

ram
)

12
14

16
18

20
22

lo
g1

0(
er

r)

0.12

0.10

0.08

0.06

0.04

0.02

decathlon_dtd: actual test err

(a) Actual error landscape.

log2(DS fraction)

5
4

3
2

1
0 log

2(#
pa

ram
)

12
14

16
18

20
22

lo
g1

0(
er

r)

0.12

0.10

0.08

0.06

0.04

0.02

decathlon_dtd: estimated test err

(b) Estimated error landscape.

Figure 10: DTD error landscape.

log2(DS fraction)

5
4

3
2

1
0 log

2(#
pa

ram
)

12
14

16
18

20
22

lo
g1

0(
er

r)

0.175
0.150
0.125
0.100
0.075
0.050
0.025

decathlon_aircraft: actual test err

(a) Actual error landscape.

log2(DS fraction)

5
4

3
2

1
0 log

2(#
pa

ram
)

12
14

16
18

20
22

lo
g1

0(
er

r)

0.175
0.150
0.125
0.100
0.075
0.050
0.025

decathlon_aircraft: estimated test err

(b) Estimated error landscape.

Figure 11: Aircraft error landscape.

log2(DS fraction)

5
4

3
2

1
0 log

2(#
pa

ram
)

12
14

16
18

20
22

lo
g1

0(
er

r)

0.4

0.3

0.2

0.1

decathlon_ucf101: actual test err

(a) Actual error landscape.

log2(DS fraction)

5
4

3
2

1
0 log

2(#
pa

ram
)

12
14

16
18

20
22

lo
g1

0(
er

r)

0.4

0.3

0.2

0.1

decathlon_ucf101: estimated test err

(b) Estimated error landscape.

Figure 12: UFC101 error landscape.

19

Published as a conference paper at ICLR 2020

log2(DS fraction)

5
4

3
2

1
0 log

2(m
od

el
fra

cti
on

)

12
10

8
6

4
2

0

lo
g1

0(
er

r)

0.64
0.66
0.68
0.70
0.72
0.74
0.76

PTB: actual test loss

(a) Actual error landscape.

log2(DS fraction)

5
4

3
2

1
0 log

2(m
od

el
fra

cti
on

)

12
10

8
6

4
2

0

lo
g1

0(
er

r)

0.64
0.66
0.68
0.70
0.72
0.74
0.76

PTB: estimated test loss

(b) Estimated error landscape.

Figure 13: PTB error landscape.

log2(DS fraction)

5
4

3
2

1
0 log

2(m
od

el
fra

cti
on

)

12
10

8
6

4
2

0

lo
g1

0(
er

r)

0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78

wiki2: actual test loss

(a) Actual error landscape.

log2(DS fraction)

5
4

3
2

1
0 log

2(m
od

el
fra

cti
on

)

12
10

8
6

4
2

0

lo
g1

0(
er

r)

0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78

wiki2: estimated test loss

(b) Estimated error landscape.

Figure 14: WikiText-2 error landscape.

log2(DS fraction)

5
4

3
2

1
0 log

2(m
od

el
fra

cti
on

)

12
10

8
6

4
2

0

lo
g1

0(
er

r)

0.55

0.60

0.65

0.70

0.75

0.80

wiki103: actual test loss

(a) Actual error landscape.

log2(DS fraction)

5
4

3
2

1
0 log

2(m
od

el
fra

cti
on

)

12
10

8
6

4
2

0

lo
g1

0(
er

r)

0.55

0.60

0.65

0.70

0.75

0.80

wiki103: estimated test loss

(b) Estimated error landscape.

Figure 15: WikiText-103 error landscape.

20

Published as a conference paper at ICLR 2020

D ADDITIONAL EXTRAPOLATION RESULTS

Here we provide detailed extrapolation results, for all datasets. All figures are structured in a similar
way. Each subplot shows estimated (y-axis) vs. actual error (x-axis) (0 to 1 scale on both axes). Each
subplot is located at the coordinate of the maximal data and model given for the task of performing
the fit to the functional form in equation 5. This is the point at the top-right corner of the green
dots in the illustration in figure 6a. The target is to find the error-landscape values for unseen, larger
scales of both model and data (red points in the same illustration). Going from left to right in each
figure indicates observed measurements of the error from models of an increasing fraction w.r.t the
full size. Going from bottom-to top indicates observed measurements of the error from dataset sizes
of an increasingly large fraction of the full dataset.

In each subplot, every point shows the estimated vs. actual error on a model-data configuration.
Points that were given for fitting the function are colored in green, while unseen points that were not
used are in red. The red points show the estimation error vs. actual error when extrapolating to all
larger models and data sizes. In each subplot, the mean and standard deviation over all divergences
δ at target points are given in text.

Each experiment fit of the parameters was repeated 100 times, with different random initializations
of θ. The shaded bands show one standard deviation across these runs.

The quality of the extrapolation is critically dependent on the signal provided in the (green) fitted
points. Two limiting factors are evident by examining the figures below, which both play a role in
the well-posedness of the solution:

• The proximity to the initial random guess level. Only upon transitioning from the initial
error plateau, does meaningful signal about the scaling rates become available. Indeed, for
scales prior still in the region or close to the initial error level, one sees poor extrapolation
results; see figures 18, 19, and 21, and the vivid origin of this phenomena by examining
figures 11, 10, and 12.

• A second source of ill-posedness is tied to the number of configurations used for the esti-
mation of θ. Clearly, when this is small, one cannot expect the extrapolation to be stable.
In fact, at least two measurements in each scaling dimension (model/data) are needed, and
no less than the number of parameters in θ in total. Indeed, for all the plots in this ap-
pendix, the smallest scale of m,n is omitted form the graph such that the lowermost row
and leftmost column span exactly two model and data scales correspondingly. Of course,
there is nothing tying directly the number of points and scale of configurations measured,
and one can decouple these two factors by taking closer spaced samples at small scale.

• When both the above factors are not limiting the measurement, one readily sees that for
divergences of no more than a few percent, it is sufficient to measure model/data config-
urations which are far-ranged from the configurations which one wishes to extrapolate to
.

21

Published as a conference paper at ICLR 2020

0.00

0.25

0.50

0.75

1.00 :-15.1±5.8

:11.3±3.6

:-13.0±0.0

:5.8±0.0

:0.1±0.0

:2.9±0.0

:5.8±0.0

:1.0±0.0

:5.3±0.2

:0.0±0.0

0.00

0.25

0.50

0.75

1.00 :-12.8±5.5

:11.7±3.7

:-8.5±0.0

:6.5±0.0

:-6.5±0.0

:2.5±0.0

:-4.5±0.2

:2.2±0.1

:5.0±0.1

:1.9±0.0

:3.3±0.0

:0.0±0.0

0.00

0.25

0.50

0.75

1.00 :-9.2±5.6

:9.9±4.1

:-13.9±0.0

:9.7±0.0

:-4.5±0.0

:4.7±0.0

:-5.3±0.0

:3.5±0.0

:-2.6±0.0

:3.3±0.0

:-11.6±0.6

:3.1±0.2

0.00

0.25

0.50

0.75

1.00 :-16.4±3.4

:13.9±2.4

:11.3±0.0

:10.3±0.0

:8.6±0.1

:7.3±0.0

:0.9±0.0

:3.3±0.0

:-0.2±0.0

:3.0±0.0

:4.3±0.1

:2.3±0.1

0.00

0.25

0.50

0.75

1.00 :-13.2±3.5

:12.5±3.0

:-12.6±0.0

:9.3±0.0

:-12.7±0.0

:14.6±0.0

:-18.0±0.0

:12.2±0.0

:-17.1±0.1

:11.7±0.1

:2.4±0.0

:3.3±0.0

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00 :-28.4±0.0

:22.5±0.0
0.0 0.5 1.0

:13.9±8.6

:16.0±5.6
0.0 0.5 1.0

:26.0±11.7

:22.5±8.0
0.0 0.5 1.0

:26.9±14.9

:21.6±9.9
0.0 0.5 1.0

:1.2±9.2

:7.7±5.3
0.0 0.5 1.0

:4.4±15.8

:10.9±8.2

imagenet

Dataset Fraction (log2(n/N)

M
od

el
 F

ra
ct

io
n

(lo
g2

(m
/M

)

Figure 16: ImageNet extrapolation results.

22

Published as a conference paper at ICLR 2020

0.0

0.5

1.0 :4.6±11.4

:7.4±5.6

:2.8±0.3

:0.6±0.1

:-1.1±0.3

:1.2±0.2

:4.1±0.6

:0.0±0.0

0.0

0.5

1.0 :1.6±8.6

:6.7±4.4

:4.8±0.3

:3.4±0.2

:3.3±0.3

:1.5±0.1

:5.7±0.0

:1.7±0.0

:3.9±0.1

:0.0±0.0

0.0

0.5

1.0 :-0.5±7.2

:6.5±3.4

:10.6±0.2

:9.2±0.1

:4.3±0.1

:3.3±0.0

:7.0±0.1

:3.1±0.0

:5.2±0.1

:1.3±0.0

0.0

0.5

1.0 :-7.7±7.1

:6.4±3.4

:23.3±0.1

:21.0±0.1

:6.2±0.1

:5.3±0.1

:5.9±0.0

:3.7±0.0

:2.9±0.0

:2.2±0.0

0.0

0.5

1.0 :-15.3±3.9

:7.4±2.6

:18.7±0.0

:20.0±0.0

:-0.6±0.1

:3.8±0.0

:-9.1±0.0

:6.1±0.0

:-19.6±0.0

:9.7±0.0

0.0 0.5 1.0
0.0

0.5

1.0 :-21.6±0.9

:14.1±1.0
0.0 0.5 1.0

:4.7±8.8

:14.8±2.6
0.0 0.5 1.0

:-5.4±8.0

:9.5±3.0
0.0 0.5 1.0

:-6.4±9.0

:8.9±4.1
0.0 0.5 1.0

:-5.7±11.5

:8.9±5.1

decathlon_cifar100

Dataset Fraction (log2(n/N)

M
od

el
 F

ra
ct

io
n

(lo
g2

(m
/M

)

Figure 17: CIFAR100 Extrapolation Results

23

Published as a conference paper at ICLR 2020

0.0

0.5

1.0 :13.2±0.1

:17.5±0.1

:14.8±0.0

:16.8±0.0

:18.5±0.0

:14.8±0.0

:15.8±0.0

:0.0±0.0

0.0

0.5

1.0 :11.8±0.2

:17.5±0.2

:12.9±0.0

:16.9±0.0

:14.8±0.0

:15.6±0.0

:9.5±0.0

:8.1±0.0

:-5.0±0.0

:0.0±0.0

0.0

0.5

1.0 :11.3±0.3

:17.3±0.3

:12.7±0.0

:16.9±0.0

:13.8±0.0

:15.5±0.0

:5.0±0.0

:8.1±0.0

:-6.1±0.0

:2.0±0.0

0.0

0.5

1.0 :9.2±0.6

:15.4±0.7

:12.9±0.1

:17.7±0.1

:12.7±0.0

:14.9±0.0

:7.7±0.0

:8.5±0.0

:-3.9±0.0

:4.0±0.0

0.0

0.5

1.0 :9.9±0.2

:15.7±0.2

:9.4±0.0

:15.3±0.0

:13.1±0.0

:14.5±0.0

:11.6±0.0

:9.7±0.0

:-0.1±0.0

:4.1±0.0

0.0 0.5 1.0
0.0

0.5

1.0 :-7.4±1.0

:13.0±1.5
0.0 0.5 1.0

:12.4±0.1

:16.3±0.0
0.0 0.5 1.0

:11.6±0.0

:13.7±0.0
0.0 0.5 1.0

:-0.2±0.0

:4.7±0.0
0.0 0.5 1.0

:0.9±0.0

:4.2±0.0

decathlon_aircraft

Dataset Fraction (log2(n/N)

M
od

el
 F

ra
ct

io
n

(lo
g2

(m
/M

)

Figure 18: Aircraft extrapolation results.

24

Published as a conference paper at ICLR 2020

0.0

0.5

1.0 :5.6±1.1

:5.7±0.9

:2.7±0.0

:3.2±0.0

:3.3±0.0

:2.4±0.0

:2.1±0.0

:0.0±0.0

0.0

0.5

1.0 :7.7±0.4

:6.9±0.3

:3.3±0.0

:3.4±0.0

:2.2±0.0

:2.1±0.0

:-0.3±0.0

:1.3±0.0

:0.8±0.0

:0.0±0.0

0.0

0.5

1.0 :7.1±0.4

:7.1±0.3

:4.7±0.0

:4.3±0.0

:2.4±0.0

:2.1±0.0

:-1.6±0.0

:1.0±0.0

:-2.1±0.0

:1.5±0.0

0.0

0.5

1.0 :6.0±0.1

:8.9±0.1

:1.7±0.0

:6.8±0.0

:1.8±0.0

:2.8±0.0

:-1.1±0.0

:1.6±0.0

:-3.9±0.0

:1.2±0.0

0.0

0.5

1.0 :8.7±0.0

:9.2±0.0

:5.9±0.0

:6.9±0.0

:1.0±0.0

:1.7±0.0

:-5.1±0.0

:2.5±0.0

:-4.8±0.0

:2.1±0.0

0.0 0.5 1.0
0.0

0.5

1.0 :11.7±0.0

:9.3±0.0
0.0 0.5 1.0

:12.0±0.0

:8.0±0.0
0.0 0.5 1.0

:3.2±0.0

:1.3±0.0
0.0 0.5 1.0

:-9.1±0.0

:5.4±0.0
0.0 0.5 1.0

:-14.2±0.0

:4.3±0.0

decathlon_dtd

Dataset Fraction (log2(n/N)

M
od

el
 F

ra
ct

io
n

(lo
g2

(m
/M

)

Figure 19: DTD Results

25

Published as a conference paper at ICLR 2020

0.0

0.5

1.0 :52.3±16.2

:36.5±13.7

:19.1±0.1

:9.4±0.0

:15.8±0.1

:3.3±0.0

:11.2±0.2

:0.0±0.0

0.0

0.5

1.0 :44.7±12.4

:36.4±11.9

:14.8±0.2

:10.6±0.1

:11.8±0.1

:6.3±0.0

:10.1±0.1

:2.0±0.0

:6.7±0.3

:0.0±0.0

0.0

0.5

1.0 :32.0±9.2

:28.4±9.2

:15.3±0.0

:10.5±0.0

:10.8±0.0

:7.0±0.0

:9.8±0.0

:3.6±0.0

:5.3±0.2

:1.3±0.0

0.0

0.5

1.0 :24.9±9.4

:21.5±9.4

:13.0±0.1

:8.9±0.0

:10.7±0.2

:6.3±0.0

:8.9±0.1

:3.8±0.0

:7.6±0.1

:1.7±0.0

0.0

0.5

1.0 :14.5±7.0

:15.5±7.3

:33.6±0.0

:28.0±0.0

:11.5±0.1

:6.8±0.0

:10.4±0.1

:4.2±0.0

:9.7±0.1

:2.0±0.0

0.0

0.5

1.0 :2.9±6.2

:8.0±6.4

:48.9±0.0

:46.8±0.0

:16.1±0.2

:12.6±0.2

:4.8±0.1

:4.2±0.0

:1.6±0.2

:1.6±0.0

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0 :-11.3±1.7

:6.9±1.7
0.00 0.25 0.50 0.75 1.00

:9.0±3.3

:25.6±0.8
0.00 0.25 0.50 0.75 1.00

:1.5±4.1

:14.7±1.0
0.00 0.25 0.50 0.75 1.00

:-3.9±0.3

:6.5±0.1
0.00 0.25 0.50 0.75 1.00

:6.4±0.4

:3.2±0.1

cifar10

Dataset Fraction (log2(n/N)

M
od

el
 F

ra
ct

io
n

(lo
g2

(m
/M

)

Figure 20: CIFAR10 extrapolation results.

26

Published as a conference paper at ICLR 2020

0.0

0.5

1.0 :42.3±6.1

:50.2±7.0

:61.4±0.3

:54.7±0.3

:15.7±0.0

:9.6±0.0

:7.1±0.0

:0.0±0.0

0.0

0.5

1.0 :36.1±6.4

:47.1±7.9

:55.4±0.2

:57.2±0.2

:5.3±0.0

:8.8±0.0

:4.1±0.0

:5.8±0.0

:-1.3±0.0

:0.0±0.0

0.0

0.5

1.0 :30.8±6.1

:40.7±7.7

:49.8±0.2

:52.8±0.2

:-4.1±0.0

:4.5±0.0

:8.7±0.3

:9.8±0.2

:4.0±0.1

:2.3±0.0

0.0

0.5

1.0 :21.8±6.1

:30.9±7.6

:52.3±0.2

:55.3±0.1

:-13.0±0.0

:2.6±0.0

:11.5±0.0

:12.7±0.0

:8.0±0.0

:2.2±0.0

0.0

0.5

1.0 :12.3±6.3

:22.9±7.3

:35.2±0.0

:42.6±0.0

:-6.4±0.0

:5.3±0.0

:-7.0±0.0

:6.0±0.0

:-3.6±0.0

:2.3±0.0

0.0 0.5 1.0
0.0

0.5

1.0 :-14.2±4.0

:8.9±2.0
0.0 0.5 1.0

:41.5±0.6

:49.4±0.5
0.0 0.5 1.0

:-1.4±0.0

:8.3±0.0
0.0 0.5 1.0

:5.3±0.0

:8.0±0.0
0.0 0.5 1.0

:18.4±0.0

:8.4±0.0

decathlon_ucf101

Dataset Fraction (log2(n/N)

M
od

el
 F

ra
ct

io
n

(lo
g2

(m
/M

)

Figure 21: UCF101 extrapolation results.

27

Published as a conference paper at ICLR 2020

3
4
5
6
7 :3.5±0.9

:2.8±0.7

:0.9±0.0

:0.7±0.0

:0.4±0.0

:0.4±0.0

:1.4±0.0

:0.0±0.0

3
4
5
6
7 :2.3±0.9

:2.1±0.7

:-0.3±0.0

:1.1±0.0

:0.1±0.0

:0.9±0.0

:0.7±0.0

:0.6±0.0

:1.8±0.0

:0.0±0.0

3
4
5
6
7 :1.6±0.9

:1.7±0.7

:-1.2±0.0

:1.6±0.0

:0.1±0.0

:1.0±0.0

:1.0±0.0

:0.8±0.0

:2.1±0.0

:0.5±0.0

3
4
5
6
7 :1.5±0.9

:1.8±0.6

:-1.7±0.0

:1.9±0.0

:0.2±0.0

:1.2±0.0

:1.3±0.0

:1.1±0.0

:2.5±0.0

:1.0±0.0

3
4
5
6
7 :-1.1±1.1

:1.7±0.3

:-0.7±0.0

:1.5±0.0

:0.7±0.0

:1.5±0.0

:1.7±0.0

:1.5±0.0

:3.1±0.0

:1.6±0.0

3 4 5 6 7
3
4
5
6
7 :0.2±0.7

:1.6±0.4
3 4 5 6 7

:-5.0±1.2

:2.9±0.7
3 4 5 6 7

:-4.6±1.0

:2.6±0.6
3 4 5 6 7

:-5.8±1.2

:3.7±0.8
3 4 5 6 7

:-7.3±1.3

:4.1±0.7

PTB

Dataset Fraction (log2(n/N)

M
od

el
 F

ra
ct

io
n

(lo
g2

(m
/M

)

Figure 22: PTB extrapolation results.

28

Published as a conference paper at ICLR 2020

3
4
5
6
7 :-10.1±3.5

:8.6±2.6

:1.3±0.0

:0.8±0.0

:3.2±0.0

:0.3±0.0

:0.2±0.0

:0.0±0.0

3
4
5
6
7 :-9.0±2.8

:8.9±2.5

:0.3±0.0

:0.9±0.0

:1.7±0.0

:1.3±0.0

:0.5±0.0

:0.6±0.0

:1.3±0.0

:0.0±0.0

3
4
5
6
7 :-4.5±2.1

:5.7±1.6

:-2.5±0.0

:2.5±0.0

:1.2±0.0

:1.1±0.0

:0.6±0.0

:0.9±0.0

:1.5±0.0

:0.7±0.0

3
4
5
6
7 :-3.9±2.0

:5.4±1.4

:-3.0±0.0

:3.1±0.0

:1.9±0.0

:1.5±0.0

:1.3±0.0

:1.5±0.0

:2.4±0.0

:1.3±0.0

3
4
5
6
7 :-3.2±2.0

:4.9±1.1

:-4.2±0.0

:3.4±0.0

:1.8±0.0

:1.7±0.0

:1.2±0.0

:1.8±0.0

:1.7±0.0

:1.6±0.0

3 4 5 6 7
3
4
5
6
7 :-11.2±2.1

:9.9±2.0
3 4 5 6 7

:-4.2±0.7

:3.9±0.2
3 4 5 6 7

:-4.5±0.8

:2.8±0.6
3 4 5 6 7

:-4.4±0.9

:2.6±0.7
3 4 5 6 7

:-5.3±0.9

:2.7±0.6

wiki2

Dataset Fraction (log2(n/N)

M
od

el
 F

ra
ct

io
n

(lo
g2

(m
/M

)

Figure 23: WikiText-2 extrapolation results.

29

Published as a conference paper at ICLR 2020

3
4
5
6
7 :-12.4±2.8

:7.2±1.9

:6.7±0.0

:3.9±0.0

:2.4±0.0

:1.6±0.0

:3.6±0.0

:0.0±0.0

3
4
5
6
7 :-2.6±2.4

:4.4±1.4

:0.7±0.0

:0.8±0.0

:-0.4±0.0

:0.9±0.0

:1.2±0.0

:1.4±0.0

:3.8±0.0

:0.0±0.0

3
4
5
6
7 :2.1±1.6

:3.0±0.6

:0.5±0.0

:1.7±0.0

:-1.0±0.0

:1.5±0.0

:1.9±0.0

:1.9±0.0

:4.9±0.0

:1.1±0.0

3
4
5
6
7 :0.7±1.1

:4.2±0.4

:-6.4±0.0

:5.0±0.0

:-0.4±0.0

:2.0±0.0

:2.8±0.0

:2.6±0.0

:5.6±0.0

:2.5±0.0

3
4
5
6
7 :4.3±0.7

:5.2±0.1

:0.7±0.0

:2.9±0.0

:2.1±0.0

:3.0±0.0

:4.1±0.0

:3.4±0.0

:5.8±0.0

:3.8±0.0

3 4 5 6 7
3
4
5
6
7 :-45.8±0.0

:28.7±0.0
3 4 5 6 7

:-48.8±0.0

:29.7±0.0
3 4 5 6 7

:-41.0±0.7

:24.5±0.5
3 4 5 6 7

:-21.4±0.4

:11.5±0.3
3 4 5 6 7

:-13.9±1.1

:5.0±0.6

wiki103

Dataset Fraction (log2(n/N)

M
od

el
 F

ra
ct

io
n

(lo
g2

(m
/M

)

Figure 24: WikiText-103 extrapolation results.

30

	Introduction
	Related work
	Experimental Setup
	Scaling Policies
	Tasks, Models, Optimizers and Datasets

	Observations on the Error Landscape
	Functional Approximation of the Generalization Error
	Criteria
	Proposed Function Family

	error landscape estimation
	A Probe into Depth Scaling
	On the Variety of Optimizers and Architectures

	Extrapolation
	Discussion and Conclusion
	Datasets and Models
	Image Classification
	Datasets
	Models
	Training

	Language Modeling
	Datasets
	Models

	Error Estimation Experiment
	Experimental Details
	Found Theta Values

	Additional Error Landscape Measurements and Estimations
	Additional Extrapolation Results

