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ABSTRACT

Network Embeddings (NEs) map the nodes of a given network into d-dimensional
Euclidean space Rd. Ideally, this mapping is such that ‘similar’ nodes are mapped
onto nearby points, such that the NE can be used for purposes such as link pre-
diction (if ‘similar’ means being ‘more likely to be connected’ or ‘having similar
neighborhoods’) or classification (if ‘similar’ means ‘being more likely to have
the same label’). In recent years various methods for NE have been introduced,
all following a similar strategy: defining a notion of similarity between nodes, a
distance measure in the embedding space, and a loss function that penalizes large
distances for similar nodes and small distances for dissimilar nodes.
A difficulty faced by existing methods is that certain networks are fundamentally
hard to embed due to their structural properties: (approximate) multipartiteness,
certain degree distributions, assortativity, etc. To overcome this, we introduce
a conceptual innovation to the NE literature and propose to create Conditional
Network Embeddings (CNEs); embeddings that maximally add information with
respect to given structural properties (e.g. node degrees, block densities, etc.). We
use a simple Bayesian approach to achieve this, and propose a block stochastic
gradient descent algorithm for fitting it efficiently. We demonstrate that CNEs are
superior for link prediction and multi-label classification when compared to state-of-
the-art methods, and this without adding significant mathematical or computational
complexity. Finally, we illustrate the potential of CNE for network visualization.

1 INTRODUCTION

Network Embeddings (NEs) map nodes into d-dimensional Euclidean space Rd such that an ordinary
distance measure allows for meaningful comparisons between nodes. Embeddings directly enable the
use of a variety of machine learning methods (classification, clustering, etc.) on networks, explaining
their exploding popularity. NE approaches typically have three components (Hamilton et al., 2017):
(1) A measure of similarity between nodes. E.g. nodes can be deemed more similar if they are
adjacent, have strongly overlapping neighborhoods, or are otherwise close to each other (link and
path-based measures) (Grover & Leskovec, 2016; Perozzi et al., 2014; Tang et al., 2015), or if they
have similar functional properties (structural measures) (Ribeiro et al., 2017). (2) A metric in the
embedding space. (3) A loss function comparing similarity between node pairs in the network with
the proximity of their embeddings. A good NE is then one for which the average loss is small.

Limitations of existing NE approaches A problem with all NE approaches is that networks are
fundamentally more expressive than embeddings in Euclidean spaces. Consider for example a
bipartite network G = (V,U,E) with V,U two disjoint sets of nodes and E ⊆ V × U the set of
links. It is in general impossible to find an embedding in Rd such that v ∈ V and u ∈ U are close
for all (v, u) ∈ E, while all pairs v, v′ ∈ V are far from each other, as well as all pairs u, u′ ∈ U .
To a lesser extent, this problem will persist in approximately bipartite networks, or more generally
(approximately) k-partite networks such as networks derived from stochastic block models.1 This

1For example multi-relational data can be represented as a k-partite network, where the schema specifies
between which types of objects links may exist. Another example is a heterogeneous information network,
where no schema is provided but links are more or less common depending on the (specified) types of the nodes.
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shows that first-order similarity (i.e. adjacency) in networks cannot be modeled well using a NE.
Similar difficulties exist for second-order proximity (i.e. neighborhood overlap) and other node
similarity notions. A more subtle example is a network with a power law degree distribution. A
first-order similarity NE will tend to embed high degree nodes towards the center (to be close to lots
of other nodes), while the low degree nodes will be on the periphery. Yet, this effect reduces the
embedding’s degrees of freedom for representing similarity independent of node degree.

CNE: the idea To address these limitations of NEs, we propose a principled probabilistic approach—
dubbed Conditional Network Embedding (CNE)—that allows optimizing embeddings w.r.t. certain
prior knowledge about the network, formalized as a prior distribution over the links. This prior
knowledge may be derived from the network itself such that no external information is required.

A combined representation of a prior based on structural information and a Euclidean embedding
makes it possible to overcome the problems highlighted in the examples above. For example, nodes
in different blocks of an approximately k-partite network need not be particularly distant from each
other if they are a priori known to belong to the same block (and hence are unlikely or impossible to
be connected a priori). Similarly, high degree nodes need not be embedded near the center of the
point cloud if they are known to have high degree, as it is then known that they are connected to many
other nodes. The embedding can thus focus on encoding which nodes in particular it is connected to.

CNE is also potentially useful for network visualization, with the ability to filter out certain informa-
tion by using it as a prior. For example, suppose the nodes in a network represent people working in a
company with a matrix-structure (vertical being units or departments, horizontal contents such as
projects) and links represent whether they interact a lot. If we know the vertical structure, we can
construct an embedding where the prior is the vertical structure. The information that the embedding
will try to capture corresponds to the horizontal structure. The embedding can then be used in
downstream analysis, e.g., to discover clusters that correspond to teams in the horizontal structure.

Contributions and outline Our contributions can be summarized as follows:

• This paper introduces the concept of NE conditional on certain prior knowledge about the network.
• Section 2 presents CNE (‘Conditional Network Embedding’), which realizes this idea by using

Bayes rule to combine a prior distribution for the network with a probabilistic model for the
Euclidean embedding conditioned on the network. This yields the posterior probability for the
network conditioned on the embedding, which can be maximized to yield a maximum likelihood
embedding. Section 2.2 describes a scalable algorithm based on block stochastic gradient descent.

• Section 3 reports on extensive experiments, comparing with state-of-the-art baselines on link pre-
diction and multi-label classification, on commonly used benchmark networks. These experiments
show that CNE’s link prediction accuracy is consistently superior. For multi-label classification
CNE is consistently best on the Macro-F1 score and best or second best on the Micro-F1 score.
These results are achieved with considerably lower-dimensional embeddings than the baselines. A
case study also demonstrates the usefulness of CNE in exploratory data analysis of networks.

• Section 4 gives a brief overview of related work, before concluding the paper in Section 5.
• All code, including code for repeating the experiments, and links to the datasets are available at:
https://bitbucket.org/ghentdatascience/cne.

2 METHODS

Section 2.1 introduces the probabilistic model used by CNE, and Section 2.2 describes an algorithm
for optimizing it to find an optimal CNE. Before doing that, let us introduce some notation. An
undirected network is denoted G = (V,E) where V is a set of n = |V | nodes and E ⊆

(
V
2

)
is the

set of links (also known as edges). A link is denoted by an unordered node pair {i, j} ∈ E. Let Â
denote the network’s adjacency matrix, with element âij = 1 for {i, j} ∈ E and âij = 0 otherwise.
The goal of NE (and thus of CNE) is to find a mapping f : V → Rd from nodes to d-dimensional
real vectors. The resulting embedding is denoted X = (x1,x2, . . . ,xn)

′ ∈ Rn×d.
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2.1 THE CONDITIONAL NETWORK EMBEDDING MODEL

The newly proposed method CNE aims to find an embedding X that is maximally informative about
the given network G, formalized as a Maximum Likelihood (ML) estimation problem:

argmax
X

P (G|X). (1)

Innovative about CNE is that we do not postulate the likelihood function P (G|X) directly, as is
common in ML estimation. Instead, we use a generic approach to derive prior distributions for the
network P (G), and we postulate the density function for the data conditional on the network p(X|G).
This allows one to introduce any prior knowledge about the network into the formulation, through a
simple application of Bayes rule2: P (G|X) = p(X|G)P (G)

p(X) . The consequence is that the embedding
will not need to represent any information that is already represented by the prior P (G).

Section 2.1.1 describes how a broad class of prior information types can be modeled for use by CNE.
Section 2.1.2 describes a possible conditional distribution (albeit an improper one), the one we used
for the particular CNE method in this paper. Section 2.1.3 describes the posterior distribution.

2.1.1 THE PRIOR DISTRIBUTION FOR THE NETWORK

We wish to be able to model a broad class of prior knowledge types in the form of a manageable
prior probability distribution P (G) for the network. Let us first focus on three common types of
prior knowledge: knowledge about the overall network density, knowledge about the individual
node degrees, and knowledge about the edge density within or between particular subsets of the
nodes (e.g. for multipartite networks). Each of these can be expressed as sets of constraints on
the expectations of the sum of various subsets S ⊆

(
V
2

)
of elements from the adjacency matrix:

E
{∑

{i,j}∈S aij
}
=
∑
{i,j}∈S âij , where the expectation is taken w.r.t. the sought prior distribution

P (G). In the 1st case, S =
(
V
2

)
; in the 2nd case, S = {(i, j)|j ∈ V, j 6= i} for information on the

degree of node i; and in the 3rd case S = {(i, j)|i ∈ A, j ∈ B, i 6= j} for specified sets A,B ∈ V .

Such constraints do not determine P (G) fully, so we determine P (G) as the distribution with
maximum entropy from all distributions satisfying all these constraints. Adriaens et al. (2017); van
Leeuwen et al. (2016) showed that finding this distribution is a convex optimization problem that can
be solved efficiently, particularly for sparse networks. They also showed that the resulting distribution
is a product of independent Bernoulli distributions, one for each element of the adjacency matrix:

P (G) =
∏

{i,j}∈(V2)

P
âij
ij (1− Pij)1−âij , (2)

where Pij ∈ [0, 1] is the probability that {i, j} is linked in the network under this distribution. They
showed that all these Pij can be expressed in terms of a limited number of parameters, namely the
unique Lagrange multipliers for the prior knowledge constraints in the maximum entropy problem.
In practice, the number of such unique Lagrange multipliers is far smaller than n.

The three cases discussed above are merely examples of how constraints on the expectation of subsets
of the elements of the adjacency matrix can be useful in practice. For example, if nodes are ordered
in some way (e.g. according to time), it could be used to express the fact that nodes are connected
only to nodes that are not too distant in that ordering. Moreover, the above results continue to hold for
constraints that are on weighted linear combinations of elements of the adjacency matrix. This makes
it possible to express other kinds of prior knowledge, e.g. on the relation between connectedness
and distance in a node order (if provided), or on the network’s (degree) assortativity. A detailed
discussion and empirical analysis of such alternatives is deferred to further work.

2.1.2 THE DISTRIBUTION OF THE DATA CONDITIONED ON THE NETWORK

We now move on to postulating the conditional density P (X|G). Clearly, any rotation or translation of
an embedding should be considered equally good, as we are only interested in distances between pairs

2Note that this approach is uncommon: despite the usage of Bayes rule, it is not Maximum A Posteriori
(MAP) estimation as the chosen embedding X is the one maximizing the likelihood of the network.
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of nodes in the embedding. Thus, the pairwise distances between points, denoted as dij , ‖xi−xj‖2
for points xi,xj ∈ Rd, must form a set of sufficient statistics.

The density should also reflect the fact that connected node pairs tend to be embedded to nearby
points, while disconnected node pairs tend to be embedded to more distant points. Let us focus
initially on the marginal density of dij conditioned on G. The proposed model assumes that given
âij (i.e. knowledge of whether {i, j} ∈ E or not), dij is conditionally independent of the rest of the
adjacency matrix. More specifically, we model the conditional distribution for the distances dij given
{i, j} ∈ E as half-normal N+ (Leone et al., 1961) with spread parameter σ1 > 0:3

p (dij |{i, j} ∈ E) = N+

(
dij |σ2

1

)
, (3)

and the distribution of distances dkl with {k, l} 6∈ E as half-normal with spread parameter σ2 > σ1:

p (dkl|{k, l} /∈ E) = N+

(
dkl|σ2

2

)
. (4)

The choice of 0 < σ1 < σ2 will ensure the embedding reflects the neighborhood proximity of the
network. Indeed, the differences between the embedded nodes that are not connected in the network
are expected to be larger than the differences between the embedding of connected nodes. Without
losing generality (as it merely fixes the scale), we set σ1 = 1 through out this paper.

It is clear that the distances dij cannot be independent of each other (e.g. the triangle inequality
entails a restriction of the range of dij given the values of dik and djk for some k). Nevertheless,
akin to Naive Bayes, we still model the joint distribution of all distances (and thus of the embedding
X up to a rotation/translation) as the product of the marginal densities for all pairwise distances:

p(X|G) =
∏

{i,j}∈E
N+

(
dij |σ2

1

)
·
∏

{k,l}/∈E
N+

(
dkl|σ2

2

)
. (5)

This is an improper density function, due to the constraints imposed by Euclidean geometry. Indeed,
certain combinations of pairwise distances should be assigned a probability 0 as they are geometrically
impossible. As a result, p(X|G) is also not properly normalized. Yet, even though p(X|G) is
improper, it can still be used to derive a properly normalized posterior for G as detailed next.

2.1.3 THE POSTERIOR OF THE NETWORK CONDITIONED ON THE EMBEDDING

The (also improper) marginal density p(X) can now be computed as:

p(X) =
∑

G

p(X|G)P (G) =
∑

G

∏

{i,j}∈E
N+

(
dij |σ2

1

)
Pij ·

∏

{k,l}/∈E
N+

(
dkl|σ2

2

)
(1− Pkl),

=
∏

i,j

[
N+

(
dij |σ2

1

)
Pij +N+

(
dij |σ2

2

)
(1− Pij)

]
.

We now have all ingredients to compute the posterior of the network conditioned on the embedding
by a simple application of Bayes’ rule:

P (G|X) =
p(X|G) · P (G)

p(X)
=

∏

{i,j}∈E

N+

(
dij |σ2

1

)
Pij

N+ (dij |σ2
1)Pij +N+ (dij |σ2

2) (1− Pij)

·
∏

{k,l}/∈E

N+

(
dkl|σ2

2

)
(1− Pkl)

N+ (dkl|σ2
1)Pkl +N+ (dkl|σ2

2) (1− Pkl)
. (6)

This is the likelihood function to be maximized in order to get the ML embedding. Note that, although
it was derived using the improper density function p(X|G), thanks to the normalization with the
(equally improper) p(X), this is indeed a properly normalized distribution.

3A half-normal distribution, with density denoted here asN+(·|σ2), is a zero-mean normal distribution with
standard deviation σ, conditioned on the random variable being positive. Of course the standard deviation of the
conditioned normal distribution is not equal to σ, so we refer to σ more loosely as its spread parameter.
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2.2 FINDING THE MOST INFORMATIVE EMBEDDING

Maximizing the likelihood function P (G|X) is a non-convex optimization problem. We propose to
solve it using a block stochastic gradient descent approach, explained below. The gradient of the
likelihood function (Eq. 6) with respect to the embedding xi of node i is:4

∇xi
log (P (G|X)) = 2

∑

j:{i,j}∈E
(xi − xj)P (aij = 0|X)

(
1

σ2
2

− 1

σ2
1

)

+ 2
∑

j:{i,j}/∈E
(xi − xj)P (aij = 1|X)

(
1

σ2
1

− 1

σ2
2

)
. (7)

As
(

1
σ2
2
− 1

σ2
1

)
< 0, the first summation pulls the embedding of node i towards embeddings of the

nodes it is connected to in G. Moreover, if the current prediction of the link P (aij = 1|X) is small
(i.e., if P (aij = 0|X) is large), the pulling effect will be larger. Similarly, the second summation
pushes xi away from the embeddings of unconnected nodes, and more strongly so if the current
prediction of a link between these two unconnected nodes P (aij = 1|X) is larger. The magnitudes
of the gradient terms are also affected by parameter σ2 and prior P (G): a large σ2 gives stronger
push and pulling effect. In our quantitative experiments we always set σ2 = 2.

Computing this gradient w.r.t. a particular node’s embedding requires computing the pairwise
differences between n proposed d-dim embedding vectors, with time complexity O(n2d) and space
complexity O(nd). This is computationally demanding for mainstream hardware even for networks
of sizes of the order n = 1000 and dimensionalities of the order d = 10, and prohibitive beyond
that. To address this issue, we approximate both summations in the objective by sampling k < n/2
terms from each. This amounts to uniformly sampling k nodes from the set of connected nodes
(where aij = 1), and k from the set of unconnected nodes (where aij = 0).5 This reduces the time
complexity to O(ndk).
Note that each of the terms is bound in norm by the diameter of the embedding, as the other factors are
bound by 1 for σ1 = 1, σ1 < σ2. If the diameter were bounded, a simple application of Hoeffding’s
inequality would demonstrate that this average is sharply concentrated around its expectation, and
is thus a suitable approximation. Although there is no prior bound that holds with guarantee on the
diameter of the embedding, this does shed some light on why this approach works well in practice.
The choice of k will in practice be motivated by computational constraints. In our experiments we set
it equal or similar to the largest degree, such that the first term is computed exactly.

3 EXPERIMENTS

We first evaluate the network representation obtained by CNE on downstream tasks typically used for
evaluating NE methods: link prediction for links and multi-label classification for nodes. Then, we
illustrate how to use CNE to visually explore multi-relational data.

3.1 EXPERIMENT SETUP

For the quantitative evaluations, we compare CNE against a panel of state-of-the-art baselines for
NE: Deepwalk (Perozzi et al., 2014), LINE (Tang et al., 2015), node2vec (Grover & Leskovec,
2016), metapath2vec++ (Dong et al., 2017), and struc2vec (Ribeiro et al., 2017). Table 1 lists the
networks used in the experiments. A brief discussion of the methods and the networks is given in the
supplement.

For all methods we used their default parameter settings reported in the original papers and with
d = 128. For node2vec, the hyperparameters p and q are tuned over a grid p, q ∈ {0.25, 0.05, 1, 2, 4}
using 10-fold cross validation. We repeat our experiments for 10 times with different random seeds.
The final scores are averaged over the 10 repetitions.

4We refer the reader to the supplementary material for detailed derivations.
5If a node i has a degree smaller than k, we sample more non-connected neighbors to make sure that 2k

points are used for the approximation of the gradient – and conversely if a node has a degree larger than n− k.
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Table 1: Networks used in experiments.
Data Type #Nodes #Links #Labels
Facebook (Leskovec & Krevl, 2015) Friendship 4,039 88,234 –
arXiv ASTRO-PH (Leskovec & Krevl, 2015) Co-authorship 18,722 198,110 –
Gowalla (Cho et al., 2011) Friendship 196,591 950,327 –
StudentDB (Goethals et al., 2010) Relational/k-partite 403 3,429 –
BlogCatalog (Zafarani & Liu, 2009) Bloggers 10,312 333,983 39
Protein-Protein Int. (Breitkreutz et al., 2007) Biological 3,890 76,584 50
Wikipedia (Mahoney, 2011) Word co-occurrence 4,777 184,812 40

Table 2: The AUC scores for link prediction. TimeOut means aborted after 24 hours.

Algorithm Facebook PPI arXiv BlogCat. Wikiped. studentdb Gowalla
Common Neigh. 0.9735 0.7693 0.9422 0.9215 0.8392 0.4160 0.7769

Jaccard Sim. 0.9705 0.7580 0.9422 0.7844 0.5048 0.4160 0.7519
Adamic Adar 0.9751 0.7719 0.9427 0.9268 0.8634 0.4160 0.7719
Prefer. Attach. 0.8295 0.8892 0.8640 0.9519 0.9130 0.9106 0.5626

Deepwalk 0.9798 0.6365 0.9207 0.6077 0.5563 0.7644 0.7156
LINE 0.9525 0.7462 0.9771 0.7563 0.7077 0.8562 0.8173

node2vec 0.9881 0.6802 0.9721 0.7332 0.6720 0.8261 0.7984
metapath2vec++ 0.7408 0.8516 0.8258 0.9125 0.8334 0.9244 0.7769

struc2vec 0.6909 0.7752 0.7182 0.8631 0.8062 0.6290 TimeOut
CNE (uniform) 0.9905 0.8908 0.9865 0.9190 0.8417 0.9300 0.9738
CNE (degree) 0.9909 0.9115 0.9882 0.9636 0.9158 0.9439 0.9818
CNE (block) NA NA NA NA NA 0.9830 NA

3.2 LINK PREDICTION

In link prediction, we randomly remove 50% of the links of the network while keeping it connected.
The remaining network is thus used for training the embedding, while the removed links (positive
links, labeled 1) are used as a part of the test set. Then, the test set is topped up by an equal number
of negative links (labeled 0) randomly drawn from the original network. In each repetition of the
experiment, the node indices are shuffled so as to obtain different train-test splits.

We compare CNE with other methods based on the area under the ROC curve (AUC). The methods
are evaluated against all datasets mentioned in the previous section. CNE typically works well with
small dimensionality d and sample size k. In this experiment we set d = 8 and k = 50. Only for
the two largest networks (arXiv and Gowalla), we increase the dimensionality to d = 16 to reduce
underfitting. To calculate AUC, we first compute the posterior P (aij = 1|Xtrain) of the test links
based on the embedding Xtrain learned on the training network. Then the AUC score is computed by
comparing the posterior probability of the test links and their true labels.

In this task we first compare CNE against four simple baselines (Grover & Leskovec, 2016):
Common Neighbors (|N(i) ∩ N(j)|), Jaccard Similarity ( |N(i)∩N(j)|

|N(i)∪N(j)| ), Adamic-Adar Score
(
∑
t∈N(i)∩N(j)

1
log |N(t)| ), and Preferential Attachment (|N(i)| · |N(j)|). These baselines are neigh-

borhood based node similarity measures. We first compute pairwise similarity on the training network.
Then from the computed similarities we obtain scores for testing links as the similarity between the
two ending nodes. Those scores are then used to compute the AUC against the true labels.

For the NE baselines, we perform link prediction using logistic regression based on the link repre-
sentation derived from the node embedding Xtrain. The link representation is computed by applying
the Hadamard operator (element wise multiplication) on the node representation xi and xj , which
is reported to give good results (Grover & Leskovec, 2016). Then the AUC score is computed by
comparing the link probability (from logistic regression) of the test links with their true labels.
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Table 3: The F1 scores for multi-label classification.

Algorithm BlogCatalog PPI Wikipedia
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

Deepwalk 0.2544 0.3950 0.1795 0.2248 0.1872 0.4661
LINE 0.1495 0.2947 0.1547 0.2047 0.1721 0.5193
node2vec 0.2364 0.3880 0.1844 0.2353 0.1985 0.4746
metapath2vec++ 0.0351 0.1684 0.0337 0.0726 0.1031 0.3942
struc2vec 0.0493 0.1653 0.0669 0.0971 0.1124 0.4019
CNE-LR (degree) 0.1833 0.3376 0.1484 0.1952 0.1370 0.4339
CNE-LP (block+degree) 0.2935 0.4002 0.2639 0.2519 0.3374 0.4839

Results The link prediction results are shown in Table 2. Even with a uniform prior (i.e. prior
knowledge only on the overall density), CNE performs better than all baselines on 5 of the 7 networks.
With a degree prior, however, CNE outperforms all baselines on all networks. We attribute this to the
fact that the degree prior encodes information which is hard to encode using a metric embedding alone.
For the multi-relational dataset studentdb, metapath2vec++, which is designed for heterogeneous
data, outperforms other baselines but not CNE (regardless of the prior information). Moreover, CNE
is capable of encoding the knowledge of the block structure of this multi-relational network as a prior,
with each block corresponding to one node type. Doing this improves the AUC further by 3.91%
versus CNE with degree prior (from 94.39% to 98.30%; i.e., a 70% reduction in error).

In terms of runtime, over the seven datasets CNE is fastest in two cases, 12% slower than the fastest
(metapath2vec++) in one case, and takes approximately twice as long in the four other cases (also
metapath2vec++). Detailed runtime results can be found in the supplementary material.

3.3 MULTI-LABEL CLASSIFICATION

We performed multi-label classification on the following networks: BlogCatalog, PPI, and Wikipedia.
Detailed results are given in the supplement, while Table 3 contains an excerpt of the results. All
baselines are evaluated in a standard logistic regression (LR) setup (Perozzi et al., 2014).

When using logistic regression also on the CNE embeddings, CNE performs on-par, but not particu-
larly well (row CNE-LR). This should not be a surprise though, as potentially relevant information
encoded by the prior (the degrees) will not be reflected in the embedding. However, multi-label
classification can easily be cast as a link prediction problem, by adding to the network a node for each
label, with a link to each node to which the label applies. Predicting a label for a node then amounts
to predicting a link to that label node. To evaluate this strategy, we train an embedding on the original
network plus half the label links, while the other half of the label links is held out for testing.

For the baselines, this link prediction setup does not lead to consistent improvements (see supplement),
but for CNE it does (row CNE-LP, where LP stands for Link Prediction, in Table 3). On Micro-F1

it is best or once close second best (after LINE with LR, see Table 3), and on Macro-F1 it greatly
outperforms any other method, suggesting improved performance mainly on the less frequent labels.

3.4 VISUAL EXPLORATION OF MULTI-RELATIONAL DATA

Here we qualitatively evaluate CNE’s ability to facilitate visual exploration of multi-relational data,
and how a suitable choice of the prior can help with this. To this end, we use CNE to embed the
studentdb dataset directly into 2-dimensional space. As a larger σ2 in general appears to give better
visual separation between node clusters, we set σ2 = 15.

For comparison, we first apply CNE with uniform prior (overall network density). The resulting
embedding (Fig. 1a) clearly separates bachelor student/courses/program nodes (upper) from the
master’s nodes (lower). Also observe that the embedding is strongly affected by the node degrees
(coded as marker size = log degree): high degree nodes flock together in the center. E.g., these are
students who interact with many other smaller degree nodes (courses/programs). Although there
are no direct links between program nodes (green) and course nodes (blue), the students (red) that
connect them are pulling courses towards the corresponding program and pushing away other courses.
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Figure 1: (a) 2-d embedding with uniform prior. (b) 2-d embedding with degree prior.

Next, we encode the individual node degrees as prior. As in this case the degree information is known,
the embedding in addition shows the courses grouped around different programs, e.g.: “Bachelor
Program” is close to course “Calculus”; “Master Program Computer Network” is close to course
“Seminar Computer Network”; “Master Program Database” is close to course “Database Security”;
“Master Program Software Engineering” is close to courses “Software Testing”.

Thus, although this last evaluation remains qualitative and preliminary, it confirms that CNE with a
suitable prior can create embeddings that clearly convey information in addition to the given prior.

4 RELATED WORK

NE methods typically have three components (Hamilton et al., 2017): (1) A similarity measure
between nodes, (2) A metric in embedding space, (3) A loss function comparing proximity between
nodes in embedding space with the similarity in the network. Early NE methods such as Laplacian
Eigenmaps (Belkin & Niyogi, 2002), Graph factorization (Ahmed et al., 2013), GraRep (Cao et al.,
2015), and HOPE (Ou et al., 2016) optimize mean-squared-error loss between Euclidean distance or
inner product based proximity and link based (adjacency matrix) similarity in the network. Recently,
a few NE methods define node similarity based on paths. Those paths are generated using either
the adjacency matrix (LINE, Tang et al., 2015) or random walks (Deepwalk, Perozzi et al. 2014,
node2vec, Grover & Leskovec 2016, methapath2vec++, Dong et al. 2017, and struc2vec Ribeiro
et al. 2017). Path based embedding methods typically use inner products as proximity measure in
the embedding space and optimize a cross-entropy loss. The recent struc2vec method (Ribeiro et al.,
2017) uses a node similarity measure that explicitly builds on structural network properties. CNE,
unlike the aforementioned methods, unifies the proximity in embeddings space and node similarity
using a probabilistic measure. This allows CNE to find a more informative ML embedding.

The question of how to visualize networks on digital screens has been studied for a long time.
Recently there has been an uplift in methods to embed networks in a ‘small’ number of dimensions,
where small means small as compared to the number of nodes, yet typically much larger than two.
These methods enable most machine learning methods to readily apply to tasks on networks, such as
node classification or network partitioning. Popular methods include node2vec (Grover & Leskovec,
2016), where for example the default output dimensionality is 128. It is not designed for direct
use in visualization, and typically one would fit a higher-dimensional embedding and then apply
dimensionality reduction, such as PCA (Peason, 1901) or t-SNE (Maaten & Hinton, 2008) to visualize
the data. CNE finds meaningful 2-d embeddings that can be visualized directly. Besides, CNE gives
a visualization that conveys maximum information in addition to prior knowledge about the network.

5 CONCLUSIONS

The literature on NE has so far considered embeddings as tools that are used on their own. Yet,
Euclidean embeddings are unable to accurately reflect certain kinds of network topologies, such that

8



Published as a conference paper at ICLR 2019

this approach is inevitably limited. We proposed the notion of Conditional Network Embeddings
(CNEs), which seeks an embedding of a network that maximally adds information with respect to
certain given prior knowledge about the network. This prior knowledge can encode information about
the network that cannot be represented well by means of an embedding.

We implemented this conceptually novel idea in a new algorithm based on a simple probabilistic model
for the joint of the data and the network, which scales similarly to state-of-the-art NE approaches.
The empirical evaluation of this algorithm confirms our intuition that the combination of structural
prior knowledge and a Euclidean embedding is extremely powerful. This is confirmed empirically
for both the tasks of link prediction and multi-label classification, where CNE outperforms a range of
state-of-the-art baselines on a wide range of networks.

In our future work we intend to investigate other models implementing the idea of conditional NEs,
alternative and more scalable optimization strategies, as well as the use of other types of structural
information as prior knowledge on the network.
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1 DERIVATION OF THE GRADIENT

Denote the Euclidean distance between two points as dij , ||xi − xj ||2. The derivative of dij with
respect to embedding xi of node i reads:

∇xidij =
xi − xj
dij

Then the derivative of the log posterior with respect to xi is given by:

∇xi log (P (G|X)) =
∑

j:{i,j}∈E

(
∂ log (P (G|X))

∂dij
+
∂ log (P (G|X))

∂dji

)
∇xidij

+
∑

j:{i,j}/∈E

(
∂ log (P (G|X))

∂dij
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∂ log (P (G|X))

∂dji

)
∇xidij

= 2
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∂dij

xi − xj
dij

+ 2
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∂ log (P (G|X))

∂dij

xi − xj
dij

Using shorthand notation Nij,σ1
= N+

(
dij |σ2

1

)
and Nij,σ2

= N+

(
dij |σ2

2

)
, we can compute the

partial derivative ∂ log(P (G|X))
∂dij

for {i, j} ∈ E as:

∂ log (P (G|X))

∂dij
=

∂

∂dij

∑

{i,j}∈E
log (Nij,σ1

Pij)− log (Nij,σ1
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1
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−
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2

Nij,σ1Pij +Nij,σ2 (1− Pij)

= −dij
σ2
1

+ P (aij = 1|X)
dij
σ2
1

+ P (aij = 0|X)
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σ2
2

Similarly, the partial derivative ∂ log(P (G|X))
∂dij

for {i, j} /∈ E reads:

∂ log (P (G|X))

∂dij
= −dij

σ2
2

+ P (aij = 1|X)
dij
σ2
1

+ P (aij = 0|X)
dij
σ2
2

.

The partial derivatives ∂Nmn,σPmn
∂dij

are nonzero only when m = i and n = j, which gives the final
gradient:

∇xi log (P (G|X)) = 2
∑

j:{i,j}∈E
(xi − xj)P (aij = 0|X)
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1

σ2
2

− 1

σ2
1

)

+ 2
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1

σ2
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2

)
(1)
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Figure 1: The posterior distribution P (aij = 1|X) and P (aij = 0|X) with different prior probability
Pij and σ2

2 DERIVING THE LOG PROBABILITY OF POSTERIOR P (G|X)
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3 EFFECTS OF THE σ1 AND σ2 PARAMETERS

CNE seeks the embedding X that maximizes the likelihood P (G|X) for given G. To understand
the effect of parameter σ1 and σ2 we plot the posterior P (aij = 1|X) as well as P (aij = 0|X) in
Figure 1. The plot shows a large σ2 corresponds to more extreme minima of the objective function
(Fig1a), thus results in stronger push and pulling effect in the optimization. Large link probability
in the network prior further strengthen the pushing and pulling effects (Fig 1b). The flat area in
Figure 1b (σ2 = 10) allows connected nodes to keep some small distance from each other, and larger
σ2 also allows larger corrections to the prior probabilities (both Fig 1a and Fig 1b), but also makes
the optimization problem harder.

4 BASELINE METHODS USED IN EXPERIMENTS

We used the following baselines in the experiments:
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• Deepwalk (Perozzi et al., 2014): This embedding algorithm learns embedding based on the
similarities between nodes. The proximities are measured by random walks. The transition
probability of walking from one node to all its neighbors are the same and are based on
one-hop connectivity.
• LINE (Tang et al., 2015): Instead of random walks, this algorithm defines similarity between

nodes based on first and second order adjacencies of the given network.
• node2vec (Grover & Leskovec, 2016): This is again based on random walks. In addition to

its predecessors, it offers two parameters p, q that interpolates the importance of BFS and
DFS like random walk in the learning.
• metapath2vec++ (Dong et al., 2017): This approach is developed for heterogeneous NE,

namely, the nodes belong to different node types. methapath2vec++ performs random walks
by hopping from a node form one type to a node from another type. It also utilizes the node
type information in the softmax based objective function.
• struc2vec (Ribeiro et al., 2017): The method first measures the structural information by

computing pairwise similarity between nodes using a range of neighborhood sizes. This
results in a multilayer weighted graph where the edge weights on the same layer are derived
from the node similarity computed on one neighborhood size. Then the embedding is
constructed by a random walk strategy that navigates the multilayer graph.

5 NETWORKS USED IN THE EXPERIMENTS

We used the following commonly used benchmark networks in the experiments:

• Facebook (Leskovec & Krevl, 2015): In this network, nodes are the users and links represent
the friendships between the users. The network has 4,039 nodes and 88,234 links.
• arXiv ASTRO-PH (Leskovec & Krevl, 2015): In this network nodes represent authors

of papers submitted to arXiv. The links represents the collaborations: two authors are
connected if they co-authored at least one paper. The network has 18,722 nodes and 198,110
links.
• studentdb (Goethals et al., 2010): This is a snapshot of the student database from the

University of Antwerp’s Computer Science department. There are 403 nodes that belong
to one of the following node types including: course, student, professor, program, track,
contract, and room. There 3429 links that are the binary relationships between the nodes:
student-in-track, student-in-program, student-in-contract, student-take-course, professor-
teach-course, course-in-room. The database schema is given in Figure 2.
• Gowalla (Cho et al., 2011): This is a undirected location-based friendship network. The

network has 196,591 nodes, 950,327 links.
• BlogCatalog (Zafarani & Liu, 2009): This social network contains nodes representing

bloggers and links representing their relations with other bloggers. The labels are the
bloggers’ interests inferred from the meta data. The network has 10,312 nodes, 333,983
links, and 39 labels (used for multi-label classifications).
• Protein-Protein Interactions (PPI) (Breitkreutz et al., 2007): A subnetwork of the PPI

network for Homo Sapiens. The subnetwork has 3,890 nodes, 76,584 links, and 50 labels.
• Wikipedia (Mahoney, 2011): This network contains nodes representing words and links

representing the co-occurrence of words in Wikipedia pages. The labels represents the
inferred Part-of-Speech tags (Toutanova et al., 2003). The network has 4,777 nodes, 184,812
links, and 40 different labels.

6 DETAILED RESULTS FOR MULTI-LABEL CLASSIFICATION

In the multi-label classification setting, each node is assigned one or more labels. For training, 50%
of the nodes and all their labels are used for training. The labels of the remaining nodes need to
be predicted. We train CNE and baselines based on the full network. Then 50% of the nodes are
randomly selected to train a L2 regularized logistic regression classifier. The regularization strength
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Figure 2: The entity relationship diagram of the studentdb dataset.

parameter of the classifier is trained with 10-fold cross-validation (CV) on the training data. We
report the Macro-F1 and Micro-F1 based on the predictions. For the logistic regression classifier
(sklearn, Pedregosa et al., 2011) we require every fold to have at least one positive and one negative
label and we removed the labels that occur fewer than 10 times (number of folds in CV) in the data.

The detailed results of this approach based on logistic regression are shown in the upper half of
Table 1. For CNE (written as CNE-LR to emphasize logistic regression was used for classifying), the
embeddings are obtained with d = 32 and k = 150 (without optimizing). Somewhat surprisingly,
CNE still performs in line with the state-of-the-art graph embedded methods, although without
improving on them (on BlogCatalog, CNE performs third out of five methods, in PPI and Wikipedia
it performs fourth out of five). This is surprising, given the fact that CNE yields embeddings that,
by design, do not reflect certain information about the nodes that may be useful in classifying (here,
their degree).

Multi-label classification can however be cast as a link prediction problem—a task we know CNE
performs well at. To do this, we insert a node into the network corresponding to each of labels,
and link the original nodes to the label nodes if they have that label. We can then employ link
prediction, exactly as in the link prediction case (training on the full network, but with only 50% of
the edges between original nodes and label nodes, and the other half for testing), to do multi-label
classification. For CNE, besides a degree prior, we can encode a ’block’ prior which encodes the
average connectivity between original nodes–original nodes, original nodes–labels, and labels–labels
(which is zero, as labels are not connected to each other). Note that this approach means that also
neighborhood-based link prediction methods can be used for multi-label classification.

The detailed results of this link prediction approach to multi-label classification are shown in the
lower half of Table 1. CNE-LP (block+degree) (with LP to indicate it is based on link prediction)
consistently outperforms all baselines on Macro-F1, while on Micro-F1 it is best on two datasets
(BlogCatalog and PPI), and close second-best on one (Wikipedia). We note that while the benefit of
this link prediction approach to multi-label classification is clear (and unsurprising) for CNE, there
is no consistent benefit to other methods. This shows that the superior performance of CNE-LP for
multi-label classification is not (or at least not exclusively) thanks to the link prediction approach, but
at least in part also thanks to a more informative embedding when considered in combination with
the prior.

7 RUNTIME EXPERIMENT

We compare the runtime (in second) of CNE with other baselines in this section. We use the
parameters settings in link prediction task for all methods. Namely, for CNE, we set d = 8 (For arXiv
k = 16 to reduce underfitting) and k = 50. We set stopping criterion of CNE ||∇X||∞ < 10−2 or
maxIter < 250 (whichever is met first). These stopping criteria yield embeddings with the same
performance in link prediction tasks as reported in the paper. For other methods, we use the default
setting as reported in their original paper. The hyper-parameters p, q of node2vec are tuned using
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Table 1: The F1 scores for multi-label classification.

Algorithm BlogCatalog PPI Wikipedia
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

Multi-label classification using logistic regression (standard approach):
Deepwalk 0.2544 0.3950 0.1795 0.2248 0.1872 0.4661
LINE 0.1495 0.2947 0.1547 0.2047 0.1721 0.5193
node2vec 0.2364 0.3880 0.1844 0.2353 0.1985 0.4746
metapath2vec++ 0.0351 0.1684 0.0337 0.0726 0.1031 0.3942
struc2vec 0.0493 0.1653 0.0669 0.0971 0.1124 0.4019
CNE-LR (degree) 0.1833 0.3376 0.1484 0.1952 0.1370 0.4339
Multi-label classification through link prediction where labels are nodes:
Common Neigh. 0.2115 0.2931 0.1792 0.1831 0.1212 0.3332
Jaccard Sim. 0.2157 0.1915 0.1799 0.1642 0.0552 0.0486
Adamic Adar 0.2301 0.3198 0.1698 0.1825 0.1035 0.3264
Preferential Attach. 0.2460 0.2084 0.2504 0.0953 0.2890 0.4454
Deepwalk 0.2372 0.2407 0.1848 0.1648 0.0876 0.0440
LINE 0.1599 0.2457 0.1052 0.1100 0.0976 0.2954
node2vec 0.2490 0.3462 0.2081 0.2069 0.1640 0.3057
metapath2vec++ 0.0633 0.1415 0.0571 0.0542 0.2021 0.3673
struc2vec 0.0644 0.1100 0.0631 0.0757 0.0905 0.3485
CNE-LP (degree) 0.2839 0.3929 0.2139 0.2303 0.1825 0.4407
CNE-LP
(block+degree)

0.2935 0.4002 0.2639 0.2519 0.3374 0.4839

Table 2: The runtime (in seconds) of embedding methods. TimeOut means aborted after 24 hours.
Algorithm Facebook PPI arXiv BlogCat. Wikiped. studentdb Gowalla
Deepwalk 120.78 116.09 714.68 344.72 138.89 8.34 5717.67

LINE 253.20 203.92 649.98 218.20 232.11 180.35 10988.71
node2vec 86.61 64.96 291.42 1054.73 288.32 6.04 5593.52

metapath2vec++ 130.78 39.59 274.60 332.19 78.14 3.50 333.29
struc2vec 2692.96 1105.41 54218.82 1356.67 1691.79 9245.23 TimeOut

CNE (uniform) 86.89 75.15 728.74 227.11 92.35 7.25 642.14
CNE (degree) 77.80 70.35 579.85 204.48 87.69 6.80 670.26
CNE (block) NA NA NA NA NA 10.68 NA

cross validation. This experiment is performed with single process/thread on a desktop with CPU
2,7 GHz Intel Core i5 and RAM 16 GB 1600 MHz DDR3. Table 2 summarizes the runtime of all
methods against all datasets we used in the paper. Over the seven datasets CNE is fastest in two cases,
12% slower than the fastest in one case (metapath2vec++), and approximately twice slower in the
four other cases (also metapath2vec++).
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