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ABSTRACT

Neural network quantization is becoming an industry standard to efficiently deploy
deep learning models on hardware platforms, such as CPU, GPU, TPU, and FPGAs.
However, we observe that the conventional quantization approaches are vulnerable
to adversarial attacks. This paper aims to raise people’s awareness about the security
of the quantized models, and we designed a novel quantization methodology
to jointly optimize the efficiency and robustness of deep learning models. We
first conduct an empirical study to show that vanilla quantization suffers more
from adversarial attacks. We observe that the inferior robustness comes from
the error amplification effect, where the quantization operation further enlarges
the distance caused by amplified noise. Then we propose a novel Defensive
Quantization (DQ) method by controlling the Lipschitz constant of the network
during quantization, such that the magnitude of the adversarial noise remains
non-expansive during inference. Extensive experiments on CIFAR-10 and SVHN
datasets demonstrate that our new quantization method can defend neural networks
against adversarial examples, and even achieves superior robustness than their full-
precision counterparts, while maintaining the same hardware efficiency as vanilla
quantization approaches. As a by-product, DQ can also improve the accuracy of
quantized models without adversarial attack.

1 INTRODUCTION

Neural network quantization (Han et al., 2015; Zhu et al., 2016; Jacob et al., 2017) is a widely used
technique to reduce the computation and memory costs of neural networks, facilitating efficient
deployment. It has become an industry standard for deep learning hardware. However, we find that the
widely used vanilla quantization approaches suffer from unexpected issues — the quantized model is
more vulnerable to adversarial attacks (Figure 1). Adversarial attack is consist of subtle perturbations
on the input images that causes the deep learning models to give incorrect labels (Szegedy et al., 2013;
Goodfellow et al.). Such perturbations are hardly detectable by human eyes but can easily fool neural
networks. Since quantized neural networks are widely deployed in many safety-critical scenarios,
e.g., autonomous driving (Amodei et al., 2016), the potential security risks cannot be neglected. The
efficiency and latency in such applications are also important, so we need to jointly optimize them.

The fact that quantization leads to inferior adversarial robustness is counter intuitive, as small
perturbations should be denoised with low-bit representations. Recent work (Xu et al., 2017) also
demonstrates that quantization on input image space , i.e. color bit depth reduction, is quite effective
to defend adversarial examples. A natural question then rises, why the quantization operator is yet
effective when applied to intermediate DNN layers? We analyze that such issue is caused by the
error amplification effect of adversarial perturbation (Liao et al., 2018) — although the magnitude of
perturbation on the image is small, it is amplified significantly when passing through deep neural
network (see Figure 3b). The deeper the layers are, the more significant such side effect is. Such
amplification pushes values into a different quantization bucket, which is undesirable. We conducted
empirical experiments to analyze how quantization influences the activation error between clean and
adversarial samples (Figure 3a): when the magnitude of the noise is small, activation quantization is
capable of reducing the errors by eliminating small perturbations; However, when the magnitude of
perturbation is larger than certain threshold, quantization instead amplify the errors, which causes

1



Published as a conference paper at ICLR 2019

No or little loss 
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bit=5

(a) Quantization preserves the accuracy till 4-5 bits
on clean image.

Large drop 
of robustness 
at bit=5

(b) Quantization no longer preserves the accuracy
under adversarial attack (same legend as left).

Figure 1. Quantized neural network are more vulnerable to adversarial attack. Quantized models have no loss
of accuracy on clean image (≥5 bits), but have significant loss of accuracy under adversarial attack compared to
full precision models. Setup: VGG-16 and Wide ResNet on the test set of CIFAR-10 with FGSM attack.

the quantized model to make mistakes. We argue that this is the main reason causing the inferior
robustness of the quantized models.

In this paper, we propose Defensive Quantization (DQ) that not only fixes the robustness issue of
quantized models, but also turns activation quantization into a defense method that further boosts
adversarial robustness. We are inspired by the success of image quantization in improving robustness.
Intuitively, it will be possible to defend the attacks with quantization operations if we can keep
the magnitude of the perturbation small. However, due to the error amplification effect of gradient
based adversarial samples, it is non-trivial to keep the noise at a small scale during inference.
Recent works (Cisse et al., 2017; Qian & Wegman, 2018) have attempted to make the network
non-expansive by controlling the Lipschitz constant of the network to be smaller than 1, which has
smaller variation change in its output than its input. In such case, the input noise will not propagate
through the intermediate layers and impact the output, but attenuated. Our method is built on the
theory. Defensive quantization not only quantizes feature maps into low-bit representations, but also
controls the Lipschitz constant of the network, such that the noise is kept within a small magnitude for
all hidden layers. In such case, we keep the noise small, as in the left zone of Figure 3a, quantization
can reduce the perturbation error. The produced model with our method enjoys better security and
efficiency at the same time.

Experiments show that Defensive Quantization (DQ) offers three unique advantages. First, DQ
provides an effective way to boost the robustness of deep learning models while maintains the
efficiency. Second, DQ is a generic building block of adversarial defense, which can be combined
with other adversarial defense techniques to advance state-of-the-art robustness. Third, our method
makes quantization itself easier thanks to the constrained dynamic range.

2 BACKGROUND AND RELATED WORK

2.1 MODEL QUANTIZATION

Neural network quantization (Han et al., 2015; Rastegari et al., 2016; Zhou et al., 2016; Courbariaux
& Bengio, 2016; Zhu et al., 2016)) are widely adopted to enable efficient inference. By quantizing
the network into low-bit representation, the inference of network requires less computation and
less memory, while still achieves little accuracy degradation on clean images. However, we find
that the quantized models suffer from severe security issues — they are more vulnerable against
adversarial attacks compared to full-precision models, even when they have the same clean image
accuracy. Adversarial perturbation is applied to the input image, thus it is most related to activation
quantization (Dhillon et al., 2018). We carry out the rest of the paper using ReLU6 based activation
quantization (Howard et al., 2017; Sandler et al., 2018), as it is computationally efficient and is widely
adopted by modern frameworks like TensorFlow (Abadi et al., 2016). As illustrated in Figure 2, a
quantized convolutional network is composed of several quantized convolution block, each containing
a serial of conv + BN + ReLU6 + linear quantize operators. As the quantization operator has
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Figure 2. Defensive quantization with Lipschitz regularization.

0 gradient almost everywhere, we followed common practice to use a STE (Bengio et al., 2013)
function y = x+ stop gradient[Quantize(x)− x] for gradient computation, which also eliminates
the obfuscated gradient problem (Athalye et al., 2018).

Our work bridges two domains: model quantization and adversarial defense. Previous work (Galloway
et al., 2017) claims binary quantized networks can improve the robustness against some attacks.
However, the improvement is not substantial and they used randomized quantization, which is not
practical for real deployment (need extra random number generators in hardware). It also causes
one of the obfuscated gradient situations (Athalye et al., 2018): stochastic gradients, leading to a
false sense of security. Rakin et al. (2018) tries to use quantization as an effective defense method.
However, they employed Tanh-based quantization, which is not hardware friendly on fixed-point units
due to the large overhead accessing look-up table. Even worse, according to our re-implementation,
their method actually leads to severe gradient masking problem (Papernot et al., 2016a) during
adversarial training, due to the nature of Tanh function (see A.1 for detail). As a result, the actual
robustness of this work under black-box attack has no improvement over full-precision model and is
even worse. Therefore, there is no previous work that are conducted under real inference setting to
study the quantized robustness for both black-box and white-box. Our work aim to raise people’s
awareness about the security of the actual deployed models.

2.2 ADVERSARIAL ATTACKS & DEFENSES

Given an image X, an adversarial attack method tries to find a small perturbation ∆ with constraint
||∆|| ≤ ε, such that the neural network gives different outputs for X and Xadv , X + ∆. Here
ε is a scalar to constrain the norm of the noise (e.g., ε = 8 is commonly used when we represent
colors from 0-255), so that the perturbation is hardly visible to human. For this paper we choose
to study attacks defined under || · ||∞, where each element of the image can vary at most ε to form
an adversary. We introduce several attack and defense methods used in our work in the following
sections.

2.2.1 ATTACK METHODS

Random Perturbation (Random) Random perturbation attack adds a uniform sampled noise
within [−ε, ε] to the image, The method has no prior knowledge of the data and the network, thus is
considered as the weakest attack method.

Fast Gradient Sign Method (FGSM) & R+FGSM Goodfellow et al. proposed a fast method to
calculate the adversarial noise by following the direction of the loss gradient ∇XL(X, y), where
L(X, y) is the loss function for training (e.g. cross entropy loss). The adversarial samples are
computed as:

Xadv = X + ε ∗ sign(∇XL(X, y)) (1)

As FGSM is an one-step gradient-based method, it can suffer from sharp curvature near the data
points, leading a false direction of ascent. Therefore, Tramèr et al. (2017) proposes to prepend FGSM
by a random step to escape the non-smooth vicinity. The new method is called R+FGSM, defined as
follows, for parameters ε and ε1 (where ε1 < ε):

Xadv = X′ + (ε− ε1) ∗ sign(∇XL(X, y)),where X′ = X + ε1 ∗ sign(N (0d, Id)). (2)

In our paper, we set ε1 = ε/2 following Tramèr et al. (2017).

Basic Iterative Method (BIM) & Projected Gradient Descend (PGD) Kurakin et al. (2016)
suggests a simple yet much stronger variant of FGSM by applying it multiple times iteratively with a
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Table 3

2-Bit Quantized 4-Bit Quantized 6-Bit Quantized 8-Bit Quantized Full Precision

0 1 0.05988395808439
349

1 0 1 0 1 0 1 0

0.46 2.0000 0.46921857947162
576

2.0000 0 2.0000 0.332712 2.0000 0 2.0000 0.2896

0.72 3.0000 0.75508619994314
32

3.0000 0.6733 3.0000 0.6304687265237110000 3.0000 0.6050 3.0000 0.5774

1.05 4.0000 0.90917467235393
6

4.0000 0.7761 4.0000 0.69524474064087600 4.0000 0.6601 4.0000 0.6252

1.27 5.0000 0.84354168020697
52

5.0000 0.7445 5.0000 0.70679410870240300 5.0000 0.6733 5.0000 0.6748

1.44 6.0 0.95666628541334
33

6.0 0.9097 6.0 0.8250 6.0 0.7665 6.0 0.7683

1.58 7.0000 1.01211496414316
4

7.0000 1.005 7.0000 0.9032 7.0000 0.8307 7.0000 0.8325

1.7 8.0000 0.98628442443606
38

8.0000 0.9515 8.0000 0.86693617000095300 8.0000 0.80045166445080300 8.0000 0.788

1.81 9.0000 1.06819201784740
03

9.0000 1.0577 9.0000 0.977219 9.0000 0.8388344297226030 9.0000 0.8151

2.0 10.000 1.09937739124844
81

10.000 1.1288 10.000 1.023 10.000 0.8246 10.000 0.7588

2.27 11.0000 1.10909185824266
85

11.0000 1.1015 11.0000 1.0199 11.0000 0.8027 11.0000 0.7192

2.78 12.00 1.20793207402883
7

12.00 1.1706 12.00 1.099673 12.00 0.827749 12.00 0.7486

13.00 1.28888988272241
33

13.00 1.1754 13.00 1.097803 13.00 0.829665 13.00 0.7676
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(a) Noise increases with perturbation strength. Quan-
tization makes the slope deeper.
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(b) With conventional quantization, noise increases
with layer index (the amplification effect).

Figure 3. (a) Comparison of the noise introduced by adversarial-attack, with and without quantization. For small
perturbation, quantization reduces the noise; for large perturbation, quantization magnifies the noise. (b) The
noise amplification effect: the noise is amplified with layer index. Setup: conventional activation quantization
for VGG-16, normalized difference of full-precision and low-precision activation.

small step size α. The method is called BIM, defined as:

Xadv
0 = X, Xadv

n+1 = clipεX{Xadv
n + αsign(∇XL(Xadvn , y))}, (3)

where clipεX means clipping the result image to be within the ε-ball of X. In (Madry et al., 2017),
the BIM is prepended by a random start as in R+FGSM method. The resulting attack is called PGD,
which proves to be a general first-order attack. In our experiments we used PGD for comprehensive
experiments as it proves to be one of the strongest attack. Unlike Madry et al. (2017) that uses a fixed
ε and α, we follow Kurakin et al. (2016); Song et al. (2017) to use α = 1 and number of iterations of
bmin(ε+ 4, 1.25ε)c, so that we can test the model’s robustness under different strength of attacks.

2.2.2 DEFENSE METHODS

Current defense methods either preprocess the adversarial samples to denoise the perturbation (Xu
et al., 2017; Song et al., 2017; Liao et al., 2018) or making the network itself robust (Warde-Farley &
Goodfellow, 2016; Papernot et al., 2016b; Madry et al., 2017; Kurakin et al., 2016; Goodfellow et al.;
Tramèr et al., 2017). Here we introduced several defense methods related to our experiments.

Feature Squeezing Xu et al. (2017) proposes to detect adversarial images by squeezing the input
image. Specifically, the image is processed with color depth bit reduction (5 bits for our experiments)
and smoothed by a 2 × 2 median filter. If the low resolution image is classified differently as the
original image, then this image is detected as adversarial.

Adversarial Training Adversarial training (Madry et al., 2017; Kurakin et al., 2016; Goodfellow
et al.; Tramèr et al., 2017) is currently the strongest method for defense. By augmenting the training set
with adversarial samples, the network learns to classify adversarial samples correctly. As adversarial
FGSM can easily lead to gradient masking effect (Papernot et al., 2016a), we study adversarial
R+FGSM as in (Tramèr et al., 2017). We also experimented with PGD training (Madry et al., 2017).

Experiments show that above defense methods can be combined with our DQ method to further
improve the robustness. The robustness has been tested under the aforementioned attack methods.

3 CONVENTIONAL NN QUANTIZATION IS NOT ROBUST

Conventional neural network quantization is more vulnerable to adversarial attacks. We experimented
with VGG-16 (Simonyan & Zisserman, 2014) and a Wide ResNet (Zagoruyko & Komodakis, 2016)
of depth 28 and width 10 on CIFAR-10 (Krizhevsky & Hinton, 2009) dataset. We followed the
training protocol as in (Zagoruyko & Komodakis, 2016). Adversarial samples are generated with a
FGSM (Goodfellow et al.) attacker (ε = 8) on the entire test set. As in Figure 1, the clean image
accuracy doesn’t significantly drop until the model is quantized to 4 bits (Figure 1a). However, under
adversarial attack, even with 5-bit quantization, the accuracy drastically decreased by 25.3% and
9.2% respectively. Although the full precision model’s accuracy has dropped, the quantized model’s

4



Published as a conference paper at ICLR 2019

Large increase of 
perturbed range

Layer 1 Layer 2 Layer t

…

…

Original Value

Original Value

Perturbed RangeVanilla Quantization

Defensive Quantization

Small increase of 
perturbed range. 

The large accumulated error 
pushes the activation to a 
different quantization bucket

Quantization Bucket

Activations stay within the 
same quantization bucket.

Error Amplify

�1

Figure 4. The error amplification effect prevents activation quantization from defending adversarial attacks.

accuracy dropped much harder, showing that the conventional quantization method is not robust.
Clean image accuracy used to be the sole figure of merit to evaluate a quantized model. We show that
even when the quantized model has no loss of performance on clean images, it can be much more
easily fooled compared to full-precision ones, thus raising security concerns.

Input image quantization, i.e., color bit depth reduction is an effective defense method (Xu et al.,
2017). Counter intuitively, it does not work when applied to hidden layers, and even make the
robustness worse. To understand the reason, we studied the effect of quantization w.r.t. different
perturbation strength. We first randomly sample 128 images X from the test set of CIFAR-10, and
generate corresponding adversarial samples Xadv. The samples are then fed to the trained Wide
ResNet model. To mimic different strength of activation perturbation, we vary the ε from 1 to 8.
We inspected the activation after the first convolutional layer f1 (Conv + BN + ReLU6), denoted
as A1 = f1(X) and Aadv

1 = f1(A
adv). To measure the influence of perturbation, we define a

normalized distance between clean and perturbed activation as:

D(A,Aadv) = ||A−Aadv||2/||A||2 (4)

We compareD(A,Aadv) andD(Quantize(A),Quantize(Aadv)), where Quantize indicates uniform
quantization with 3 bits. The results are shown in Figure 3a. We can see that only when ε is small,
quantization helps to reduce the distance by removing small magnitude perturbations. The distance
will be enlarged when ε is larger than 3.

The above experiment explains the inferior robustness of the quantized model. We argue that such
issue arises from the error amplification effect (Liao et al., 2018), where the relative perturbed distance
will be amplified when the adversarial samples are fed through the network. As illustrated in Figure 4,
the perturbation applied to the input image has very small magnitude compared to the image itself
(±8 versus 0− 255), corresponding to the left zone of Figure 3a (desired), where quantization helps
to denoise the perturbation. Nevertheless, the difference in activation is amplified as the inference
carries on. If the perturbation after amplification is large enough, the situation corresponds to the
right zone (actual) of Figure 3a, where quantization further increases the normalized distance. Such
phenomenon is also observed in the quantized VGG-16. We plot the normalized distance of each
convolutional layer’s input in Figure 3b. The fewer bits in the quantized model, the more severe the
amplification effect.

4 DEFENSIVE QUANTIZATION

Given the robustness limitation of conventional quantization technique, we propose Defensive
Quantization (DQ) to defend the adversarial examples for quantized models. DQ suppresses the noise
amplification effect, keeping the magnitude of the noise small, so that we can arrive at the left zone
(Figure 3a, desired) where quantization helps robustness instead of making it worse.

We control the neural network’s Lipschitz constant (Szegedy et al., 2013; Bartlett et al., 2017; Cisse
et al., 2017) to suppress network’s amplification effect. Lipschitz constant describes: when input
changes, how much does the output change correspondingly. For a function f : X → Y , if it satisfies

DY (f(x1), f(x2)) ≤ kDX(x1, x2), ∀x1, x2 ∈ X (5)

for a real-valued k ≥ 0 and some metrics DX and DY , then we call f Lipschitz continuous and k is
the known as the Lipschitz constant of f . If we consider a network f with clean inputs x1 = X and
corresponding adversarial inputs x2 = Xadv, the error amplification effect can be controlled if we
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Table 1. The clean and adversarial accuracy of Wide ResNet on CIFAR-10 test set. We compare the accuracy of
full-precision and quantized models. With our DQ method, we not only eliminate the robustness gap between
full-precision and quantized models, but also improve the robustness over full-precision ones. The accuracy
gain from quantization compared to the full-precision model (Quantize Gain) has gradually been improved as β
increases. Bold and underline numbers are the first and second highest accuracy at each row.

Method Acc. Full
Prec.

Quantize Bit Quantize
Gain

Best
Acc.1 2 3 4 5

Vanilla clean 94.8 42.0 84.9 92.8 93.9 94.7
adv. 39.3 9.0 8.5 14.1 19.0 30.2 -9.1 39.3

DQ (β =3e-4) clean 95.3 95.2 95.3 95.1 95.1 95.1
adv. 41.8 43.2 41.1 40.1 39.8 39.3 +1.4 43.2

DQ (β =6e-4) clean 95.6 95.7 95.2 95.4 95.6 95.5
adv. 45.7 48.3 47.9 43.8 43.9 44.6 +2.6 48.3

DQ (β =1e-3) clean 95.9 95.8 95.6 95.6 95.8 95.8
adv. 49.1 51.3 50.4 51.3 49.8 51.8 +2.7 51.8

have a small Lipschitz constant k (in optimal situation we can have k ≤ 1). In such case, the error
introduced by adversarial perturbation will not be amplified, but reduced. Specifically, we consider a
feed-forward network composed of a serial of functions:

f(x) = (φl ◦ φl−1 ◦ ... ◦ φ1)(x) (6)

where φi can be a linear layer, convolutional layer, pooling, activation functions, etc. Denote the
Lipschitz constant of a function f as Lip(f), then for the above network we have

Lip(f) ≤
L∏

i=1

Lip(φi) (7)

As the Lipschitz constant of the network is the product of its individual layers’ Lipschitz constants,
Lip(f) can grow exponentially if Lip(φi) > 1. This is the common case for normal network
training (Cisse et al., 2017), and thus the perturbation will be amplified for such a network. Therefore,
to keep the Lipschitz constant of the whole network small, we need to keep the Lipschitz constant
of each layer Lip(φi) ≤ 1. We call a network with Lip(φi) ≤ 1,∀i = 1, ..., L a non-expansive
network.

We describe a regularization term to keep the Lipschitz constant small. Let us first consider linear
layers with weight W ∈ Rcout×cin under || · ||2 norm. The Lipschitz constant is by definition
the spectral norm of W : ρ(W), i.e., the maximum singular value of W. Computing the singular
values of each weight matrix is not computationally feasible during training. Luckily, if we can
keep the weight matrix row orthogonal, the singular values are by nature equal to 1, which meets
our non-expansive requirements. Therefore we transform the problem of keeping ρ(W) ≤ 1 into
keeping WTW ≈ I, where I is the identity matrix. Naturally, we introduce a regularization term
||WTW − I||, where I is the identity matrix. Following (Cisse et al., 2017), for convolutional
layers with weight W ∈ Rcout×cin×k×k, we can view it as a two-dimension matrix of shape
W ∈ Rcout×(cinkk) and apply the same regularization. The final optimization objective is:

L = LCE +
β

2

∑

Wl∈W
||WT

l Wl − I||2 (8)

where LCE is the original cross entropy loss and W denotes all the weight matrices of the neural
network. β is the weighting to adjust the relative importance. The above discussion is based on
simple feed forward networks. For ResNets in our experiments, we also follow Cisse et al. (2017) to
modify the aggregation layer as a convex combination of their inputs, where the 2 coefficients are
updated using specific projection algorithm (see (Cisse et al., 2017) for details).

Our Defensive Quantization is illustrated in Figure 2. The key part is the regularization term, which
suppress the noise amplification effect by regularizing the Lipschitz constant. As a result, the
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Figure 5. The white-box and black-box robustness are consistent: vanilla quantization leads to significant
robustness drop, while DQ can bridge the gap and improve the robustness, especially with lower bits (bit=1).
Setup: white-box and black-box robustness of Wide ResNet with vanilla quantization and defensive quantization.

perturbation at each layer is kept within a certain range, the adversarial noise won’t propagate. Our
method not only fixes the drop of robustness induced by quantization, but also takes quantization as a
defense method to further increase the robustness. Therefore it’s named Defensive Quantization.

5 EXPERIMENTS

Our experiments demonstrate the following advantages of Defensive Quantization. First, DQ can
retain the robustness of a model when quantized with low-bit. Second, DQ is a general and effective
defense method under various scenarios, thus can be combined with other defensive techniques to
further advance state-of-the-art robustness. Third, as a by-product, DQ can also improve the accuracy
of training quantized models on clean images without attacks, since it limits the dynamic range.

5.1 FIXING ROBUSTNESS DROP

Setup: We conduct experiments with Wide ResNet (Zagoruyko & Komodakis, 2016) of 28× 10 on
the CIFAR-10 dataset (Krizhevsky & Hinton, 2009) using ReLU6 based activation quantization, with
number of bits ranging from 1 to 5. All the models are trained following (Zagoruyko & Komodakis,
2016) with momentum SGD for 200 epochs. The adversarial samples are generated using FGSM
attacker with ε = 8.

Result: The results are presented in Table 1. For vanilla models, though the adversarial robustness
increases with the number of bits, i.e., the models closer to full-precision one has better robustness, the
best quantized model still has inferior robustness by −9.1%. While with our Defensive Quantization,
the quantized models have better robustness than full-precision counterparts. The robustness is
better when the number of bits are small, since it can de-noise larger adversarial perturbations. We
also find that the robustness is generally increasing as β gets larger, since the regularization of
Lipschitz constant itself keeps the noise smaller at later layers. At the same time, the quantized
models consistently achieve better robustness. The robustness of quantized model also increases with
β. We conduct a detailed analysis of the effect of β in Section B. The conclusion is: (1) conventional
quantized models are less robust. (2) Lipschitz regularization makes the model robust. (3) Lipschitz
regularization + quantization makes model even more robust.

As shown in (Athalye et al., 2018), many of the defense methods actually lead to obfuscated gradient,
providing a false sense of security. Therefore it is important to check the model’s robustness under
black-box attack. We separately trained a substitute VGG-16 model on the same dataset to generate
adversarial samples, as it was proved to have the best transferability (Su et al., 2018). The results are
presented in Figure 5. Trends of white-box and black-box attack are consistent. Vanilla quantization
leads to inferior black-box robustness, while with our method can further improve the models’
robustness. As the robustness gain is consistent for both white-box and black-box setting, our method
does not suffer from gradient masking.

5.2 DEFEND WITH DEFENSIVE QUANTIZATION

In this section, we show that we can combine Defensive Quantization with other defense techniques
to achieve state-of-the-art robustness.
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Table 2. SVHN experiments tested with ε = 2/8/16. (B) indicates black-box attack.

Training Technique Clean Random FGSM R+FGSM PGD FGSM(B) PGD(B)

Normal 96.8 97/97/96 74/42/26 86/55/35 77/05/00 90/62/40 92/58/30
Normal + DQ 96.7 96/96/96 77/45/31 87/59/40 79/10/00 90/63/42 92/60/31

Feature Squeezing 96.3 96/96/95 69/34/20 84/48/28 72/03/00 89/61/38 91/56/27
Feature Squeezing + DQ 96.2 96/96/96 75/42/28 86/56/36 77/06/00 90/63/40 92/59/30

Adversarial R+FGSM 96.6 97/96/96 84/53/38 91/70/57 87/30/06 93/74/54 94/83/72
Adversarial R+FGSM + DQ 96.6 97/96/95 88/59/40 93/77/61 91/47/17 94/80/61 95/89/84

Setup: We conducted experiments on the Street View House Number dataset (SVHN) (Netzer
et al., 2011) and CIFAR-10 dataset (Krizhevsky & Hinton, 2009). Since adversarial training is time
consuming, we only use the official training set for experiments. CIFAR-10 is another widely used
dataset containing 50,000 training samples and 10,000 testing samples of size 32 × 32. For both
datasets, we divide the pixel values by 255 as a pre-processing step.

Following (Athalye et al., 2018; Cisse et al., 2017; Madry et al., 2017), we used Wide
ResNet (Zagoruyko & Komodakis, 2016) models in our experiments as it is considered as the
standard model on the dataset. We used depth 28 and widening factor 10 for CIFAR-10, and depth 16
and widening factor 4 for SVHN. We followed the training protocol in (Zagoruyko & Komodakis,
2016) that uses a SGD optimizer with momentum=0.9. For CIFAR-10, the model is trained for 200
epochs with initial learning rate 0.1, decayed by a factor of 0.2 at 60, 120 and 160 epochs. For SVHN
dataset, the model is trained for 160 epochs, with initial learning rate 0.01, decayed by 0.1 at 80 and
120 epochs. For DQ, we used bit=1 and β = 2e-3 as it offers the best robustness (see Section B).

We combine DQ with other defense methods to further boost the robustness. For Feature Squeez-
ing (Xu et al., 2017), we used 5 bit for image color reduction, followed by a 2× 2 median filter. As
adversarial FGSM training leads to gradient masking issue (Tramèr et al., 2017) (see A.2 for our
experiment), we used the variant adversarial R+FGSM training. To avoid over-fitting into certain
ε, we randomly sample ε using ε′ ∼ N (0, δ), ε = clip[0,2δ](abs(ε′)). Specifically we used δ = 8
to cover ε from 0-16. During test time, the ε is set to a fixed value (2/8/16). We also conducted
adversarial PGD training. Following (Kurakin et al., 2016; Song et al., 2017), during training we
sample random ε as in R+FGSM setting, and generate adversarial samples using step size 1 and
number of iterations bmin(ε+ 4, 1.25ε)c.
Result: The results are presented in Table 2 and Table 3, where (B) indicates black-box attack with
a seperately trained VGG-16 model. The bold number indicates the best result in its column. We
observe that for all normal training, feature squeezing and adversarial training settings, our DQ
method can further improve the model’s robustness. Among all the defenses, adversarial training
provides the best performance against various attacks, epecially adversarial R+FGSM training. While
white box PGD attack is generally the strongest attack in our experiments. Our DQ method also
consistently improves the black-box robustness and there is no sign of gradient masking. Thus DQ
proves to be an effective defense for various white-box and black-box attacks.

5.3 IMPROVE THE TRAINING OF QUANTIZED MODELS

As a by-product of our method, Defensive Quantization can even improve the accuracy of quantized
models on clean images without attack, making it a beneficial drop-in substitute for normal quantiza-
tion procedures. Due to conventional quantization method’s amplification effect, the distribution of
activation can step over the truncation boundary (0-6 for ReLU6, 0-1 for ReLU1), which makes the
optimization difficult. DQ explicitly add a regularization to shrink the dynamic range of activation,
so that it is fitted within the truncation range. To demonstrate our hypothesis, we experimented with
ResNet and CIFAR-10. We quantized the activation with 4-bit (because NVIDIA recently introduced
INT4 in Turing architecture) using ReLU6 and ReLU1 respectively. Vanilla quantization and DQ
training are conducted for comparison. As shown in Table 4, with vanilla quantization, ReLU1 model
has around 1% worse accuracy than ReLU6 model, although they are mathematically equal if we
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Table 3. CIFAR-10 Experiments tested with ε = 2/8/16. (B) indicates black-box attack.

Training Technique Clean Random FGSM R+FGSM PGD FGSM(B) PGD(B)

Normal 94.8 95/91/77 59/39/29 72/37/17 56/01/00 88/63/36 90/64/42
Normal + DQ 95.9 96/94/84 68/53/42 77/50/30 62/04/00 84/59/40 87/50/27

Feature Squeezing 94.1 94/92/81 61/35/27 76/40/21 64/02/00 87/62/30 89/70/42
Feature Squeezing + DQ 94.9 95/93/82 66/48/33 77/51/29 66/06/01 87/62/29 90/70/43

Adversarial R+FGSM 91.6 92/91/91 81/52/38 87/69/48 84/43/11 92/89/85 92/91/89
Adversarial R+FGSM + DQ 94.0 94/93/93 85/63/51 90/74/58 87/50/22 93/91/87 94/92/92

Adversarial PGD 86.6 86/86/86 74/46/31 79/63/46 76/44/20 84/83/81 84/83/83
Adversarial PGD + DQ 87.5 87/87/87 79/53/36 83/69/52 81/50/22 87/86/82 87/86/86

Table 4. DQ method improves the training of normal quantized models by limiting the dynamic range of
activation. With conventional quantization, ReLU1 suffers from inferior performance than ReLU6. While with
DQ, the gap is fixed, ReLU1 and ReLU6 quantized models achieve similar accuracy.

ReLU1 ReLU6 Difference

Vanilla Quantization 93.49% 94.41% -0.92%
Defensive Quantization 95.14% 95.09% 0.05%

multiply the previous BN scaling by 1/6 and next convolution weight by 6. It demonstrates that
improper truncation function and range will lead to training difficulty. While with DQ training, both
model has improved accuracy compared to vanilla quantization, and the gap between ReLU1 model
and ReLU6 model is filled, making quantization easier regardless of truncation range.

6 CONCLUSION

In this work, we aim to raise people’s awareness about the security of the quantized neural networks,
which is widely deployed in GPU/TPU/FPGAs, and pave a possible direction to bridge two important
areas in deep learning: efficiency and robustness. We connect these two domains by designing a novel
Defensive Quantization (DQ) module to defend adversarial attacks while maintain the efficiency.
Experimental results on two datasets validate that the new quantization method can make the deep
learning models be safely deployed on mobile devices.
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Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420, 2018.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. In Advances in Neural Information Processing Systems, pp. 6240–6249, 2017.

9



Published as a conference paper at ICLR 2019
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A GRADIENT MASKING OF OTHER METHODS

A.1 TANH-BASED ACTIVATION QUANTIZATION LEADS TO FAKE SECURITY

Rakin et al. (2018) tried to use activation quantization as a defense method against adversarial samples.
According to their experiments, simply Tanh based activation quantization can greatly improve the
model’s robustness under PGD adversarial training setting. We reproduced their experiments by
training a ResNet-18 model with PGD adversarial training on CIFAR-10 following Madry et al.
(2017). To make a comparison, we also trained a full precision model and a ReLU6 quantized model
following same setting. All the quantized models use bit=2. We tested the trained model using PGD
attack by Madry et al. (2017) under both white-box and black-box setting. We use a VGG-16 model
separately trained with PGD adversarial training as the black-box attacker. The results are provided
in Table 5.

Table 5. Tanh-based quantization improves white-box robustness, while suffers from inferior black-box ro-
bustness compared to full-precision model. The white-box accuracy is even higher than black-box, suggesting
gradient masking. Setup: white-box and black-box robustness of PGD adversarially trained ResNet-18 on
CIFAR-10. Quantization uses 2 bits.

Clean Acc. White-Box Acc. Black-Box Acc.

Full-Precision 83.47% 50.51% 65.58%
Tanh Quantized 81.60% 71.03% 61.57%

ReLU6 Quantized 78.97% 48.90% 59.44%

Our white-box result is consistent with (Rakin et al., 2018), where Tanh based quantizaion with PGD
training gives much higher white-box accuracy compared to the full precision model. However, we
can see that the black-box robustness decreases. Worse still, the black-box attack successful rate
is even lower than white-box, which is abnormal since black-box attack is generally weaker than
white-box. This phenomenon indicates severe gradient masking problem (Papernot et al., 2016a;
Athalye et al., 2018), which gives a false sense of security. As a comparison, we also trained a ReLU6
quantized model. With ReLU6 quantization, there is no sign of gradient masking, nor improvement
in robustness, indicating that gradient masking problem majorly comes from Tanh activation function.
Actually, ReLU6 quantized model has slightly worse robustness.

Therefore we conclude that simple quantization cannot help to improve robustness. Instead, it leads
to inferior robustness.

A.2 ADVERSARIAL FGSM TRAINING CAUSES GRADIENT MASKING

Here we demonstrate that FGSM adversarial training leads to significant gradient masking problem,
while R+FGSM fixes such issues. We trained a Wide ResNet using adversarial FGSM and adversarial
R+FGSM respectively. Then the model is tested using FGSM with ε = 8 under white-box and
black-box setting (VGG-16 as substitute). The results are shown in Table

Table 6. White-box and black-box robustness of FGSM/R+FGSM adversarially trained Wide ResNet on
CIFAR-10.

Clean Acc. White-Box Acc. Black-Box Acc.

Adversarial FGSM 94.55% 94.18% 51.65%
Adversarial R+FGSM 91.61% 51.65% 87.39%

We can clearly see the same gradient masking effect. For adversarial FGSM training, it gives much
higher white box robustness than R+FGSM adversarial training, while the black-box robustness is
much worse. To avoid gradient masking, we thus use R+FGSM adversarial training instead.
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B HYPER-PARAMETERS: β STUDY

Table 3
Clean Accuracy Adversarial 

Accuracy

0 0 93.94 0.9394 0 19 0

0.46 0.0003 95.09 0.9509 0.0003 40 0

0.72 0.0006 95.59 0.9559 0.0006 43.8700 0.4387

1.05 0.0010 95.76 0.9576 0.0010 49.7900 0.4979

1.27 0.0020 95.92 0.9592 0.0020 55.8700 0.5587

1.44 0.0 96.05 0.9605 0.0 53.4400 0.5344

1.58 0.0040 96.21 0.9621 0.0040 53.000 0.530

1.7 0.0050 96.08 0.9608 0.0050 52.1200 0.5212
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Figure 6. Clean and adversarial accuracy of 4-bit quantized Wide ResNet w.r.t. different β.

As observed in Section 5.1, the adversarial robustness of the model generally increases as β gets
larger. Here we aim to find what is the optimal β for our experiment. We took 4-bit quantized Wide
ResNet for example. As shown in Figure 6, the adversarial accuracy first gets larger as β increases,
and slowly goes down afterwards, reaching peak performance at β = 0.002. The clean accuracy is
more stable. At the first stage, as regularization gets stronger, the effect of noise amplify is suppressed
more. While for the second stage, the training suffers from a too strong regularization. Therefore, we
used a β = 0.002 for our experiments unless specified.
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C VISUALIZE SAMPLES AND PREDICTIONS

We visualize some of the clean and adversarial samples from CIFAR-10 test set, and the corresponding
prediction for full precision model (FP), vanilla 4-bit quantized model (VQ) and our 4-bit Defensive
Quantization model (DQ), as 4-bit quantization is now now supported by Tensor Cores with NVIDIA’s
Turing Architecture (NVIDIA). Predicted class and probability is provided. Compared to FP and DQ,
VQ has worse robustness by misclassifying more adversarial samples (sample 1, 2, 4, 6). Our DQ
model enjoys better robustness than FP model in two aspects: 1. our DQ model succeeds to defend
some of the attacks when FP failed (sample 5, 7); 2. our DQ model has a better confidence for true
label compared to FP model when both succeeds to defend (sample 1, 4, 6). Even when all models
fail to defend, our DQ model has the lowest confidence for the misclassified class (sample 3, 8).

GT: bird  
FP: bird (1.00) ✓ 
VQ: bird (1.00) ✓ 
DQ: bird (1.00) ✓

FP: bird (0.37) ✓  
VQ: cat  (0.98) ✗ 
DQ: bird (0.94) ✓

FP: truck (1.00) ✓ 
VQ: truck (1.00) ✓ 
DQ: truck (1.00) ✓

GT: truck  
FP: truck (1.00) ✓ 
VQ: deer  (0.50) ✗ 
DQ: truck (1.00) ✓

FP: horse (1.00) ✓ 
VQ: horse (1.00) ✓ 
DQ: horse (1.00) ✓

GT: horse 
FP: horse (0.97) ✓ 
VQ: deer  (0.97) ✗ 
DQ: horse (0.99) ✓

FP: frog (1.00) ✓ 
VQ: frog (1.00) ✓ 
DQ: frog (1.00) ✓

GT: frog  
FP: car  (0.95) ✗ 
VQ: deer (0.45) ✗ 
DQ: frog (0.73) ✓

FP: ship (1.00) ✓ 
VQ: ship (1.00) ✓ 
DQ: ship (1.00) ✓

GT: ship  
FP: ship (0.96) ✓ 
VQ: frog (0.57) ✗ 
DQ: ship (1.00) ✓

FP: bird (1.00) ✓ 
VQ: bird (1.00) ✓ 
DQ: bird (1.00) ✓

GT: bird
FP: horse (0.32) ✗ 
VQ: cat   (0.87) ✗ 
DQ: bird  (0.99) ✓

FP: ship (0.99) ✓ 
VQ: ship (1.00) ✓ 
DQ: ship (1.00) ✓

GT: ship 
FP: car  (0.81) ✗ 
VQ: frog (0.82) ✗ 
DQ: frog (0.50) ✗

FP: plane (1.00) ✓ 
VQ: plane (1.00) ✓ 
DQ: plane (1.00) ✓

GT: plane 
FP: deer (1.00) ✗ 
VQ: cat  (0.99) ✗ 
DQ: deer (0.51) ✗

FP: truck (1.00) ✓ 
VQ: truck (1.00) ✓ 
DQ: truck (1.00) ✓

GT: truck 
FP: truck (1.00) ✓ 
VQ: truck (0.53) ✓ 
DQ: truck (1.00) ✓

1.

2.

3.

4.

5.

6.

7.

8.

9.

Clean Adversarial

�1

Figure 7. Visualization of adversarial samples and the corresponding predictions (label and probability). FP:
full-precision model; VQ: vanilla 4-bit quantized model; DQ: our 4-bit Defensive Quantization model
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