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Abstract

Computational imaging systems jointly design computation
and hardware to retrieve information which is not tradition-
ally accessible with standard imaging systems. Recently,
critical aspects such as experimental design and image pri-
ors are optimized through deep neural networks formed
by the unrolled iterations of classical physics-based recon-
structions (termed physics-based networks). However, for
real-world large-scale systems, computing gradients via
backpropagation restricts learning due to memory limita-
tions of graphical processing units. In this work, we propose
a memory-efficient learning procedure that exploits the re-
versibility of the network’s layers to enable data-driven de-
sign for large-scale computational imaging. We demonstrate
our methods practicality on two large-scale systems: super-
resolution optical microscopy and multi-channel magnetic
resonance imaging.

1. Introduction

Computational imaging systems (tomographic systems,
computational optics, magnetic resonance imaging, to name
a few) jointly design software and hardware to retrieve in-
formation which is not traditionally accessible on standard
imaging systems. Generally, such systems are characterized
by how the information is encoded (forward process) and
decoded (inverse problem) from the measurements. The
decoding process is typically iterative in nature, alternat-
ing between enforcing data consistency and image prior
knowledge. Recent work has demonstrated the ability to
optimize computational imaging systems by unrolling the
iterative decoding process to form a differentiable Physics-
based Network (PbN) (1; 2; 3) and then relying on a dataset
and training to learn the system’s design parameters, e.g.
experimental design (3; 4; 5), image prior model (1; 2; 6; 7).
PbNs are constructed from the operations of reconstruc-
tion, e.g. proximal gradient descent algorithm. By including
known structures and quantities, such as the forward model,
gradient, and proximal updates, PbNs can be efficiently

'Electrical Engineering and Computer Sciences, University of
California, Berkeley, USA. Correspondence to: Michael Kellman
<kellman@berkeley.edu>.

parameterized by only a few learnable variables, thereby
enabling an efficient use of training data (6) while still retain-
ing robustness associated with conventional physics-based
inverse problems.

Training PbNs relies on gradient-based updates computed
using backpropagation (an implementation of reverse-mode
differentiation (8)). Most modern imaging systems seek to
decode ever-larger growing quantities of information (giga-
bytes to terabytes) and as this grows, memory required to
perform backpropagation is limited by the memory capacity
of modern graphical processing units (GPUs).

Methods to save memory during backpropagation (e.g. for-
ward recalculation, reverse recalculation, and checkpoint-
ing) trade off spatial and temporal complexity (8). For a PbN
with N layers, standard backpropagation achieves O(N)
temporal and spatial complexity. Forward recalculation
achieves O(1) memory complexity, but has to recalculate
unstored variables forward from the input of the network
when needed, yielding O(N?) temporal complexity. For-
ward checkpointing smoothly trades off temporal, O(NK),
and spatial, O(N/K), complexity by saving variables every
K layers and forward-recalculating unstored variables from
the closest checkpoint.

Reverse recalculation provides a practical solution to beat
the trade off between spatial vs. temporal complexity by
calculating unstored variables in reverse from the output
of the network, yielding O(NV) temporal and O(1) spatial
complexities. Recently, several reversibility schemes have
been proposed for residual networks (9), learning ordinary
differential equations (10), and other specialized network
architectures (11; 12).

In this work, we propose a memory-efficient learning pro-
cedure for backpropagation for the PbN formed from prox-
imal gradient descent, thereby enabling learning for many
large-scale computational imaging systems. Based on the
concept of invertibility and reverse recalculation, we detail
how backpropagation can be performed without the need to
store intermediate variables for networks composed of gradi-
ent and proximal layers. We highlight practical restrictions
on the layers and introduce a hybrid scheme that combines
our reverse recalculation methods with checkpointing to
mitigate numerical error accumulation. Finally, we demon-
strate our method’s usefulness to learn the design for two
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practical large-scale computational imaging systems: super-
resolution optical microscopy (Fourier Ptychography) and
multi-channel magnetic resonance imaging.

2. Background

Computational imaging systems are described by how
sought information is encoded to and decoded from a set of
measurements. The encoding of information, x into mea-
surements, y, is given by

y = A(x) +n, (1)

where A is the forward model that characterizes the mea-
surement system physics and n is random system noise.
The forward model is a continuous process, but is often
approximated by a discrete representation. The retrieval of
information from a set of measurements, i.e. decoding, is
commonly structured using an inverse problem formulation,

x* = argmin D(x;y) + P(x), ()

where D(-) is a data fidelity penalty and P(-) is a prior
penalty. When n is governed by a known noise model,
the data consistency penalty can be written as the negative
log-likelihood of the appropriate distribution. When P(-)
is a non-smooth prior (e.g. ¢1, total variation), proximal
gradient descent (PGD) and its accelerated variants are often
efficient algorithms to minimize the objective in Eq. 2 and
are composed of the following alternating steps:
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where « is the gradient step size, V is the gradient operator,
proxp is a proximal function that enforces the prior (13),
and x*) and z*) are intermediate variables for the k"
iteration.

The structure of the PbN is determined by unrolling N iter-
ations of the optimizer to form the NV layers of a network
(Eq. 3 and Eq. 4 form a single layer). Specifically, the input
to the network is the initialization of the optimization, x(0),
and the output is the resultant, x(™). The learnable parame-
ters are optimized using gradient-based methods. Common
machine learning toolboxes’ (e.g. PyTorch, Tensor Flow,
Caffe) auto-differentiation functionalities are used to com-
pute gradients for backpropagation. Auto-differentiation ac-
complishes this by creating a graph composed of the PbN’s
operations and storing intermediate variables in memory.

3. Methods

Our main contribution is to improve the spatial complexity
of backpropagation for PbNs by treating the larger single

graph for auto-differentiation as a series of smaller graphs.
Specifically, consider a PbN, F, composed of a sequence of
layers,
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where x(*) and x(*+1) are the k™ layer input and output,
respectively, and #(%) are its learnable parameters. When
performing reverse-mode differentiation, our method treats
a PbN of NV layers as N separate smaller graphs, processed
one at a time, rather than as a single large graph, thereby
saving a factor IV in memory. As outlined in Alg. 1, we
first recalculate the current layer’s input, x(kfl), from its

output, x¥), using .ngerse , and then form one of the smaller
graphs by recomputing the output of the layer, v(¥), from the
recalculated input. To compute gradients, we then rely on
auto-differentiation of each layer’s smaller graph to compute
the gradient of the loss, £, with respect to x(F) (denoted
q®)) and Vg L. The procedure is repeated for all N

layers in reverse order.

Algorithm 1 Memory-efficient learning for physics-based
networks
1: procedure MEMORY-EFFICIENT BACKPROPAGA-
TION(x™) (V)

2: k+ N

3: for £ > 0 do

4: x(k=1) ‘F(nkersle) X(k) g(k— 1))

5: vk  Flk— 1)(X(k 1), gk=1) )
v (K)

6: g1 « %q(@

8: k+ k— 1

9: end for

10: return {Vy L)1
11: end procedure

In order to perform the reverse-mode differentiation effi-
ciently, we must be able to compute each layer’s inverse
operation, J; (:~1) The remainder of this section overviews

nverse *
the procedures to invert gradient and proximal update layers.

3.1. Inverse of gradient update layer

A common interpretation of gradient descent is as a forward
Euler discretization of a continuous-time ordinary differen-
tial equation. As a consequence, the inverse of the gradient
step layer (Eq. 3) can be viewed as a backward Euler step,

x#) =z 4 oV, DE®;y). (6)

This implicit equation can be solved iteratively via the back-
ward Euler method using the fixed point algorithm (Alg. 2).
Convergence is guaranteed if

Lip (aVxD(x;y)) < 1, )



where Lip(-) computes the Lipschitz constant of its argu-
ment (14). In the setting when D(x;y) = ||Ax y||? and
A is linear this can be ensured if a < m, where
Omaz(+) computes the largest singular value of its argument.
Finally, as given by Banach Fixed Point Theorem, the fixed
point algorithm (Alg. 2) will have an exponential rate of

convergence (14).

Algorithm 2 Inverse for gradient layer
1: procedure FIXED POINT METHOD(z, 1)
2: X< Z
3 fort < T do
4 x ¢ z+aVxD(x;y)
5: t—t+1
6
7
8

end for
return x
: end procedure

3.2. Inverse of proximal update layer

The proximal update (Eq. 4) is defined by the following
optimization problem (13):

1
prox,(z")) = arg min §Hv — 2P+ Pw).  @®)

For differentiable P(-), the optimum of which is,
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In contrast to the gradient update layer, the proximal update
layer can be thought of as a backward Euler step (13). This
allows its inverse to be expressed as a forward Euler step,

2™ = x*+D L v p(x kD), (10)

when the proximal function is bijective (e.g. prox,, ). If the
proximal function is not bijective (e.g. prox,, ) the inversion
is not straight forward. However, in many cases it is pos-
sible to substitute it with a bijective function with similar
behavior.

4. Hybrid Reverse Recalculation and
Checkpointing

Reverse recalculation of the unstored variables is non-exact
as the operations to calculate the variables are not identical
to forward calculation. The result is numerical error be-
tween the original forward and reverse calculated variables
and as more iterations are unrolled, numerical error can
accumulate.

To mitigate these effects, some of the intermediate variables
can be stored from forward calculation, referred to as check-
points. Memory permitting, as many checkpoints should

be stored as possible to ensure accuracy while performing
reverse recalculation. While most PbNs cannot afford to
store all variables required for reverse-mode differentiation,
it is often possible to store a few.

5. Results

5.1. Learned experimental design for super resolution
optical microscopy

Standard bright-field microscopy offers a versatile system
to image in vitro biological samples, however, is restricted
to imaging either a large field of view or a high resolution.
Fourier Ptychographic Microscopy (FPM) (15) is a super
resolution (SR) method that can create gigapixel-scale im-
ages beating this trade off on a standard optical microscope
by acquiring a series of measurements (up to hundreds)
under various illumination settings on an LED array mi-
croscopy (16) and combining them via a phase retrieval
based optimization. The system’s dependence on many
measurements inhibits its ability to image live fast-moving
biology. Reducing the number of measurements is possible
using linear multiplexing (17) and state of the art perfor-
mance is achieved by forming a PbN and learning its exper-
imental design (4; 3), however, is currently limited in scale
due to GPU memory constraints (terabyte-scale memory is
required for learning the full measurement system). With
our proposed memory-efficient learning framework, we re-
duce the required memory to only a few gigabytes, thereby
enabling the use of consumer-grade GPU hardware.

To evaluate accuracy we compare standard learning with
our proposed memory-efficient learning on a problem that
fits in standard GPU memory. We reproduce results in
(4) where the number of measurements are reduced by a
factor of 10 using 6.26GB of memory using only 0.627GB
and time is only increased by a factor of 2. To perform
memory-efficient learning, we set 7' = 4 and checkpoint
every 10 unrolled iterations. The testing loss between our
method and standard learning are comparable (Fig. 1a). In
addition, we qualitatively highlight equivalence of the two
methods, displaying SR reconstructions with learned design
using standard (Fig. 1d) and memory-efficient (Fig. le)
methods. For relative comparison, we display a single low
resolution measurement (Fig. 1b) and the ground truth SR
reconstruction using all measurements (Fig. 1c).

5.2. Learned priors for multi-channel MRI

MRI is a powerful Fourier-based medical imaging modality
that non-invasively captures rich biophysical information
without ionizing radiation. Since MRI acquisition time is
directly proportional to the number of acquired measure-
ments, reducing measurements leads to immediate impact
on patient throughput and enables capturing fast-changing



(a) Learning Objective

=~ standard learning
memory-efficient learning

mean testing loss

learning epoch

nt

W

Required Memory: 0.627 GB
Required Time: 20:10 min 51:52 min

Figure 1. Super-resolution Microscopy: Comparison between (a) mean testing loss for standard and memory-efficient learning techniques.
Visualization of (b) low-resolution, (c) ground truth reconstruction using all (89) measurements, and reconstruction using 8 measurements
learned using (d) standard (with 6.26 GB and 20:10 min) and (e) memory-efficient learning (with 0.627 GB and 51:52 min).
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Figure 2. Multi-channel MRI: Comparison between (a) mean training loss for standard and memory-efficient learning techniques.
Visualization of (b) zero-filled reconstruction, (c) ground truth reconstruction using fully sampled measurements, and PbN reconstruction
learned using (d) standard (with 10.77 GB and 3:50 hours) and (e¢) memory-efficient learning (with 2.11 GB and 8:25 hours).

physiological dynamics. Multi-channel MRI is the stan-
dard of care in clinical systems and uses multiple receive
coils distributed around the body to acquire measurements
in parallel, thereby reducing the total number of required
acquisition frames for decoding (18). By additionally modi-
fying the measurement pattern to take advantage of image
prior knowledge, e.g. through compressed sensing (19), it is
possible to dramatically reduce scan times. As with experi-
mental design, PbNs with learned deep image priors have
demonstrated state-of-the-art performance for multi-channel
MRI (20; 6), but are limited in network size and number
of unrolled iterations due to memory required for training.
Our memory-efficient learning reduces memory footprint at
training time, thereby enabling learning for larger problems.

To evaluate our proposed memory-efficient learning, we re-
produce the results in (6) for the “SD-ET-WD” PbN, which
is equivalent to PGD (10 unrolled iterations) where the prox-
imal update is replaced with a learned invertible residual
convolutional neural network (RCNN) (21; 11; 9). We com-
pare training with full backpropagation, requiring 10.77GB
of memory and 3:50 hours, versus memory-efficient learn-
ing, requiring 2.11GB and 8:25 hours. We set ' = 6 and
do not use checkpointing. As Fig. 2 shows, the training
loss is comparable across epochs, and inference results are
similar on one image in the training set, with normalized
root mean-squared error of 0.03 between conventional and
memory-efficient learning.

6. Remarks

Discussion: Our proposed memory-efficient learning opens
the door to applications that are not otherwise possible to
train due to GPU memory constraints, without a large in-
crease in training time. While we specialized the procedure
to PGD networks, similar approaches can be taken to invert
other PbNs with more complex subroutines such as solving
linear systems of equations. However, sufficient conditions
for invertibility must be met. This limitation is clear in
the case of a gradient descent block with an evolving step
size, as the Lipschitz constant may no longer satisfy Eq. 7.
Furthermore, the convergent behavior of optimization to
minima makes accurate reverse recalculation of unstored
variables severely ill-posed and can cause numerical error
accumulation. Checkpoints can be used to improve the ac-
curacy of reverse recalculated variables, though most PbN
are not deep enough for numerical convergence to occur.

Conclusion: In this communication, we presented a practi-
cal memory-efficient learning method for large-scale compu-
tational imaging problems without dramatically increasing
training time. Using the concept of reversibility, we imple-
mented reverse-mode differentiation with favorable spatial
and temporal complexities. We demonstrated our method on
two representative applications: SR optical microscopy and
multi-channel MRI. We expect other computational imaging
systems to nicely fall within our framework.
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