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ABSTRACT

Recent works find that DNNs are vulnerable to adversarial examples, whose
changes from the benign ones are imperceptible and yet lead DNNs to make
wrong predictions. One can find various adversarial examples for the same in-
put to a DNN using different attack methods. In other words, there is a population
of adversarial examples, instead of only one, for any input to a DNN. By explicitly
modeling this adversarial population with a Gaussian distribution, we propose a
new black-box attack called N'ATTACK. The adversarial attack is hence formal-
ized as an optimization problem, which searches the mean of the Gaussian under
the guidance of increasing the target DNN’s prediction error. AN"ATTACK achieves
100% attack success rate on six out of eleven recently published defense meth-
ods (and greater than 90% for four), all using the same algorithm. Such results
are on par with or better than powerful state-of-the-art white-box attacks. While
the white-box attacks are often model-specific or defense-specific, the proposed
black-box N ATTACK is universally applicable to different defenses.

1 INTRODUCTION

Deep neural networks (DNNs) have triumphed over many perception and control tasks for which
there exist big (labeled) data to train the networks. Phenomenal examples include that a DNN-
powered agent beats world champions on playing the game of Go (Silver et al.| 2016), large-scale
image classification (Russakovsky et al., 2015} Krizhevsky et al., |2012; |[He et al.| [2016), acoustic
speech recognition (Hinton et al.,|2012), efc. As a result, DNNs are more and more widely used in
real products (e.g., self-driving, face recognition, Amazon Go, and Web content understanding).

This paper is concerned with the security aspect of DNNs. We aim to provide a strong adversarial
attack method which can universally attack a variety of DNNs and defense techniques. Progress on
this will significantly facilitate the research on robust DNNs to be deployed in uncertain and even
adversarial environments.

The seminal work by |Szegedy et al.|(2013)) finds that DNNs are vulnerable to adversarial examples,
whose changes from the benign ones are imperceptible and yet can manipulate a DNN and lead to
wrong predictions. A rich line of works furthering their finding reveals more worrisome results.
Notably, adversarial examples are transferable, meaning that one can design adversarial examples
for one DNN and then use them to fail others (Papernot et al., 2016a; |Szegedy et al., | 2013; Tramer
et al., [2017b). Moreover, Moosavi-Dezfooli et al.| (2017) show that a single perturbation pattern
may convert a large number of test images into adversarial ones. Finally, recent works (Carlini &
Wagner, |2017; |Athalye et al.| |2018) have defeated several defenses against earlier adversarial attack
approaches.

It remains unclear what causes DNNs severely sensitive to adversarial examples. |(Goodfellow et al.
(2014b)) conjecture that DNNs behave linearly in the high dimensional input space, amplifying small
perturbations when their signs clone the signs of the DNNs’ intrinsic linear weights. [Fawzi et al.
(2018) experimentally study the topology and geometry of adversarial examples. Ma et al.| (2018))
characterize the subspace of adversarial examples. Nonetheless, defense methods (Papernot et al.,
2015; [Tramer et al., 2017a; Rozsa et al., 2016; |[Madry et al., 2018) motivated by them are broken
in a relatively short amount of time (He et al [2017; |Athalye et al.l 2018}; Xu et al., 2017} |Sharma
& Chen, [2017), implying that either better defense techniques are yet to be developed or alternative
factors are still not identified that contribute to the the sensitivity of DNNs.
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With no doubt, toward robust DNNs there is a pressing need to gain a good understanding about
the mechanism how adversarial examples fool DNNs. Apart from that, it is also vital to empirically
devise defense methods and test them against adversarial attacks on benchmark datasets. The latter,
however, is impeded by the fact that existing adversarial attacks are either model- and defense-
specific (e.g., white-box attack) or relatively weak (e.g., black-box attack).

White-box attack assumes that it has full knowledge of a DNN (network architecture, weights, input
and output spaces, etc.) and produces adversarial examples by propagating gradients of certain loss
back to inputs. When some defense methods “obfuscate” gradients, Athalye et al.|(2018)) find ways
to approximate the gradients which still give rise to extremely high attack success rates. Despite
being powerful, white-box attack methods are often model-specific. Consequently, when a new
defense method is proposed, one may not be able to test its performance by using existing white-box
attacks. Indeed, [Buckman et al.| (2018) have to derive a special attack alongside their thermometer-
encoding based defense in order to verify the latter’s effectiveness.

In contrast, black-box attacks are universally applicable as they do not rely on the networks’ archi-
tectures or weights at all. Such methods compose adversarial examples by tracking how the change
to the input affects the output of a DNN (Papernot et al.,|2017;(Chen et al.,|2017). However, existing
black-box attacks have been mainly tested on vanilla DNNs, leaving it unclear how strong they are
at attacking the defended DNNs. Our experiments show that ZOO (Chen et al.| [2017), a prevalent
black-box attack method, fails under many defense techniques. The decision-based method (Bren-
del et al.| 2017) gives rise to zero success rate at attacking (Guo et al.l 2018). Resistance to the
black-box attacks does not guarantee a success in defending DNNs against white-box attacks.

Our approach. In this paper, we propose a Gaussian black-box adversarial attack (N ATTACK)
whose performance is as strong as the existing white-box attacks, plus being universal. The main
idea draws upon the fact that one can find various adversarial examples for the same input to a DNN
by using different attack methods. In other words, there is a population of adversarial examples,
instead of only one, for any input to a DNN. We model this adversarial population by a Gaussian
distribution. The adversarial attack is then formalized into an optimization problem which searches
for the mean of the Gaussian under the guidance of increasing the target DNN’s prediction error. We
solve the problem by an evolution strategy (ES) (Wierstra et al.| 2008; Salimans et al., 2017).

The resulting algorithm is coincidentally close to the one developed by [lyas et al.| (2018). Unlike
ours, [Ilyas et al.|(2018) use ES in order to estimate the gradients in the white-box PGD attack (Madry
et al.,[2018) — in essence, it is in the same vein as the gradient estimation work (Athalye et al.,[2018).
Consequently, their approach heavily depends on the quality of the estimated gradients. When the
gradients are “obfuscated”, ES cannot well approximate them, giving rise to low attack success rates
(cf. Section [3.1.3). To alleviate the dependence on the gradients, we do not employ any white-box
attack methods at all and, instead, model the whole population of adversarial examples for every
single image by a Gaussian distribution. The Gaussian mean is more important than the gradients
in our approach. While ES is employed to search for the Gaussian mean in this work, as opposed to
approximating the gradients of PGD, the other derivative-free methods (Rios & Sahinidis},2013) are
also applicable and are left for future work.

The initialization to the population mean plays a key role in our approach. Given a good initial-
ization, the evolution strategy can quickly find adversarial examples. We train a regression neural
network which takes as input the input to the target DNN and outputs an adversarial perturbation.
Whereas the regressed example can rarely defeat the target DNN, it serves as a good starting point
for the optimization algorithm and hence speeds up the AN"ATTACK.

We achieve 100% attack success rate on six out of eleven recently published defense methods (and
greater than 90% on four), all using the same algorithm. On the contrary, white-box attacks em-
ploy distinct defense-specific gradient approximations (Athalye et al., 2018)) or particularly tailored
attacks (Buckman et al 2018)). We expect the proposed A/ ATTACK, which is both strong and uni-
versal, can serve as a convenient baseline, along with the ROC curve described below, to facilitate
the future research toward robust DNNs.

A new curve for evaluation. The evolution strategy we used in the paper resembles the policy
gradient theorem (Salimans et al., [2017) — supplied with sufficient computation resources, it is
guaranteed to converge to a local optimum. In expectation, the attack strength of the adversarial
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population grows at every iteration of the optimization algorithm. This property is very appealing,
as it gives rise to another perspective to analyze the robustness of a defense method. To this end,
we propose a new curve featuring the attack success rate versus number of evolution iterations —
different strengths of the A’ATTACK. The curve complements the attack success rate by revealing the
dynamics of a defense method. One can conveniently read from the curve, to what attack strength or
number of DNN queries the attack makes, a defense method is able to resist if one sets a robustness
threshold for the attack success rate.

2 APPROACH

Consider a DNN classifier C(z) = arg max; F'(z);, where 2 € [0,1]” is an input to the neural
network F'(-). Without loss of generality, we assume softmax is employed for the output layer of
the network and let F'(-),; denote the i-th dimension of the softmax output. When this DNN correctly
classifies the inpuﬂ i.e., C(x) = y, where y is the groundtruth label of the input x, our objective
is to find an adversarial example z’ for z such that they are imperceptibly close and yet the DNN
classifier labels them distinctly; in other words, C'(z") # y. In this paper, we bound the ¢, distance
between an input and its adversarial counterpart: ||z — 2'||, < 7,,p = 2 or cc.

Different adversarial attack methods give rise to distinct adversarial examples for the same input,
implying that the adversarial population for any input is at least greater than one. We impose a
Gaussian distribution over the adversarial population. We then use the following process to generate
an adversarial example from the population. Given an input z,

1. draw z ~ N'(0(z),021),
2. transform § = 3 (tanh(z) 4+ 1) — z,

3. clip ¢’ = CLIP,(5), p =2 or oo, and
4.

return 2’ = x 4 ¢’, an adversarial example for the input .

In other words, we first draw a “seed” z from the adversarial population N'(6(z), 72I) whose mean
(x) € RP conditions on the input = and the variance o2 is left out as a free parameter to tune. In
the second line, we transform the seed to the same range as the input by £ (tanh (z) + 1) € [0, 1],
and then compute the offset 4 between the transformed vector and the input. The third line clips the
offset depending on which £, norm we use to bound the adversarial example. Finally, the clipped
offset ¢’ is added to the input and returned as an adversarial example 2’ for the input .

The clip functions ensure that the final adversarial example is close enough to the input. While
various forms of clipping are feasible, we use the following clip functions in this paper,

d72/|16]|2  if [|6]]2 >
CLIP2(5):{ 72/5H ll2 ‘lﬂslle 2 > 7 0

CLIP&(8) = min(d, Too) (2)
where the thresholds 72 and 7., are given by users.

Note that, in the above generation process, the Gaussian mean 6(z) is the only unknown to be
estimated. We present an evolution strategy below to estimate this unknown. For simplicity, we drop
x out of the mean 6(z) in the rest of the paper, but beware that the adversarial Gaussian N'(6, 0%1)
is learned for a particular input x.

2.1 GAUSSIAN BLACK-BOX ADVERSARIAL ATTACK (A ATTACK)

Recall that we want to fool DNN F'(-) by an adversarial example ', such that y # arg max; F'(z');
and ||2’ — z||, < 7p.|Carlini & Wagner (2017) have investigated a series of loss functions to capture
this notion. Their experimental results show that the hinge loss, among a few others, behaves better

"We exclude the inputs for which the DNN predicts wrong labels in the experiments, following the conven-
tion of previous work (Carlint & Wagner, 2017).
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Algorithm 1 Gaussian black-box adversarial attack (A" ATTACK)

Input: DNN classifier F'(-), input 2 and its label y, initial mean 6y, standard deviation o, learning
rate n), sample size N, and the maximum number of iterations 7’
Output: 07, mean of the adversarial population
1: fort=0,1,....,T —1do
2:  Sample €1,....ey ~ N(0,1)
3:  Compute losses J; := J(0; + o¢;) fori=1,--- N
4
5:

Set 9t+1 — Gt — NLO' Z?{\Ll ']iei
end for

than the straightforward cross-entropy loss. In this work, we also use the hinge loss defined a

+

J(z) = |log F(z"), — max log F(x'); (3)
iy

where [a]™ is short-hand for max(a,0), 2 is determined by 2 due to the adversarial generation
process above, and y is the groundtruth label of the input x.

Instead of focusing on any single adversarial example, we minimize the expected loss of the whole
adversarial population, i.e., ming E, g J(2), where the expectation is over z drawn from the Gaus-
sian N'(0,02I). Once we find a good local optimum for the mean 6 by solving ming E,g J(2),
we can virtually generate an infinite number of adversarial examples to attack the DNN classifier.

Optimization. We solve the problem ming E,.y J(z) using an evolution strategy (Wierstra et al.,
2008)). It is a gradient search algorithm in a similar fashion as REINFORCE (Williams), [1992),

Vo E.voJ(2) =E.vg {J(Z)Vg log Pe(z)} (4)

1 X
o Econro,n) [E/UJ(Q + ae)} ~ No ; {eiJ(H + aei)} , (5)
where Py on the right-hand side of eq. () denotes the Gaussian distribution. Changing variable
z in eq. {@) by 6 + oe, where € follows a standard normal distribution, we arrive at eq. (3). This
change of variable previously appears in (Salimans et al., |2017). Finally, we empirically estimate
the gradient with respect to 6 by using a standard normal sample of size N. Algorithm[I]summarizes
the optimization procedure for the gradient search of the adversarial population’s mean 6.

2.2 REGRESSION BASED ADVERSARIAL ATTACK

The initialization to the mean 6y plays a key role in the run time of Algorithm I When a good
initialization is given, we often successfully find adversarial examples before reaching the maximal
number of iterations 7". Hence, we propose to accelerate the gradient search by using a regression
neural network. It takes x as the input and outputs 6 to initialize Algorithm [I} In order to learn
this regressor, we generate many input-adversarial-example pairs {(z, ')} by running Algorithm
on the training set of benchmark datasets. The regression network’s weights are then learned by
minimizing the ¢ loss between the network’s output and arctan(2z’ — 1) —arctan(2z — 1); in other
words, we regress for the perturbation § in the generation process above. Appendix presents
more details about this regression network.

3 EXPERIMENTS

We use the proposed A/ATTACK to attack 11 defense methods for DNNs which are all published
in 2018. For each defense method, we run experiments using the same protocol as reported in

2In this paper, we focus on untargeted attack, which is considered success once the DNN classifier predicts
a wrong label for the adversarially perturbed input. Nonetheless, it is straightforward to revise the loss for
dealing with targeted attack (Carlin1 & Wagner, |2017).
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the original paper, including the datasets and ¢, distance (along with the threshold) to bound the
difference from adversarial examples to inputs. In particular, CIFAR10 (Krizhevsky & Hinton,
2009) is employed in the attack on seven defense methods and ImageNet (Deng et al., 2009) is used
for the remaining four. We examine all the test images of CIFAR10 and randomly choose 1,000
images from the test set of ImageNet. Nine of the defenses concern ¢, distance and one works with
{5 distance.

Our N ATTACK achieves 100% attack success rate on six out of the 11 defense techniques and more
than 90% on four (cf. Section . NATTACK, which is in the black-box attack realm, performs
as strongly as or better than the white-box attack Backward Pass Differentiable Approximation
(BPDA) (Athalye et al.l |2018)). It also significantly outperforms ZOO (Chen et al.,[2017), a zero-th
order gradient based black-box attack method as well as QL (Ilyas et al., 2018}, a query-limited
black-box attack based on evolution strategy.

Besides, we propose a new ROC curve to characterize the defense methods’ effectiveness versus the
strengths of the A’ATTACK attack (cf. Section[3.2). This curve provides a complementary metric to
the attack success rate, uncovering more traits of the defense methods.

Finally, we observe relatively low transferabilities of the adversarial examples between the recently
developed defense techniques (cf. Section[3.3)). This is in sharp contrast to the findings that many
adversarial examples are transferable across different vanilla neural networks trained on the same
datasets. In some sense, this weakens the practical significance of white-box attack methods which
could be applied to unknown DNN classifiers by attacking a substitute neural network instead (Pa-
pernot et al., 2017).

3.1 ATTACKING ELEVEN MOST RECENT DEFENSE TECHNIQUES

We consider 11 most recent defense techniques: Adversarial Training (ADV-TRAIN) Madry et al.
(2018), Thermometer Encoding (THERM) (Buckman et al., 2018)) , THERM-ADV (Athalye et al.
2018} [Madry et al., 2018)), Local Intrinsic Dimensionality (LID) (Ma et al.| 2018), Cascade Adver-
sarial Training (CAS-ADV) (Na et al., 2018), Stochastic Activation Pruning (SAP) (Dhillon et al.,
2018), Randomization (Xie et al., [2018)), Input Transformation (INPUT-TRANS) (Guo et al.,|2018),
Pixel Deflection (Prakash et al., [2018), Guided Denoiser (Liao et al., [2018), and Random Self-
ensemble (RSE) (Liu et al.,[2018)).

To the best of our knowledge, our proposed A’ ATTACK approach is the first black-box attack method
that is able to achieve similar attack success rates as or even higher than the powerful white-box
attack BPDA (Athalye et al.| 2018)), consistently on the above 11 defenses.

3.1.1 IMPLEMENTATION DETAILS

In our experiments, the defended DNNs of SAP, LID, RANDOMIZATION, INPUT-TRANS, THERM,
and THERM-DAV come from (Athalye et al) 2018]), the defended models of GUIDED DENOISER
and PIXEL DEFLECTION are based on (Athalye & Carlini,|2018)), and the models defended by RSE,
CAS-ADV and ADV-TRAIN come from the original papers.

Following the previous practice of (Carlin1 & Wagner, |2017; (Chen et al., 2017), we exclude the
inputs mis-classified by the target model in (Athalye et al., 2018). The [, and [ distortion metrics
are employed to bound the difference between an adversarial example and its corresponding clean
input. We threshold the I, distance in the normalized [0, 1]? input space. The l5 distance is the
total root-mean-square distortion normalized by the number of pixels.

In all our experiments, we set I’ = 600 as the maximum number of optimization iterations, N = 300
for the sample size, variance of the isotropic Gaussian 02 = 0.01, and learning rate n = 0.008.
N ATTACK is able to defeat most of the defenses under this setting and about 90% inputs for other
cases. We then fine-tune the learning rate 7 and sample size /N for the hard leftovers.

The input dimension of CIFAR10 images is 32 x 32 x 3. We directly search for an adversarial popu-
lation mean 6 of the same size by Algorithm[I} Whereas one may concern that the evolution search
in such a high-dimensional space would not be feasible, we did not encounter any computational
challenge for CIFAR10 images. However, for the ImageNet images whose sizes are 299 x 299 x 3,
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Table 1: Adversarial attack on 11 recently published defense methods. (** indicates the number
reported in the original paper (Athalye et al.| 2018]). For all the other numbers, we obtain them by
running the code and models released by the respective authors. BPDA, ZOO, QL and D-based
stand for (Athalye et al.,2018)), (Chen et al.,[2017), (Ilyas et al.,[2018) and (Brendel et al.,[2017), re-
spectively. * means the results are obtained on 1000 (200) randomly selected CIFAR10 (ImageNet)
images, and the experiments on the full test set will be completed soon.) For D-based attack, we just
report results on 100 images since it takes much longer time to converge only with hard-label and
we will finish the experiments soon.

Defense Technique Dataset Classification  Threshold Attack Success Rate %

q Accuracy % & Distance | BPDA ZOO *QL  *D-based AN ATTACK
* ADV-TRAIN
(Madry et al.| 2018} CIFARI10 87.3 0.031 (L) 46.9 - - - 47.9
THERM-ADV
(Athalye et al.]2018} CIFARI10 88.5 0.031 (L) 76.1 0.0 42.27 - 91.2
LID
(Ma et al]2018] CIFARI10 66.9 0.031 (Loo) 95.0 929 95.73 - 100.0
THERM
(Buckman et al|2018) CIFARI10 92.8 0.031 (Lso) | 100.0 0.0 96.5 - 100.0
SAP
(Dhilion et aL.| 2018 CIFARI10 93.3 0.031 (Lso) | 100.0 5.9 95.1 - 100.0
RSE
(Liu et al|20T8) CIFARI10 91.4 0.031 (L) - - - - 100.0
CAS-ADV .
(Na et al|2018] CIFARI10 75.6 0.015 (L) | 85.0 96.1 68.37 - 97.7
GUIDED DENOISER
{Liao et al|2018) ImageNet 79.1 0.031 (Lso) | 100.0 - - - 95.5
RANDOMIZATION
(Xie et al.| 2018} ImageNet 77.8 0.031 (Lso) | 100.0 6.7 4594 - 96.5
INPUT-TRANS
(Guo et al.|2018) ImageNet 77.6 0.05 (Ls) 100.0 383 66.51 66.0 100.0
PIXEL DEFLECTION
(Prakash et al |01} ImageNet 69.1 0.015 (Loo) 97.0 - 8.5 - 100.0

to speed up the execution, we first search for an adversarial population mean of the size 32 x 32 x 3
and then up-sample it to the high resolution with bilinear interpolation.

3.1.2 ATTACK SUCCESS RATES

Table [T] shows the attack success rates of our black-box attack N'ATTACK, the white-box BPDA
attack (Athalye et al., [2018)), and the black-box ZOO attack (Chen et al.,[2017). On 6 out of the 11
defense methods, A/ ATTACK achieves 100% success rates. It also fails 4 defenses (THERM-ADV,
CAS-ADV, GUIDED DENOISER, and RANDOMIZATION) for more than 90% of the tested inputs.
And for ADV-TRAIN, we do succeed with some probability which is even better than white-box
attack. We note the defense strengths of ADV-TRAIN, CAS-ADV and THERM-ADV come with
price, i.e., they lead to lower classification accuracies than the others on clean test images and it has
been shown that adversarial retraining is difficult at ImageNet scale (Kurakin et al.| [2016) — the
third column of Table [Tl shows the defended models’ classification accuracies on the full test set of
CIFARI1O0 and 1,000 randomly selected test images of ImageNet, respectively. At last but not the
least, N'ATTACK is consistently on par with or better than the white-box attack BPDA, while ZOO
fails to attack most of the defenses and QL can only get much lower success rate than A’ ATTACK.

3.1.3 COMPARISON WITH QL

In this section, we compare our approach with [Ilyas et al.| (2018))’s in depth. As their focus was on
query-limited (QL) black-box attack, we abbreviate their method as QL. Both N’ATTACK and QL
employ the evolution strategy (ES) as the core optimization algorithm. While we use it to search for
the adversarial Gaussian mean, QL uses it to estimate the gradients in PGD which is originally for
white-box adversarial attack.



Under review as a conference paper at ICLR 2019

Table 2: Modifying QL (Ilyas et al., 2018) towards A’ ATTACK step by step. We first add the CLIP
operation to Line 3, Algorithm 2 (+CLIP), so that the input to the neural network is /., bounded.

+loss replace QL’s loss function with ours. —PGD removes the PGD step from Line 7, Algorithm 2,
i.e., abandoning the clip and sign functions. +tanh is to lift the Gaussian distribution to the arctanh
space of the adversarial perturbations (this changes Lines 3, 4, and 7 in Algorithm 2). +zscore is to
subtract the mean from the losses and divide them by the standard deviation. We run the experiments
with 1000 randomly selected images from the test set of CIFAR10.

QL +CLIP +loss —PGD +tanh  +zscore QL+tanh
Targeted Model ~ N ATTACK NATTACK SCLTP
THERM-ADV 42.3 26.6 203 547 83.3 90.9 91.2 11.94
SAP 96.22 95.1 585 977 98.9 100 100 69.17

Overall comparison. We run QL using the same hyper-parameters as A’ATTACK for the ES part.
As shown in Table [T QL cannot perform on par with A’ATTACK on attacking LID, THERM, or
SAP. Moreover, it leads to very low success rates on the defenses based on adversarial training
(THERM-ADV and CAS-ADV). Finally, QL’s performance on the defended neural networks for the
ImageNet dataset (RANDOMIZATION, INPUT-TRANS, and PIXEL DEFLECTION) are also inferior to
ours. We conjecture such results are mainly due to that, unlike the analysis shown before Section
2.12 in 2018), ES is not an efficient estimator for the “true” gradients of PGD. The
projection and sign operations in PGD violate the conditions of the analysis.

Comparing QL with BPDA. It is also worth comparing QL with BPDA because they employ
PGD to generate /., bounded adversarial examples. More importantly, they both approximate the
(obfuscated) gradients whereas in different ways. Table[I] shows the clear advantage of BPDA over
QL, implying that ES is not as good as BPDA at estimating the true gradients.

What makes A’ATTACK advantageous over QL? Finally, we investigate the algorithmic differ-
ences between A’ATTACK and QL. To this end, we first describe the QL algorithm by using the same
notations of this work (Algorithm 2)).

Algorithm 2 Query-limited black-box adversarial attack

Input: DNN classifier F'(-), input = and its label y, initial point x(, standard deviation o, learning
rate 7, sample size N, and the maximum number of iterations 7’
Qutput: x7, an adversarial example
1: fort=0,1,....,7 — 1 do
2:  Sample €1,....,en ~ N(0,1)
3:  Compute losses F; :=log F'(z; + o¢;), fori=1,--- | N
4:  Compute losses Fn; := log F(z; — o€;), fori=1,--- | N
5: Set g < ﬁ Zi\il [qu — FN+i67,']
6:  Decay learning rate ) < # if log F'(x;), does not decrease continuously for 5 times
7: Ty41 ¢ CLIP,(xy —n-sign(g) —x) + 2, p=2o0roo
8: end for

Comparing Algorithms 1 and 2, we hypothesize the following may have contributed to the differ-
ences in results (ranked by hypothesized importance),

Line 3, Algorithm 1 vs. Line 3, Algorithm 2: applying CLIP, to z; + 0€; or not,

Line 4, Algorithm 1 vs. Line 7, Algorithm 2: using PGD or not,

Line 3, Algorithm 1 vs. Line 3, Algorithm 2: loss function,

Line 3, Algorithm 1 vs. Line 3, Algorithm 2: Gaussian sample or tanh(z) as the perturbation,

Line 3, Algorithm 1 vs. Lines 4 & 5, Algorithm 2: doubling the Gaussian sample or not.

In the same order as the above list, we gradually modify QL towards A'ATTACK and test each
modified version on attacking SAP and THERM-ADV — the former is relatively weak and the latter
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is very strong among the 11 defense techniques. Table [2] shows the results. It is obvious that there
is a big performance jump for both SAP and THERM-ADV after we remove PGD from QL, verifying
the advantage of our approach for not depending on any white-box attack methods. The second
performance boost happens after we change the Gaussian distribution to the arctan space of the
perturbation. While one may wonder this is not surprising considering that the arctan lifts the
perturbation to the full real space which fits the Gaussian distribution better than the constrained
adversarial perturbations, we argue that it is only effective after we also make the other changes to
QL (see the last column of Table 2] for the inferior results of modifying QL only by the arctan).
Finally, if we zscore the losses (subtract the mean and divide them by the standard deviation), the
results approach N'ATTACK. In all the comparisons, we have kept both steps 3 and 4 in Algorithm
2, i.e., doubling the Gaussian sample for the modified versions of QL.

To conclude, PGD does play a key role in differentiating QL and A ATTACK. In this sense, it is fair
to say our work is fundamentally different from QL: QL is in the same vein as (Athalye et al.|[2018])
as they both rely on PGD, a white-box attack method, and both aim to approximate the gradients for
PGD. In sharp contrast, we do not employ any white-box attack methods at all and, instead, provide
a novel perspective to the adversarial attack by modeling the population of adversarial examples
for every single image. This change alleviates the dependence on the gradients and leads to big
differences in terms of the attack results.

3.2 A NEW ROC CURVE

The gradient search (Algorithm [I)
has an appealing property; in expec-

tation, the loss (eq. (3)) is reduced at e RN SR
every iteration. Despite there could A o .
o : .
be oscillations, we find that the at- , oot
. L + 4
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. . . +
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tions in our experiments. Hence, B osl | |
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Figure [I] compares seven defense

methods on CIFAR10 along with a Figure 1: Success rate versus run steps of A’ATTACK.
vanilla DNN classifier. It is clear that

ADV-TRAIN, THERM-ADV and CAS-ADV are more difficult to attack than the others. What’s more
interesting is with the other four defenses and the vanilla DNN. Although A/ATTACK completely
defeats all of them, the curve of the vanilla DNN is the steepest while the SAP curve rises much
slower. If there are constraints on the computation time or the number of queries to the DNN classi-
fiers, SAP becomes advantageous over RSE and THERM.

Note that the ranking of the defenses in Table [I] (i.e., based on success rate) is different from the
ordering in Figure [I] signifying the attack success rate and the ROC curve mutually complement
each other. The curve reveals more characteristics of the defense methods especially when there are
constraints on the computation time or number of queries to the DNN classifier.

3.3 TRANSFERABILITY

We also study the transferability of the adversarial examples across different defended DNNs. The
confusion tables of BPDA and N'ATTACK are shown in Figure 2] respectively, where each number
indicates the success rate of applying the adversarial examples originally targeting the row-wise
defense model to attack the column-wise defenses. In addition to the defended DNNs, we also
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Figure 2: Transferabilities of BPDA (Athalye et al., 2018) (left) and A'ATTACK (right). We use the
adversarial examples which target the defense of a row to attack all the column-wise defenses.

include two vanilla DNNs which are not equipped with any defense techniques: VANILLA-1 and
VANILLA-2. VANILLA-1 is a light-weight DNN classifier built by [Carlini & Wagner| (2017) with
80% accuracy on CIFAR10. VANILLA-2 is the Wide-ResNet-28 (Zagoruyko & Komodakis|, [2016)
which gives rise to 92.3% classification accuracy on CIFAR10. For fair comparison, we change the
threshold 7o, to 0.031 for CAS-ADV. We exclude RSE and CAS-ADV from the BPDA’s confusion
table because it is not obviously clear how to attack RSE using BPDA and the released BPDA code
lacks the piece for attacking CAS-ADV.

Note that, unlike the experiments by about the adversarial examples’ transferabil-
ities across different vanilla DNNs, the experiments here are mainly concerned with the defended
DNNSs. Indeed, the results reveal some unique characteristics of the transferability under defense.
There is an asymmetric pattern in the confusion tables; it is easier to transfer from defended models
to the vanilla DNNs than vice versa. Besides, the overall transferrability is lower than that across the

networks without any defenses (Liu et al.,2016). As below, we point out some extra observations.

First of all, the transferability of our black-box attack A’ATTACK is not as good as BPDA which
is a white-box attack method. This is probably because BPDA is able to explore the intrinsically
common part of the various DNN classifiers as it has the leverage over the true or estimated gradients
that observe the DNNs’ architectures and weights.

Secondly, both the network architecture and defense methods have an impact on the transferability.
The VANILLA-2 network is the underlying classifier in SAP, THERM-ADV, and THERM. The ad-
versarial examples originally attacking VANILLA-2 do transfer better to SAP and THERM than the
others probably because they share the same DNN architecture, but they achieve very low success
rate on THERM-ADV due to the defense technique.

Finally, it is worth noting that the transfer success rates are low no matter from THERM-ADV to
the other defenses or the vice versa. Since all the other defended DNNs are trained following the
empirical risk minimization principle while THERM-ADV employs the robust training
[2018), it is possible that the distinct transfer property of THERM-ADV attributes to the unique robust
training method. We leave further exploration to the future work.

3.4 RUN TIME COMPARISON

Appendix [A.2] studies the run time of our black-box attack A'ATTACK and the white-box attack
BPDA. Results show that A’ ATTACK is on par with BPDA on CIFAR10, both reaching an adversarial
example in about 30s. To defeat an ImageNet image, it takes N'ATTACK about 71s without the
regression network and 48s when it is equipped with the regression net; in contrast, BPDA only
needs 4s. It is surprising to see that BPDA is almost 7 times faster at attacking a DNN on ImageNet
than a DNN on CIFAR10, probably because the gradients of the former are not “obfuscated” as well
as the latter.
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4 RELATED WORK

Many approaches have been proposed to evaluate the robustness of DNNs as well as to attack and
defend DNNs. Attacking approaches can be divided into two major categories, white-box attack and
black-box attack. In contrast, defending neural network is a harder task and a few explorations have
been exerted to improve the robustness of DNNs. We analyze the recent defenses in Appendix

White-box attack. Preliminary studies on the robustness of DNNs focus on white-box setting with
assuming full access to the targeted DNN. Szegedy et al.[(2013)) first prove DNN is fragile against
adversarial examples and generate adversarial examples 2’ similar to original sample x in £ distance
using box-constrained L-BFGS. Then the fast gradient sign (FGS) (Goodfellow et al.|2014a)) method
has been invented with two key differences from the L-BFGS method: first, it is optimized for /o,
distance metric, and secondly, it is designed primarily to be fast instead of producing very close
adversarial examples. |[Papernot et al.|(2016b)) introduce an attack optimized under [/ distance known
as the Jacobian-based Saliency Map Attack (JSMA). DeepFool (Moosavi-Dezfooli et al., 2016) is
an untargeted attack algorithm that aims to find the least /5 distortion leading to misclassification by
projecting an image to the closest separating hyperplane. Following these works, |Carlini & Wagner
(2017) propose an iterative optimization based attack (C&W attack), and then it seems to become
a standard white-box attack approach. Defense: One common clue through those approaches is
that they estimate sensitive regions of images by backward gradient to the pixels, and perturb them
to attack the targeted DNNs. Obfuscated gradient based defenses have been proposed to defeat
gradient-based attacks like defensive distillation (Papernot et al.l |2015) or most defenses listed in
Appendix [A.3]. [Athalye et al.| (2018) successfully attack those defenses by approximating gradients
with BPDA.

Black-box attack. The black-box attacking techniques do not exert the internal knowledge of
DNN, and are more practical in the real applications. Thanks to the transferability property of ad-
versarial examples (Szegedy et al.|2013)), [Papernot et al.|(2017) can train a substitute DNN to imitate
the behavior of the unknown DNN to be attacked, produce adversarial examples of the substitute,
and then use them to attack. |Chen et al.| (2017)) instead use zero-th order optimization to find adver-
sarial examples. More recently, [Brendel et al.| (2017) introduce Boundary Attack, a decision-based
attack that starts from a large adversarial perturbation and then seeks to reduce the perturbation while
staying adversarial.

5 CONCLUSION

In this paper, we present an evolution gradient search based black-box attack approach, A’ATTACK,
which is universally applicable and as powerful as the model-specific white-box approaches against
most recent defenses. Extensive experiments show that A’ATTACK successfully attack 10 recently
published defense techniques. Furthermore, a new ROC curve is proposed to analyze the robustness
of defenses versus the strengths of adversarial attacks. Finally, we find that the defenses do weaken
the transferability of the adversarial examples comparing to the transfer results across vanilla DNNSs.

We make some remarks about the future work. Some existing works try to characterize the adver-
sarial examples from the geometric view by pooling them of various inputs together. In contrast
to this geometric and macro view, our work models the adversarial population of an input from a
probabilistic and micro view. There are still a lot to explore along the avenue of explicitly modeling
the adversarial population, as opposed to a single adversarial example, for any input to a DNN.
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Table 3: Comparison of C&W attack, ZOO, and A'ATTACK on L2 distortion. ‘~" means C&W
attack fails on Therm. * A\ ATTACK uses the optimization shown in eq. @

C&W attack 700 "
Targeted Model Carlini & Wagner|(2017)  |Chen et al.[(2017) NATTACK  NATTACK
THERM (L>) - 0.8868 0.26 0.35
VANILLA-1 (Ls) 0.17 0.19 0.25 0.33

A APPENDIX

A.1 COMPARISON WITH STANDARD /5 DISTORTION

We compare our approach with several adversarial attack baselines including |Carlini & Wagner
(2017) (C&W) and ZOO (Chen et al.| (2017) on a typical defense model THERM (Buckman et al.,
2018) and the DNN VANILLA-1 in terms of /5 distortion. The defense model THERM is based on
the DNN VANILLA-2 on CIFARI0 trained with thermometer encoding. We run A/ATTACK with
default setting, and with an additional trick to decrease l5 distortion by using the objective shown in
eq. (6) which is first introduced in C&W attack (Carlini & Wagner,[2017) (denoted by *AATTACK in
Table 3). As shown in Table 3} N'ATTACK can get comparable lower distortion on both standard
model and defense with 100% success rate while C&W attack fails on Therm, and ZOO gets very
large distortion on Therm.

+
Jegew(0) = ||0]|2 + ¢ f(x+0) flz+0):= |log F(x +6), — mﬁx log F(x + 0); (6)
17FY

A.2 COMPARISON WITH RUNNING TIME

Compared with the white-box attack approach BPDA (Athalye et al, 2018), A’ATTACK may take
longer time since BPDA can find the local optimal solution quickly being guided by the approx-
imate gradients. However, the evolution strategy based algorithms can be parallel when running
each episode, as discussed in [Salimans et al.|(2017). We attack 100 samples on one machine with
4*TITAN-XP graphic cards and calculate the average running time of attacking. As shown in Ta-
ble[d] /ATTACK can get even faster attack than the white-box attack approach BPDA on CIFAR-10,
yet performs far slower on ImageNet. The main reason is that when the image size is (3¥32%32),
the search space is tolerable; however, the running time could be lengthy for high resolution images
like ImageNet examples (3%299%299) especially for some hard cases (nearly 90% images can be
attacked in one minute but it could take about 60 minutes for some hard cases).

We adopt a regression FCN to approximate a good initialization of 8, and we name N ATTACK ini-
tialized with regression net as A'ATTACK-R. We run A'ATTACK and N ATTACK-R on ImageNet
with the population size n = 40 . Thus the success rate for N’ATTACK with random initialization is
82% and for N'ATTACK-R is 91.9%, which proves the efficiency of regression net. The running time
shown in Table []is calculated on the images with successful attacks. The results demonstrate that
N ATTACK-R can decrease 22.5s attacking time per image compared with the random initialization.

Table 4: Average attacking time for one image. N’ ATTACK-R represents A’ATTACK initialized with
regression net

BPDA

Defense Dataset Athalye et al] (2018) NATTACK  NATTACK-R
SAP

Dhiiiorerall@oig) CIFAR-10 (L) - 333 29.4s -
RANDOMIZATION 1 ooNet (Lo.)  3.51s 70.77s 48.225

Xie et al.| (2018)
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A.3 TEN MOST RECENT DEFENSE TECHNIQUES

This paper attacks 10 most recent defense techniques, as shown below.

Thermometer encoding (THERM). To break the hypothesized linearity behavior of
DNNs (Goodfellow et al., |2014a)), Buckman et al.| (2018) propose to transform the input by non-
differentiable and non-linear thermometer encoding, followed by a slight change to the input layer
of conventional DNNss.

ADV-TRAIN & THERM-ADV. Madry et al. propose a defense using adversarial training (ADV-
TRAIN). Specially, the training procedure alternates between seeking an “optimal” adversarial
example by project gradient descent (PGD) and minimizing the classification loss under the PGD
attack. Furthermore, |Athalye et al|(2018) find that the adversarial robust training Madry et al.
(2018)) can significantly improve the defense strength of THERM (THERM-ADV). Compare with
ADV-TRAIN, the adversarial examples are produced by Logit-Space Projected Gradient Ascent
(LS-PGA) during the training process.

Local intrinsic dimensionality (LID). Ma et al| (2018) propose a metric to capture the local
intrinsic dimension of the inputs and adversarial examples. This metric is shown to be effective
in distinguishing adversarial and clean images.

Cascade adversarial training (CAS-ADV). |Na et al| (2018) improve the adversarial train-
ing (Goodfellow et al.l 2014bj; Kurakin et al.l [2016) in a cascade manner. A model is trained
from the clean data and one-step adversarial examples first. The second model is trained from the
original data, one-step adversarial examples, as well as iterative adversarial examples generated
against the first model. Additionally, a regularization is introduced to the unified embeddings of
the clean and adversarial examples.

Stochastic activation pruning (SAP). Dhillon et al.|(2018)) randomly drop some neurons of each
layer with the probabilities in proportion to their absolute values.

RANDOMIZATION. [Xie et al.|(2018)) add a randomization layer between inputs and a DNN clas-
sifier. This layer consists of resizing an image to a random resolution, zero-padding, and randomly
selecting one from many resulting images as the actual input to the classifier.

Input transformation (INPUT-TRANS). By a similar idea as above, |Guo et al.| (2018)) explore
several combinations of input transformations coupled with adversarial training, such as image
cropping and rescaling, bit-depth reduction, JPEG compression.

PIXEL DEFLECTION. [Prakash et al.[|(2018)) randomly sample a pixel from an image and then
replace it with another pixel randomly sampled from the former’s neighborhood. Discrete wavelet
transform is also employed to filter out adversarial perturbations to the input.

GUIDED DENOISER. [Liao et al.| (2018) use a denoising network architecture to estimate the
additive adversarial perturbation to an input.

Random self-ensemble (RSE).|Liu et al.|(2018)) combine the ideas of randomness and ensemble
using the same underlying neural network. Given an input, it generates an ensemble of predictions
by adding distinct noises to the network multiple times.

A.4 DETAILS OF THE REGRESSION NETWORK

Concerning initialization of 0, the naive way is 6y = arctan(2z — 1) + ¢ where ¢ is sampled from
Gaussian distribution A'(0,027). An observation is that we can get adversarial perturbation in a
short time with smaller population size n for most examples. As a result, we can get plenty of (z, ¢)
pairs in a short time. Those phenomenons inspire us to train a segmentation model .S to regress the
perturbation of input images. A simple FCN (Shelhamer et al., 2016) model pretrained on PASCAL
VOC segmentation challenging (Everingham et al.,2010) is used here. Furthermore, we change the
last two convolutional layers to ensure the output is (3*32%*32) and replace the loss function with
mean square loss to regress the perturbation. At the test time, given an unseen image X, the output
of segmentation model can be treated as the initialization of ¢, i.e., 9 = S(z), and thus we can
accelerate the attack process. The effectiveness of this approach is discussed in Appendix [A.2]
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