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Abstract
In many AI planning applications, an agent receives new
jobs (additional non-conflicting goals) while plan execution
is still ongoing. Vanilla solutions are to (a) finish execution
before tackling the new job, or to (b) interrupt execution
and re-plan immediately. Option (a) misses opportunities to
smoothly integrate the new job into the plan, while (b) leaves
the agent idle during re-planning. We introduce simultane-
ous re-planning and execution (SRE), a planning algorithm
that avoids both disadvantages. SRE re-plans for both the old
and new jobs while the current plan is still being executed.
The key difficulty is that, then, the initial state for the re-
vised plan–the state in which plan execution is at the end of
re-planning–depends on the time taken for re-planning. We
address this through a variant of A∗ that starts with several
speculative initial states, and incorporates time-aware search
information to differentiate between these. On a collection
of extended planning competition benchmarks, our algorithm
consistently outperforms both (a) and (b).

Introduction
In AI planning (Ghallab, Nau, and Traverso 2004), the task
is to find a schedule of actions leading from the initial state
of an agent to a goal state. Planning tools are given a descrip-
tion of states, actions, and goal as input, and should automat-
ically produce a plan. While planning is often seen as a dis-
cipline of “thinking before acting,” many problems require a
constant interplay between thinking and acting (Myers 1999;
Ghallab, Nau, and Traverso 2016): e.g., Mars rovers (Estlin
et al. 2000; Knight et al. 2001), high-speed manufacturing
(Ruml, Do, and Fromherz 2005), or modular printer con-
trollers (Ruml et al. 2011). Here, we address continual on-
line planning (Lemons et al. 2010; Burns et al. 2012), where
an agent has to tackle a changing set of goals. We consider a
special case we call continual online job arrival, where the
new goal is akin to an additional job, that does not conflict
with the previous goal.

Similar problems have been considered in different cir-
cumstances and under different assumptions. Agents with
knowledge about the goal arrival distribution can anticipate
future goals and plan accordingly (Burns et al. 2012). If the
new goals are known to be similar to the old ones, plan re-
pair can be used (Fox et al. 2006). Here we make neither of
these assumptions, tackling arbitrary new goals/jobs arriving
online.

There are two vanilla solutions for an online plan execu-
tion and re-planning loop in our context: (a) keep executing
the current plan to its end before starting the execution of
the (re-planned) new plan incorporating the new job; or (b)
interrupt the execution of the current plan and wait for the
re-planning process to finish. Both strategies have pros and
cons. Option (a) allows (some of) the re-planning to be done
in parallel to the execution. However, while moving towards
the old goal, the agent might be moving away from the new
goal, thus missing the opportunity to smoothly incorporate
the new job into the current plan. Option (b) takes this op-
portunity, but leaves the agent idle for the entire re-planning
process, which is wasteful when re-planning takes a long
time. In this paper we direct our attention towards scenarios
where the planning time can not be assumed to be negligible
with respect to execution time.

We propose a simultaneous re-planning and executing al-
gorithm (that we will refer to as SRE) that plans for both
the old and the new task while executing the current plan,
thus combining the advantages of both previously described
strategies. This raises a new challenge: the agent changes
its state while re-planning, so the initial state for the revised
plan depends on the time taken by the re-planning process.
That process must thus be aware of, and reason about, its
own duration in order to determine the initial state for the
revised plan.

Planners able to reason about their own planning time
are called time-aware (e.g., (Burns, Ruml, and Do 2013;
Cashmore et al. 2018)). Unlike classical planners, which op-
timize plan cost (e.g. the plan duration), time-aware planners
use the (estimated) time needed for planning as a part of
their cost function. To illustrate: a user cares about the time
needed to get a cup of coffee from a robot; what fraction
of that time was spent planning, and what fraction was spent
executing the plan, is irrelevant to the user. Time-aware plan-
ners do not solve our challenge here as they still assume a
fixed initial state. However, as we shall see, the techniques
used by time-aware planners can help address that challenge
in our context.

Our SRE algorithm is a variant of A∗ (Hart, Nilsson,
and Raphael 1968) that takes advantage of time-aware tech-
niques to adapt to the setting with asynchronous task ar-
rivals. There are two high-level differences between SRE
and A∗.



First, while A∗ starts its search from a single initial state,
SRE starts with a number of potential initial states. These
states represent a speculation on the state in which the agent
might be once the planning is done. Second, A∗’s order-
ing function is extended with an additional heuristic func-
tion, estimation of when the planning process will finish, in-
forming the search about which of the possible initial states,
and search paths below these, is promising to explore. We
prove that, under suitable conditions on the heuristic func-
tions used by SRE, the first solution it finds is better than
any other it might find by continuing the search. This prop-
erty and its proof correspond to a similar property of the
time-aware search algorithm Bugsy (Burns, Ruml, and Do
2013).

Overall, our contributions are

• a time-aware search algorithm for online AI planning with
asynchronous task arrival;

• an implementation of the algorithm in Fast Down-
ward (Helmert 2006), leveraging time-aware planning
techniques (Dionne, Thayer, and Ruml 2011) as well
as heuristic search planning techniques (Hoffmann and
Nebel 2001);

• an empirical comparison of the algorithm to two baselines
on a collection of benchmarks from the international plan-
ning competition (IPC), which we extended for our online
setting; SRE consistently outperforms both vanilla solu-
tions.

Problem definition
We formulate our setting as a variant of classical planning
with online job arrivals during an ongoing execution. The
focus is on the moment when a new task arrives while the
agent is already executing its current plan. This generalizes
straighforwardly to a series of arriving jobs, assuming that
they arrive once the planning phase is done.

Background
We consider the finite-domain representation (FDR)
(Bäckström and Nebel 1995; Helmert 2009) for classical
planning tasks:

Definition 1. A planning task is a tuple (V,A, c, s0, s∗):

• V is a finite set of state variables, each with a finite do-
main of possible values,

• A is a finite set of actions. Each action a is a pair
(prea, eff a) of partial variable assignments called pre-
conditions and effects,

• c : A→ R is a function assigning a cost to every action,
• s0 is a complete variable assignment called initial state,
• s∗ is a partial variable assignment called goal.

We denote the set of all complete variable assignments, or
states, by S. A partial assignment p is said to be compliant
with a state s ∈ S (denoted by p ⊆ s) if there is no variable
in the domain of p to which p and s assign different values.
An action a ∈ A can only be applied to a state s ∈ S if
prea ⊆ s. The outcome of that application is state sJaK, that

is the same as s, except that the variables in the domain of
partial assignment eff a are changed accordingly.

A solution (plan) to a planning task is a se-
quence of actions a1, a2, . . . , an with the overall cost
C(a1, a2, . . . , an) =

∑n
i=1 c(ai), leading from s0 to a state

compliant with s∗.
In what follows, the costs of actions (function c) will

be interpreted as the duration to execute them. We do not,
however, consider concurrent plans as in temporal plan-
ning (Fox and Long 2003), limiting our focus to sequen-
tial plans with action durations instead. Exploring concur-
rent temporal planning remains an important topic for future
work.

We are considering tasks where the set of goals is not
fixed, and new goals may appear online. This has been
called continual online planning (COP) (Lemons et al. 2010;
Burns et al. 2012). COP tasks have been defined as Markov
Decision Processes where additional goals may arrive at
each time step, and world states are extended with the cur-
rent goal set. We adapt this notion to COP tasks as classical
planning tasks that are extended with a second goal condi-
tion, assumed to arrive during the execution of the plan for
the original goal.
Definition 2. A continual online planning (COP) task is
a tuple (V,A, c, sOLD

∗ , sNEW
∗ , s0, πs0,sOLD

∗
) where

• V is a finite set of state variables, each with a finite do-
main of possible values.

• A is a finite set of actions. Each action a is a pair
(prea, eff a) of partial variable assignments,

• c : A→ R is a function that assigns a cost to every action
a ∈ A. We interpret the cost c(a) as the duration needed
to execute action a,

• sOLD
∗ is a partial variable assignment called old goal,

• sNEW
∗ is a partial variable assignment called new goal,

• s0 is the state denoting the agent’s position at the time
when sNEW

∗ , the new goal, appeared,
• πs0,sOLD

∗
= a1a2 . . . an is a sequence of actions, taking the

agent from the state s0 to a state compliant with the old
goal sOLD

∗ (the agent’s current plan).
A solution to a COP task is a plan π consisting of two parts:
a prefix of πs0,sOLD

∗
and the newly planned extension. There

must exist 1 ≤ j ≤ n such that π = a1a2 . . . ajb1 . . . bm
(where the extension, denoted by actions b1 to bm, can be
empty). The state (partial assignment) to which the plan π
takes the agent must be compliant with both sOLD

∗ and sNEW
∗ .

A solution is said to be optimal if it minimizes the overall
planning and execution time, i.e., the time from the arrival
of the new job sNEW

∗ to the end of the execution of π.

Continual Planning for Online Job Arrival
In this work we consider COP tasks with particular proper-
ties making the achievement of planning goals arriving on-
line akin to the achieval of “jobs” as in scheduling prob-
lems. Namely, (i) executing plans for previous goals should
not preclude the possibility to achieve new goals; and (ii)
achieving new goals should not necessitate deleting previ-
ous ones.



Definition 3. A continual planning for online job ar-
rival (COJA) task is a COP task (V,A, c, sOLD

∗ , sNEW
∗ , s0,

πs0,sOLD
∗

) with the following two properties.

(i) recoverable states: for every state s′ reached from a state
s with an action sequence ~α, there exists an action se-
quence ~α so that s′J ~αK agrees with s on all variable values
that appear as preconditions or goals in the task.

(ii) stable goals: for every state s from which sNEW
∗ can be

achieved, there exists a minimum-cost action sequence α
doing so without ever changing the assignment s ∩ sOLD

∗ .

Restriction (i) relates to known notions of invertibility and
undoability (e.g. (Hoffmann 2005; Daum et al. 2016)). It
serves two purposes. First, it allows to err in the prediction
of when re-planning will terminate (and thus what the new
initial state will be). If the re-planning takes longer than es-
timated, then the plan execution will have arrived at a state
sj behind the new initial state si used by the new plan. Re-
coverable states allow to nevertheless use the new plan, by
going back from sj to (a state subsuming) si first. Second,
(i) alleviates necessary, or accidental, conflicts between the
previous goal sOLD

∗ vs. the new goal sNEW
∗ . It may, in gen-

eral, happen that the new plan temporarily deletes sOLD
∗ (e.g.

in the Blocksworld if sNEW
∗ requires to move a block at the

bottom of a stack). Given (i), re-achieving sOLD
∗ is always

possible.
Stable goals (ii) demand that at least one optimal plan for

sNEW
∗ does not delete whichever parts of sOLD

∗ are already
achieved. This restriction is sensible as it excludes neces-
sary conflicts between the previous vs. the new goals, i.e.,
situations where achieving sNEW

∗ necessarily involves delet-
ing sOLD

∗ . The optimality requirement makes sure that delet-
ing sOLD

∗ can be avoided without a cost penalty.
Even with (ii), it may of course happen that parts of the

previous plan, executed during re-planning in our approach,
have to be un-done later on. Furthermore, the re-planning
process may not find a minimum-cost plan, or for other rea-
sons return a plan deleting sOLD

∗ . Such accidental goal con-
flicts are, however, qualitatively different from the necessary
ones excluded by (ii). That said, stable goals are not a strict
requirement of our approach, but merely a “nice to have”
property. Indeed, one of our benchmark domains does not
satisfy (ii).

Many applications have recoverable states and stable
goals. Examples include warehouse logistics, abstract en-
codings of Mars rover control, and various types of manu-
facturing problems. Hoffmann (2005) specifies syntactic cri-
teria allowing to identify tasks with recoverable states, and,
given an action sequence ~α, to quickly find the recovery se-
quence ~α.

In our experiments, we focus on domains where each ac-
tion has an immediate inverse action, and thus the cost of
~α equals that of ~α. This simplifies matters as, given ~α, the

cost of the recovery sequence is known exactly. It remains a
topic for future work to drop this assumption (e.g. drawing
on Hoffmann’s criteria as just mentioned).

Algorithm 1 SRE
1: procedure SRE(s0, sOLD

∗ , h, πs0,sOLD
∗

, sNEW
∗ , R)

2: γ ← 0
3: open← {(r, r) | r ∈ R}
4: closed← ∅
5: while open 6= ∅ do
6: γ ← γ + 1
7: (s, ref s)← argmin(m,ref m)∈open f(m, ref m, γ)

8: if (sOLD
∗ ∪ sNEW

∗ ) ⊆ s then
9: return path to s

10: closed← closed ∪ {(s, ref s)}
11: for m ∈ successors(s) do
12: ref m ← ref s
13: if ((m, ref m) 6∈ (open ∪ closed) or

g(ref m,m) < gold(ref m,m)) then
14: open = open ∪ {(m, ref m)}
15: return fail

16: f :: (m, ref m, γ) 7→ g(s0, ref m)+
g(ref m,m) + h(m)+
overshot(m, ref m, γ)

Simultaneous Re-Planning and Execution
We now describe our simultaneous re-planning and execu-
tion algorithm SRE, which is an extension of A∗ to solve
COJA tasks. We first specify the algorithm (and how it re-
lates to A∗), then we discuss its theoretical properties.

Algorithm
Algorithm 1 shows the pseudocode of the SRE algorithm.
Its structure closely resembles the structure of A∗, and the
important differences in the pseudocode are highlighted in
red.

In contrast to A∗, SRE uses a set of potential starting
nodes, which we call reference nodes and which are given
to the algorithm as a parameter R. These starting nodes are
different “guesses” on which state the agent will be in when
the planning finishes. Each reference node is a potential last
state of the current plan towards sOLD

∗ before deviating from
it (the current plan is also given as a parameter πs0,sOLD

∗
).

The open list (open) is initialized using the reference
nodes (line 3). Each element of open is a pair containing
the search node and its corresponding reference node (the
node at which it deviates from the original plan). Each newly
created search node retains the reference node of its parent
(line 12).

Like in A∗, nodes in the open list are expanded in a best-
first order according to a scoring function f , and put into
the closed list afterwards. When a node is expanded, its suc-
cessors are inserted into the open list if they are new or are
reached with a lower g-value than before (line 13).

Line 8 shows the termination condition. Following Defi-
nition 2, we must check whether both the original goal sOLD

∗
and the new goal sNEW

∗ are achieved.
Finally, the most important difference is the ordering

function f for the open list (line 16). The modified f -



function has three parameters1: a node, its reference node,
and the number of expansions made by the algorithm so
far, γ. The f -function assigns a score to a pair (m, ref m)
based on three parts. The first part is g(s0, ref m).2 It rep-
resents the time required to move from the initial node
s0 to the reference node that was used to reach m. The
second part is g(ref m,m) + h(m), the same as A∗’s f -
function. It represents the time needed to get from the ref-
erence node ref m to m, the node under consideration, com-
bined with the estimate of the time needed to reach the goal
from m. The third part depends on the function denoted by
overshot(m, ref m, γ). This represents the penalty of having
to go back to the correct reference node if the agent has al-
ready moved past it before planning finishes. This is possible
because in COJA tasks, states are recoverable.

We denote the heuristic function estimating the remain-
ing number of expansions until planning finishes by η(m).
In order to connect this to the execution time, the number
of expansions is multiplied by the time per expansion texp
(Burns, Ruml, and Do 2013).

We define the overshot function with respect to a node m,
its reference node ref m, and the number of expansions so
far γ. Let ~α be the subsequence of actions on πs0,sOLD

∗
taking

the agent from the reference node ref m to the state in which
it would be at time (γ+η(m)) · texp if planning is estimated
to end after the execution reaches ref m, and an empty se-
quence otherwise. Let ~α be the recovery sequence of ~α. The
overshot is then defined as overshot(m, ref m, γ) =
C(~α) + C( ~α) + max((γ + η(m)) · texp − C(πs0,sOLD

∗
), 0).

The overshot is 0 if the planning is estimated to finish
before reaching the reference node ref m. Otherwise, it de-
scribes the additional execution time incurred by moving
past the reference node and back. If planning takes longer
than total execution of πs0,sOLD

∗
, then the agent will addition-

ally have to wait in sn, the last node of πs0,sOLD
∗

(this is de-
scribed by the last term of the overshot function).

Consider the following illustration:

time

current execution

γ · texp η(m) · texp

snref m

overshot

The red dashed bar denotes the time needed to execute the
current plan leading to sn ⊆ sOLD

∗ . The green bar labeled by
γ · texp is time spent planning so far and the dashed green
bar (η(m) · texp) shows the estimation on when the planning
will finish. In the illustration, the planning time is estimated
to exceed the time when the selected reference node ref m
is reached. The overshot describes this additional execution
time, plus the time it takes to go back to ref m.

Having γ as an argument for f has an interesting conse-
quence: it now matters when the function f is evaluated for
the relative order of the nodes in open. In practice, we do not
re-evaluate f on all the nodes in the open list each time the

1s0 is treated as a default parameter
2In SRE the g-function takes two arguments, and returns the

cost (time in our context) from the first to the second. In A∗ this is
implicit as it is only used to denote the cost from the initial node.

best element is retrieved (line 7). Instead, we approximate
the value of f -function by keeping the search nodes sorted
only by g + h, but separately for each reference node. Sub-
sequently, we do the full evaluation only to select the next
reference node for which a node should be expanded using
the nodes with minimal g + h for each reference node. This
approximation is justified by the fact that a changed value of
γ affects all the nodes corresponding to the same reference
node equally. The loss of precision comes from disregarding
differences in η.

Coming back to the classical A∗ formulation, note that
there is a parallelism between g and γ · texp (execution time
and planning time so far) as well as between h and η·texp (es-
timated time till the end of execution and planning, respec-
tively). There is an important difference though: while ex-
ploring a node will not influence the g value of other nodes,
γ will change its value for all nodes expanded in the future.
Note additionally that the true value of function g (usually
denoted by g∗) does not depend in any way on heuristic g. In
contrast, how many expansions are needed until the end of
planning (denoted by η∗) depends on the heuristic function
η.

Theoretical Analysis
For A∗, it can be shown that the algorithm finds an optimal
solution, provided that the heuristic function is admissible
(and nodes can be reopenend). A similar guarantee can not
be given for SRE. The essential difference between the two
settings (and thus necessarily between the two algorithms) is
that for a classical planning task, the exploration of the state
space during the planning phase comes at no cost. On the
other hand, in an online setting, exploring a part of the search
space that is not going to be used in the solution can decrease
the quality of the final plan, since that time was not used
effectively. Therefore, unless the heuristic functions η and
h were perfect, there is no guarantee that SRE will find an
optimal solution. We are, however, able to prove that SRE’s
stopping policy is the correct one. Moreover, in this section,
we revisit the baselines mentioned in the introduction and
analyze the circumstances under which they can outperform
SRE.

SRE stops the search as soon as the first state compli-
ant with both of its goals is found, which raises the ques-
tion if there is some trade-off between continuing the search
and the quality of the solution. We show that continuing the
search can not result in a better plan, assuming the heuristic
functions h and η are admissible.

We will use h∗(m) to denote the true value of the cost
to reach the goal from m, and η∗(m) to denote the num-
ber of expansions from node m to the end of planning.
Following the same notation style, f∗(m, ref m, γm), and
overshot∗(m, ref m, γm) denote functions f and overshot
calculated using h∗(m) and η∗(m) instead of the heuristics
h and η. We are using the notation γ = γm to indicate that
the third argument of the f -function is the value of γ when
the node m was explored.

Theorem 1. Let h be admissible with respect to planned
execution time and η admissible with respect to number



of expansions. Additionally, assume that for the path α
that is a prefix of the path α′ it holds C(~α) + C( ~α) ≤
C(~α′) + C( ~α′) (well-behaved recovery paths). Let σ1 =
s0s1 . . . sip1p2 . . . pm be the sequence of states correspond-
ing to the first solution π1 found by SRE (si is the reference
node and pm is the final state of σ1). Assume the algorithm
continued the search and found another solution, with its se-
quence of states being σ2 = s0s1 . . . sjq1q2 . . . qn (sj is the
reference node and qn is the final state of σ2). It holds that
f∗(pm, si, γpm) ≤ f∗(qn, sj , γqn)

Proof.

f∗(pm, si, γpm) =

= g(s0, si) + g(si, pm) + overshot∗(pm, si, γpm)

= f(pm, si, γpm) (1)
≤ f(ql, sj , γpm) (2)
= g(s0, sj) + g(sj , ql) + h(ql) + overshot(ql, sj , γpm)

≤ g(s0, sj) + g(sj , ql) + h∗(ql) + overshot∗(ql, sj , γpm)
(3)

≤ g(s0, sj) + g(sj , ql) + h∗(ql) + overshot∗(ql, sj , γql)
(4)

≤ g(s0, sj) + g(sj , qn) + overshot∗(qn, sj , γqn) (5)
= f∗(qn, sj , γqn)

The true cost of the solution π1 is f∗(pm, si, γpm) =
g(s0, si) + g(si, pm) + overshot∗(pm, si, γpm). Following
the search structure of SRE, at some point we chose to ex-
pand pm. Since pm is the last node on the path and our
heuristic functions are admissible, the true cost f∗ is equal
to the cost function f (equality 1). Inequality 2 comes from
our choice of the node pm over some node ql from σ2.
The admissibility of function η and the assumption of well-
behaved recovery paths yields the admissibility of the func-
tion overshot . Having h and overshot admissible with re-
spect to h∗ and overshot∗, we get inequality 3.

If the overshot would be calculated at some later point γql
when exploring ql, its value would be greater or equal to the
value at time point γpm (inequality 4). Finally, inequality 5
results from γqn + η∗(qn) = γql + η∗(ql) and the fact that
g(sj , ql) + h∗(ql) ≤ g(sj , qn).

We initially described SRE as A∗ with multiple poten-
tial starting nodes that accounts for planning times. A dif-
ferent intuition can be obtained by thinking of SRE as simi-
lar to running multiple instances of A∗ with different initial
states, and giving them computation time depending on the
value of their f -function, combined with reasoning about
the time that has passed and the time needed to finish the
search. However, different search instances may influence
each other, as the time passes for all of them simultaneously
and thus affects their reasoning about planning time.

In SRE, the set of reference nodes R is considered to be
supplied by the user (a parameter the user can adjust de-
pending on the application). IfR would have many elements
(e.g., all the nodes of the original plan), it would saturate
the processor, but the decision on when to deviate from the
original plan would not be limited by sparsity of the set of

reference nodes. If R = {sn}, containing only the last node
of the original plan, then SRE collapses to the baseline that
always finishes execution before starting a new plan, thus
missing out on the opportunities to deviate from the original
plan to make progress towards the new job.

Planning for only one node limits the possibilities the
agent has, but focuses the effort (there is no split attention
between paths from different reference nodes). Thus, even
though SRE offers the advantage of deviating from the orig-
inal path sooner and finding a better path that way, there is
no guarantee it will always outperform the baseline. Con-
sider a scenario in which R = {r, sn} and the optimal path
starts from sn. Furthermore, the planning time, if planned
only for sn as the initial node, is exactly the time that the
agent will take to execute the original path (so the baseline
does not have any waiting time in sn). If at any point, due
to imprecise heuristic functions, SRE would explore a node
with r as its reference node, the time would be irretrievably
lost and the agent would have to wait in sn until planning is
finished.

The same is true for the second baseline we are consid-
ering: stopping the execution immediately when a new job
arrives. If moving any further along the original plan is get-
ting the agent further away from the new goal (and the old
goal may also be achieved on a plan towards the new one),
SRE will be outperformed as it will have to move back even-
tually.

Having noted the situations in which the baselines outper-
form SRE, outside the edge cases, SRE’s parallel planning
and execution on the one side, and the flexibility in choos-
ing when to deviate from the original plan on the other side,
makes it better suited for tasks with jobs arriving online.

Experiments
We implemented SRE in Fast Downward (Helmert 2006). In
our implementation, we use a standard A∗ open list for each
reference node, using the SRE extensions to the f -function
only to select the open list to be used for the next expansion
to avoid having to re-sort the open list. When overshooting
a reference node, our implementation assumes that each ac-
tion has an inverse action with the same cost.

Like Bugsy (Burns, Ruml, and Do 2013), we estimate the
remaining number of expansions as η(m) = delay ∗ d(m)
(Dionne, Thayer, and Ruml 2011), where delay is the (mov-
ing) average number of expansions between inserting a node
into the open list and expanding it, and d is an estimation
of the remaining steps to the goal (like h, but ignoring ac-
tion costs) under node m. The expansion delay is important
to counteract search vacillation (Dionne, Thayer, and Ruml
2011), referring to the search fluctuating between different
solution paths and, in our case, potentially of different refer-
ence nodes.

Our key performance metric is the total time, i.e. overall
time for planning and execution. We are using an instance-
specific factor to translate plan cost into execution time as a
number of expansions, so the total time is also measured in
number of expansions.

In all experiments, the popular FF heuristic (Hoffmann
and Nebel 2001) is used to guide the search. For the expan-



sion delay, we use a moving average over the last 100 expan-
sions. The experiments were run on a cluster of Intel Xeon
E5-2660 CPUs with a clock rate of 2.20 GHz. The time and
memory limits were set to 30 minutes respectively 4 GB.

Benchmarks
We adapted the IPC domains Elevators, Logistics, Rovers,
Tidybot, Transport, and VisitAll to our setting, as represen-
tatives of applications where goals have a job-like nature in
the sense of (i) recoverable states and (ii) stable goals. We
included some variance though to test borderline situations.
Elevators, Logistics, Transport, and VisitAll satisfy (i) and
(ii), plus the additional assumption that an action sequence
~α and its recovery sequence ~α have the same cost. Rovers
also satisfies (i) and (ii), but not the same-cost assumption:
actions like taking an image don’t need to be inverted. In
assuming the opposite, our implementation is pessimistic
which may adversely affect the plan cost reported. In Tidy-
bot, finally, there are cases where objects are placed behind
each other, and the robot cannot reach behind the object in
the front. We added an “un-finish” action to ensure (i) re-
coverability. However, previously finished objects must be
picked up again in these cases. Thus the nice-to-have condi-
tion (ii) is not satisfied.

The instances were adapted by splitting the set of goals
in two: the first half is available in the beginning, and the
other one becomes available later. The second set of goals
is scheduled to appear during the execution of the first com-
puted plan to obtain interesting instances. Since we are inter-
ested in a combination of planning and execution time, we
need to convert both into the same unit.

A run of SRE on one such instance will look as follows:

time

initial planning

initial (planned) execution

reference nodes

new set of goals appears

The initially computed plan is being executed as a new job
arrives. Here, the planner considers 5 reference nodes as po-
tential initial states for the new plan.

time

initial planning

initial execution

second planning

second execution

selected reference node

The planner has computed an updated plan that starts from
the second to last reference node. The initially computed
plan is executed until that point before switching to the new
plan. The total time is the time from the start of the first
planning phase to the end of the overall execution.

In order to obtain interesting benchmark instances, we
tried to ensure that the second planning phase starts and ends
during the first planned execution. Thus, we let the second
set of goals appear after a fraction of 0.1 of the initial plan
is executed. We estimated the length of the second planning
phase by running the planner offline with all goals enabled,
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1.85

1.9

·104

Figure 1: Total time as geometric mean over all instances
(Y-axis) for SRE with different numbers of reference nodes
(X-axis).
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Figure 2: Total time as geometric mean over all instances rel-
ative to stopping and re-planning immediately (Y-axis) for
E = 0.2, 0.3, . . . , 0.9 (X-axis).

and used that to generate instances where the second plan-
ning phase is estimated to end at E = 0.2, 0.3, . . . , 0.9 of
the initially planned execution. This is achieved by adjusting
the factor for the translation of the action cost to execution
time, thereby changing the duration of the initially planned
execution.

Results
SRE has one important parameter: the selection of the ref-
erence nodes. In our implementation, we set a number of
reference nodes nR, which are then selected in uniform in-
tervals from the current plan. Figure 1 shows the total time
(in number of expansions) for different values of nR across
our full benchmark set. If there are too few reference nodes,
the algorithm does not have the best starting point for the
next plan available. On the other hand, the performance also
decreases slightly if too many reference nodes are used, as
it becomes more difficult to settle on the most promising
one quickly (especially if the planning time estimation is
not very accurate). On average, SRE chooses nodes for ex-
pansion corresponding to the reference node which is used
for the solution 34% of the time, more for fewer reference
nodes (43% for nR = 3), and less the more reference nodes
are used (28% for nr = 24). The overall best results are
obtained with nR = 8, and we use that setting for the re-
maining experiments.

We compare SRE to the two baselines: (a) finishing exe-
cution while planning only for the new goals and (b) stop-



ping execution and re-planning immediately. Figure 2 shows
the results for different expected end points of the second
planning phase, as total time relative to the performance of
stopping and re-planning immediately. If the planning time
is very short compared to the execution time (small values of
E), stopping works well. However, if planning is non-trivial
(E ≥ 0.3), SRE performs better. Furthermore, SRE always
outperforms baseline (a), for all values of E on all domains.
On average, SRE reduces the total time by 6.9% compared
to stopping and re-planning immediately, and by 5.6% com-
pared to finishing the planned execution. The results are sim-
ilar across all domains, except that the relative strength of the
baselines differs. On Transport and VisitAll, stopping is bet-
ter than finishing for E ≤ 0.6 respectively E ≤ 0.7, though
SRE is the best algorithm for E ≥ 0.4. On Rovers, stop-
ping is only better than finishing for E = 0.2, and SRE is
the best algorithm for all values ofE. The biggest advantage
over both baselines is obtained in Elevators, with a total time
reduction 7.1% and 7% over stopping and finishing respec-
tively.

Both baselines waste time, though in different ways. Halt-
ing the execution is inefficient as the agent is idle while plan-
ning. Finishing the execution exploits the parallelism of pro-
ceeding with the execution. However, planning only for the
second set of goals is usually quite fast, and there would be
more time available while waiting for the execution of the
initial plan to finish. SRE uses this time more efficiently to
compute better overall plans, and effectively improves the
combined planning and execution time over both baselines.

Conclusion

Many planning applications feature the arrival of new jobs
while a plan is already being executed. We introduced
an algorithm, SRE, which solves this problem effectively:
planning simultaneously for multiple potential initial states
while proceeding with the execution. The algorithm is aware
of its own planning time to select such an initial state in an
informed manner. On a set of planning benchmarks, SRE
clearly outperforms both vanilla solutions, (a) finishing ex-
ecution prior to executing the new plan, and (b) stopping
execution and waiting for re-planning to terminate.

An interesting question for future research is whether our
approach can be extended to, and be useful in, situations
with unrecoverable states, i.e., where goals may be in di-
rect conflict. We also believe that our ideas may be brought
to bear on domain-specific solutions to achieve better per-
formance, for example in warehouse logistics.
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