
Under review as a conference paper at ICLR 2019

CHARACTERIZING ATTACKS ON DEEP REINFORCE-
MENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep reinforcement learning (DRL) has achieved great success in various appli-
cations, such as playing computer games and controlling robotic manipulations.
However, recent studies show that machine learning models are vulnerable to
adversarial examples, which are carefully crafted instances that aim to mislead
these models to make arbitrarily incorrect prediction. DRL models have been
attacked by adding perturbations to observations. While such observation based
attack is only one aspect of potential attacks on DRL, other forms of attacks re-
quire further analysis which are more practical such as manipulating environment
dynamics. Therefore, we propose to understand the vulnerabilities of DRL from
various perspectives and provide a thorough taxonomy of adversarial attacks against
DRL. We also conduct the first set of experiments on the unexplored parts within
the taxonomy. In addition to current observation based attacks against DRL, we
propose attacks based on action space and environment dynamics. Among these
experiments, we introduce online sequential attack: a novel method specialized for
efficiently attacking sequences of temporally consecutive frames, the first targeted
attack that perturbs environment dynamics to cause an agent fail in a specific
way, and a novel finite difference based black-box attack against DRL. We show
empirically that our online sequential attacks can generate effective perturbations
in a black-box setting in real time with a small number of queries, independent of
episode length. We conduct extensive experiments to compare the effectiveness of
different attacks with several baselines in various environments, including game
playing, robotics control, and autonomous driving.

1 INTRODUCTION

In recent years, deep neural networks (DNNs) have become pervasive and led a trend of fast adoption
in various commercial systems performing image recognition (Krizhevsky et al., 2012), speech
recognition (Hannun et al., 2014), and natural language processing (Sutskever et al., 2014). DNNs
have also encouraged increased success in the field of deep reinforcement learning (DRL), where
the goal is to train an agent to interact with the environments for maximizing an expected return.
DRL systems have been evaluated on games (Ghory, 2004; Mnih et al., 2013; 2016), autonomous
navigation (Dai et al., 2005), and robotics control (Levine et al., 2016), etc. To take advantage of this,
industries are integrating DRL into production systems (RE WORK, 2017). However, it is well-known
that DNNs are vulnerable to adversarial perturbations (Goodfellow et al., 2015; Li & Vorobeychik,
2014; 2015). DRL systems that use DNNs to perform perception and policy making also have similar
vulnerabilities. For example, one of the main weaknesses of RL models in adversarial environments
is their heavy dependence on the input observations. Since RL models are trained to solve sequential
decision-making problems, an attacker can perturb multiple observations. In fact, the distribution of
training and testing data could be different due to random noise and adversarial manipulation (Laskov
& Lippmann, 2010). Therefore, the learned policy can be vulnerable in adversarial environments.

In this paper, we first present an extensive study of adversarial attacks on DRL systems. Second, we
propose and evaluate 10 adversarial attacks in order to explore points in the taxonomy that have not
previously been examined in the literature. We organize adversarial attacks on DRL into a taxonomy
based on details of the victim model and other properties of the attacker. First, we categorize
these attacks based on what component of the system the attacker is capable of perturbing. The
organization of this categorization resembles the components of a Markov decision process (MDP):
we recognize attacks that perturb an agent’s observations, actions, or the system’s environment

1

Under review as a conference paper at ICLR 2019

Figure 1: Taxonomy of adversarial attacks on deep reinforcement learning (DRL). RL environments
are usually modeled as a Markov Decision Process (MDP) that consists of observation space, action
space, and environment (transition) dynamics. Potential adversarial attacks could be applied to any of
these components.

dynamics. We summarize these categories in Figure 1. Second, the attacker’s knowledge. We
categorize these attacks based on what knowledge the attacker needs to perform the attack. Broadly,
this breaks attacks down into the already recognized white-box attacks, where the attacker has full
knowledge of the target DRL system, and black-box attacks, where the attacker has less or no
knowledge. We will discuss this taxonomy further in Section 3.

On the other hand, existing attacks that perturb the observation operate independently on each frame,
which are too computational intensive to run in real-time. We propose two novel strategies for quickly
creating adversarial perturbations to use in real-time attacks. The first strategy, N-attack, trains a
neural network to generate a perturbation, reducing the computation to a single forward pass over
this network. The second strategy exploits the property that, in RL environments, the states are not
independent, and later states depends on previous state and action. Therefore, we propose online
sequential attacks, which, in contrast to attacks that operate independently on each frame, generate a
perturbation using information from a few frames and then apply the generated perturbation to later
frames. We include our experiments with these strategies as part of our exploration of attacks that
perturb the observation. We describe our attacks in detail in Section 4, and we present our evaluation
in Section 5.

To summarize, our contributions are: (1) We systematically organize adversarial attacks on DRL
systems into a taxonomy and devise and evaluate 10 new attacks on several DRL environments; (2)
We propose two practical strategies, N-attack and online sequential attack, for performing real-time
attacks on DRL systems; (3) We propose the attack that adversarially perturbs a DRL system’s
environment dynamics, and the attack that perturbs a DRL system’s actions; (4) We apply finite
difference method to estimate gradient and perform black-box attack, and we propose an adaptive
sampling based method to improve the gradient estimation efficiency; (5) We propose to select the
optimal frames within consecutive frames to attack and achieve optimal attack efficiency. We also
provide corresponding mathematical analysis.

2 RELATED WORK

Adversarial attacks on machine learning models. Our attacks draw some of their techniques from
previously proposed attacks. (Goodfellow et al., 2015) describes the fast gradient sign method
(FGSM) of generating adversarial perturbations in a white-box setting. (Carlini & Wagner, 2017)
describes additional methods based on optimization, which result in smaller perturbations. (Moosavi-
Dezfooli et al., 2017) demonstrates a way to generate a “universal” perturbation that is effective on
a set of multiple inputs. (Evtimov et al., 2018) shows that adversarial examples can be robust to
natural lighting conditions and viewing angles. In our black-box attacks, we apply techniques that
have been proposed for adapting white-box methods to black-box scenarios (Papernot et al., 2017;
Chen et al., 2017). Recently, (Huang et al., 2017) demonstrates an attack that uses FGSM to perturb
observation frames in a DRL setting. They experiment with a white-box attack and a black-box attack
based on transferability. In this work, we propose novel black-box attacks, including the attacks

2

Under review as a conference paper at ICLR 2019

that do not rely on transferability. In addition, we propose several ways to reduce the computational
complexity of attacks. (Lin et al., 2017) designs an algorithm to achieve targeted attack for DRL
models. However, their work only considers targeted attack and requires training a generative model
to predict future states, which is already a computational intensive task. (Behzadan & Munir, 2017)
proposes a black-box attack method that trains another DQN network to minimize the expected return
while still using FGSM as the attack method.

Robust RL via adversarial training. Safety in various robotics and autonomous driving applications
has drawn lots of attention for training robust models. Knowing how RL models can be attacked is
beneficial for training robust RL agent. (Pinto et al., 2017) proposes to train a RL agent to provide
adversarial attack during training so that the agent can be robust against dynamics variations. However,
since they manually selected the perturbations on environment dynamics, the attack provided in their
work may not be able to generalize to broader RL systems. Additionally, their method relies on an
accurate modeling of the environment dynamics, which may not be available for real world tasks
such as robotics and autonomous driving systems.

3 TAXONOMY OF ATTACKS IN DRL
Existing work on attacking DRL systems with adversarial perturbations focuses on perturbing an
agent’s observations. This is the most appealing place to start, with seminal results already suggesting
that recognition systems are vulnerable to adversarial examples (Goodfellow et al., 2015; Moosavi-
Dezfooli et al., 2017). It naturally follows that we should ask whether perturbations introduced in
other places in a RL system can cause the agent to misbehave, and in what scenarios, taking into
account (i) can the attacker perform the attack with limited knowledge about the agent, (ii) can the
attacker perform the attack in real time, and (iii) can the attacker introduce the perturbation physically.
To systematically explore this question, we propose a taxonomy of possible adversarial attacks.

Attack components. In the first layer of our proposed taxonomy, we divide attacks based on what
components in an MDP the attacker chooses to perturb: the agent’s observations, actions, and
environment dynamics. We will discuss some of the scenarios where attacks on these components
can be practical. For attacks applied on the observation space, the pixel values of images can be
changed by installing some virus into the software that is used to process captured photos from the
sensor or in the simulator that is rendering the environment. In case images are transmitted between
robots and computers, some communications can be altered by an attacker wirelessly (Lonzetta et al.,
2018). Some physical observation based attacks have been analyzed in autonomous driving (Evtimov
et al., 2018). For attacks applied on the action space, the action outputs can be modified by installing
some hardware virus in the actuator executing the action. This can be realistic in some robotic
control tasks where the control center sends some control signals to the actuator, a vulnerability
in the implementation, for example, vulnerability in the bluetooth signal transmission, may allow
an attacker to modify those signals (Lonzetta et al., 2018). For attacks applied on the environment
dynamics, in the autonomous driving case we can change the material surface characteristic of the
road such that the policy trained in one environment will fail in the perturbed environment; in the
robotic control case, the robot’s mass distribution can be changed such that the robot may lose balance
when executing its original policy because the robot hasn’t been trained in this case.

Attacker’s knowledge. In the second layer of our proposed taxonomy, we categorize attacks based
on what information the attacker needs to perform the attack. This divides attacks into white-box
attacks and black-box attacks. We make a further categorization based on the attacker’s knowledge
about the policy network’s architecture, weight parameters and whether the attacker can query the
network. In white-box attacks, the agent has access to the architecture and weight parameters of
the policy network and of course can query the network. In black-box attacks, the attackers don’t
have access to weight parameters of the policy network and may or may not have access to the policy
network’s architecture. The attacker may or may not have access to query the policy network.

Further categorization. We consider these additional properties of attacks. Real-time: while some
attacks require more computation than can be performed in real-time, some are fast enough to run.
Still other attacks perform some precomputation and then are able to generate perturbations quickly
for each step. We identify this pragmatic property as part of our taxonomy. Physical: for RL
tasks that take place in the real world, this property concerns the feasibility of physically applying
the perturbation on the environment. Temporal dependency: we distinguish between attacks that

3

Under review as a conference paper at ICLR 2019

Attack MDP Component Attacker Knowledge Real-time Physical Temporal Dependency

White/Black-Box Arch. Param. Query

obs-fgsm-wb Observation White-box Yes Yes Yes Yes No Independent
obs-cw-wb Observation White-box Yes Yes Yes Too slow No Independent
obs-nn-wb Observation White-box Yes Yes Yes Yes No Independent

obs-fgsm-bb Observation Black-box No No No Yes No Independent
obs-imi-bb Observation Black-box No No Yes Yes No Independent
obs-fd-bb Observation Black-box No No Yes Too slow No Independent
obs-sfd-bb Observation Black-box No No Yes Too slow No Independent

obs-seq-fgsm-wb Observation White-box Yes Yes Yes Yes No Sequential

obs-seq-fd-bb Observation Black-box No No Yes Yes No Sequential
obs-seq-sfd-bb Observation Black-box No No Yes Yes No Sequential

act-nn-wb Action White-box Yes Yes Yes Yes No Independent

env-search-bb Dynamics Black-box No No Yes N/A Yes N/A

Table 1: Summary of the adversarial attacks on DRL systems, categorized based on our proposed
taxonomy. The name reflects the category of the attack method. For example, obs-nn-wb means
attack on observation using neural network based white-box attack. The attack methods we proposed
are highlighted using bold text. “Arch.,” “Param.,” and “Query” indicate whether the attack requires
knowledge of the policy network’s architecture, parameters and whether it needs to query the policy
network.

generate a perturbation in each frame independently from other frames and online sequential attacks
that use information about from previous frames to generate perturbations on later frames.

4 ADVERSARIAL ATTACKS ON REINFORCEMENT LEARNING POLICIES

In order to study the unexplored parts of our proposed taxonomy from Section 3, in this section we
develop several concrete attacks.

4.1 ATTACKS ON STATE OBSERVATIONS

We now describe attacks that perturb an agent’s state observations. In this category of attacks, the
attacker changes the input state observation s to s̃ = s + h(s;w), where the attacker generates
perturbation h(s;w) from the original observation s and some learned parameters w. In order to
ensure that perturbations are small, we require that ||h(s;w)||∞ ≤ ε, which we can enforce by
choosing h to be of the form ε tanh(·). We present both white-box attacks and black-box attacks.

4.1.1 WHITE-BOX ATTACKS

In this setting, we assume that the attacker can access the agent’s policy network π(a|s) where a
refers to the action and s refers to the state. (Huang et al., 2017) has previously introduced one
attack in this category that applies the FGSM method to generate white-box perturbation purely on
observations. We reproduce this experiment with our obs-fgsm-wb attack. This attack’s application
scenario is when we know the policy network’s architecture and parameters. We also include a variant
of Huang et al.’s attack that replaces FGSM with an optimization based method (Carlini & Wagner,
2017) in obs-cw-wb. In addition, we propose an attack strategy N-attack where the perturbation
h(s, w) is computed from a deep neural network. in a white-box setting. We call this attack obs-
nn-wb. This attack works when where we know the policy network’s architecture and parameters.
We train the parameters w of the attacker network based on the given policy π to minimize victim
policy’s expected return when the perturbations are applied: w = arg maxw Eπ(a|s̃)[

∑
t γ

tr̃t] =
arg maxw Eπ(a|s+h(s,w))[−

∑
t γ

trt]. With a fixed victim policy π, this attack is similar to training
a policy. We include training details of this attack in Appendix B.

4.1.2 BLACK-BOX ATTACKS

In general, the trained RL models are kept private to avoid easy attacks. Given such “black-box”
models, the adversary needs to take more sophisticated strategies to perform the attacks. In the
black-box attack, there are different scenarios based on the knowledge of attacker. First, the attacker
is not allowed to obtain any information about the model architecture, parameters, or even query
information. In this case, the attacker can perform a “transferability” based attack by attacking a
surrogate model and then transfer the perturbation to the victim model. Huang et al. introduced a
black-box variant of the FGSM attack using transferability, which we denote as obs-fgsm-bb. This
attack requires access to the original training environment. In this section, we introduce several other
novel black-box attack methods and propose to improve the efficiency of these attacks.

Imitation learning based black-box attack. This attack obs-imi-bb is inspired by Rusu et al.’s
work on policy distillation (Rusu et al., 2015). The attacker trains a surrogate policy π̂(a|s, θ)

4

Under review as a conference paper at ICLR 2019

to imitate the victim policy π.Then the attacker uses a white-box method on the surrogate policy
to generate a perturbation and applies that perturbation on the victim policy. We include details
description of this attack in our Appendix B.

Finite difference (FD) based black-box attack. Previous black-box attacks obs-fgsm-bb and
obs-imi-bb all require retraining a surrogate policy. Previous work in (Bhagoji et al., 2017) applies
the finite difference (FD) method in attacking classification models. We extend the FD method
to DRL systems in obs-fd-bb which doesn’t require retraining a new policy. This attack works
in the setting where we don’t have the policy network’s architecture or parameters, but can query
the network. We put the math details of FD method in Appendix B. For n dimensional input, the
finite difference method would require 2n queries to obtain the estimation, which is computationally
intensive for high dimensional inputs such as images. We propose a sampling technique to mitigate
this computational cost.

Adaptive sampling based FD (SFD). Considering the fact that many deep learning models extract
features from inputs patch-wise and have sparse activation map (Bau et al., 2017), we propose to
iteratively estimate the gradients of high dimensional inputs and apply adaptive sampling to sample
candidate dimensions for querying. Given a function f(X;w) : X → Y , whereX ∈ Rd and Y ∈ R1,
and w is the model parameter, our goal is to estimate a nontrivial gradient∇Xf(X;w) ∈ Rd with
∇if(X;w) ≥ θ or ∇if(X;w) = 0, for all i ∈ {1, 2, · · · , d}, and θ > 0 is a threshold value
for nontrivial gradient. This means we can ignore the gradients of dimensions whose gradients
are smaller than θ. First, we randomly sample k dimensions in X , and get a set of dimensions
P = {P1, P2, · · · , Pk}, and use FD to estimate the gradients for dimensions in P . Then we sample a
set of dimensions P ′ = {j ∈ P ;∇jf(X;w) ≥ θ}, and we use FD to estimate the gradients of the
neighbors (a set P ′′) of dimensions in P ′, if these gradients haven’t been estimated. Then again we
select dimensions with gradients no less than θ from P ′′ and find their neighbors to estimate gradients.
We repeat this process for n iterations. By exploring the sparsity of gradients, we can adaptively
sample dimensions to estimate gradients, and can significantly reduce the amount of queries. We give
an algorithm description of this attack obs-sfd-bb (which works in the same scenario as obs-fd-bb)
in Algorithm 1 in the Appendix C. Here we provide an analysis of our SFD sampling algorithm and
estimate the amount of non-trivial gradients that can be estimated using our method in Corollary 1.
We will ignore the model parameter w hereafter. The proof of the corollary is in Appendix C.1.
Corollary 1. We make the following assumptions on f : 1) the gradient ∇f(x) satisfies: |∇if(x)−
∇i+1f(x)| ≤ β for all i ∈ {1, · · · , d} and for some β > 0; 2) suppose the current quantity to
estimate is ∇if(x) and the next quantity to estimate is ∇jf(x), where |i − j| = 1, we make the
assumption on the gradient probability distribution among neighboring dimensions:
P (|∇jf(x)| ∈ [θ, β + θ]) = q, P (|∇jf(x)| ∈ (β + θ,∞)) = 1− q, if |∇if(x)| ∈ [β + θ,∞);

P (|∇jf(x)| ∈ [0, θ]) = q, P (|∇jf(x)| ∈ [θ, β + θ]|) = 1− q, if |∇if(x)| ∈ [θ, β + θ).

Suppose within one iteration we estimate the gradient on dimension j: ∇jf(x), denote P (θ) as the
probability that ∇jf(x) ≥ θ using our adaptive sampling method, and Prandom(θ) as the same
probability using random sampling, then we conclude: (1) P (θ) > 1− q; (2) if 1− q > Prandom(θ),
then P (θ) > Prandom(θ); (3) define Sθ =

∑d
i=1 1(|∇if(x)| ≥ θ) and assume we estimated in

total Sθ dimensions’ gradients with perturbation strength h, then the truncation error of gradients
estimation is upper bounded by the following inequality,

‖∇f̂(x)−∇f(x)‖1 ≤ SθCh2 + (d− Sθ)θ, (1)

where C is some positive constant, and∇f̂(x) is the estimated gradient of f with respect to x.

4.1.3 ONLINE SEQUENTIAL ATTACKS

In a DRL setting, consecutive observations are not i.i.d.—instead, they are highly correlated, with
each state depending on previous ones. It’s then possible to perform an attack with less computation
than perform the attack independently on each state. Considering real-world cases, for example,
an autonomous robot would take a real-time video as input to help make decisions, an attacker is
motivated to generate perturbations only based on previous states and apply it to future states, which
we refer to as an online sequential attack. We hypothesize that a perturbation generated this way is
effective on subsequent states.

Universal attack based approach. We propose online sequential attacks obs-seq-fgsm-wb, obs-
seq-fd-bb, and obs-seq-sfd-bb that exploit this structure of the observations. obs-seq-fgsm-wb

5

Under review as a conference paper at ICLR 2019

works in standard white-box setting, where we know the architecture and parameters of the policy
network; obs-seq-fd-bb and obs-seq-sfd-bb works in the same setting as obs-fd-bb. In these
attacks, we first collect a number k of observation frames and generate a single perturbation using
the averaged gradient on these frames (or estimated gradients using FD or SFD, in the case of
obs-seq-fd-bb and obs-seq-sfd-bb). Then, we apply that perturbation to all subsequent frames.
In obs-seq-sfd-bb, we combine the universal attack approach and the adaptive sampling technique
for finite difference estimates. We improve upon the above attack by finding the the set of frames
that appear to be most important and using the gradients from those frames. With this, we hope to
maintain attack effectiveness while reducing the number of queries needed. We propose to select a
subset of frames within the first k based on the variance of their Q values. Then, in all subsequent
frames, the attack applies a perturbation generated from the averaged gradient. We select an optimal
set of important frames with high value variance to generate the perturbations. We give a proof in
Corollary 2 below for why attacking these important frames is more effective, and we give the full
proof in Appendix D.

Corollary 2. Let the state and state-action value be V (s) and Q(s, a) respectively, and let the
state with higher variance of Q value be state st1 and the state with smaller variance of Q value
be st2 . The variance is taken over different actions. Let the current policy be π. We have

Eπ
[∑T

t=0 γ
trt|do(st1 = ŝt1)

]
≤ Eπ

[∑T
t=0 γ

trt|do(st2 = ŝt2)
]
, where do(st1 = ŝt1) means the

observation at time t1 is changed from st1 to ŝt1 .

4.2 ATTACKS ON ACTION SELECTION

Our second category of attacks is to directly attack action output and minimize the expected return.
We experiment with one attack in this category, under a white-box scenario, act-nn-wb. Here we
train another policy network that takes in the state s and outputs a perturbation on the Q function:
Q′(s, a, w), the goal is also to minimize the expected return. For example, in DQN, the loss is
chosen to be L(w) = (Q(s, a) +Q′(s, a, w)− r̃−γmaxa′(Q(s′, a′) +Q′(s′, a′, w)))2. For DDPG,
the loss is chosen to be L(w) = (Q(s, a = µ(s)) + Q′(s, a = µ(s), w) − r̃ − γ(Q(s′, a′ =
µ(s′)) + Q′(s′, a′ = µ(s′), w)))2, where r̃ = −r is reward that captures the attacker’s goal of
minimizing the victim agent’s expected return. This second approach to learn the attack h is to treat
the environment and the original policy π together as a new environment, and view attacks as actions.

4.3 ATTACKS ON ENVIRONMENT DYNAMICS

In this third category, attacks perturb the environment transition model. In our case, we aim to
achieve targeted attack, which means we want to change the dynamics such that the agent will fail
in a specific way. Define the environment dynamics as M, the agent’s policy as π, the agent’s
state at step t following the current policy under current dynamics as st, and define a mapping
from π,M to st:st ∼ f(st|π,M, s0), which outputs the state at time step t: st given initial
state s0, policy π, and environment dynamics M. The task of attacking environment dynamics
is to find another dynamics M′ such that the agent will reach a target state s′t at step t: M′ =
arg minM ‖s′t − Est∼f(st|π,M,s0)[st]‖. Random dynamics search. A naive way to find the target
dynamics, which we demonstrate in env-rand-bb, is to use random search. Specifically, we randomly
propose a new dynamics and see whether, under this dynamics, the agent will reach s′t. This method
works in the setting where we don’t need to have access to the policy network’s architecture and
parameters, but just need to query the network. Adversarial dynamics search. We design a more
systematic algorithm based on RL to search for a dynamics to attack and call this method env-
search-bb. At each time step, an attacker proposes a change to the current environment dynamics
with some perturbation ∆M, where ‖∆M/M‖ is bounded by some constant ε, and we find the new
state st,M′ at time step t following the current policy under dynamicsM′ =M+ ∆M, then the
attacker agent will get reward r̃ = 1/‖st,M′ − s′t‖. We demonstrate this in env-search-bb using
DDPG (Lillicrap et al., 2016) to train the attacker. In order to show that this method works better than
random search, we also compare with the random dynamics search method, and keep the bound of
maximum perturbation ‖∆M/M‖ the same. This attack works in the same setting as env-rand-bb.

5 EXPERIMENTS

We attack several agents trained for five different RL environments: Atari games Pong and Enduro
(Bellemare et al., 2013), HalfCheetah and Hopper in MuJoCo (Todorov et al., 2012), and the driving
simulation TORCS (Pan et al., 2017). We train DQN (Mnih et al., 2015) on Pong, Enduro and

6

Under review as a conference paper at ICLR 2019

TORCS, and we train DDPG (Lillicrap et al., 2016) on HalfCheetah and Hopper. The reward function
for TORCS comes from Pan et al. (2017). The DQN network architecture comes from Mnih et al.
(2015). The network for continuous control using DDPG comes from Dhariwal et al. (2017). For
each game, we train the above agents with different random seeds and different architectures in order
to evaluate different conditions in the transferability and imitation learning based black-box attack.
Details of network structure and the performance for each game are included in Appendix A.

5.1 EXPERIMENTAL DESIGN

We compare the agents’ performance under all attacks with their performance under no attack,
denoted as non-adv.

Attacks on observation. We test these attacks under L∞ perturbation bounds of ε = 0.005 and
ε = 0.01 on the Atari games and MuJoCo simulations and ε = 0.05 and ε = 0.1 on TORCS 1. First,
we test the white-box attacks obs-fgsm-wb and obs-nn-wb on all five environments. Second, we test
the attack obs-fgsm-bb under two different conditions: (1) In obs-fgsm-bb(1), the attacker uses the
same network structure in the surrogate model as the victim policy and (2) In obs-fgsm-bb(2), the
attacker uses a different network structure for the surrogate model. We test the attack obs-imi-bb on
all five environments. Similar to the transferability attacks, we test this attack under same-architecture
(obs-imi-bb(1) and different-architecture (obs-imi-bb(2)) conditions. We use FGSM to generate
perturbations on the surrogate policy. We test obs-sfd-bb under different numbers of SFD iterations;
we denote an attack that uses i iterations as obs-s[i]fd-bb. The number of queries is significantly
reduced in obs-sfd-bb than obs-fd-bb; we show the actual numbers of queries used in Table 4 in the
Appendix. For the attack obs-seq-fgsm-wb, we test under the condition obs-seq[Fk]-fgsm-wb (F
for “first”), where we use all of the first k frames to compute the gradient for generating a perturbation
for the subsequent frames. For the attacks obs-seq-fd-bb and obs-seq-sfd-bb, we test under three
conditions. (i) In obs-seq[Fk]-fd-bb, we look at the first k frames and use FD to estimate the
gradient; (ii) In obs-seq[Lk]-fd-bb and obs-seq[Lk]-s[i]fd-bb (L for “largest”), we again look at
the first k frames, but we select only the 20% of the frames that have the largest Q value variance
to generate the universal perturbation; (iii) obs-seq[Sk]-fd-bb (S for “smallest”) is similar to the
previous one, we select 20% of the first k frames that have the smallest Q value variance to generate
the universal perturbation. We additionally test a random perturbation based online sequential attack
obs-seq-rand-bb, where we take a sample from uniform random noise to generate a perturbation
and apply on all frames. Although this attack does not consider the starting frames, we still test it
under different conditions obs-seq[Fk]-rand-bb, where we start adding the random perturbation
after the k-th frame. This makes it consistent with the other online sequential attacks that apply their
perturbation after the kth frame. Attacks on action selection. We test the action selection attack
act-nn-wb on the Atari games, TORCS, and MuJoCo robotic control tasks. Attacks environment
dynamics. We test the environment dynamics attacks env-rand-bb and env-search-bb on the
MuJoCo environments and TORCS. In the tests on MuJoCo, we perturb the body mass and body
inertia vector, which are in R32 and R20 in HalfCheetah and Hopper environments, respectively. In
the tests on TORCS, we perturb the road friction coefficient and bump size, which is in R10.

5.2 EXPERIMENTAL RESULTS

Attacks on observation. Figure 2a shows the results of the attacks on observations on TORCS,
including all methods on attacking observations and the results of non-adv. We show the results
on the Atari games and MuJoCo in Figure 6 and Figure 9 in the Appendix. On TORCS, our neural
network based attack obs-nn-wb achieves better attack performance than the FGSM attack obs-
fgsm-wb. Under a black-box setting, our proposed imitation learning based attacks obs-imi-bb(1),
obs-imi-bb(2), and the FD based attack obs-fd-bb achieves better attack performance than the
transferability based attacks obs-fgsm-bb(1) and obs-fgsm-bb(2).

Figures 2b and 2c compare the cumulative rewards among different black-box methods. These figures
show that the policy is vulnerable to all of the black-box methods. Specifically, they show that
obs-s[i]fd-bb can achieve similar performance to FD under each value of the perturbation bound ε.
In the Appendix, we provide the number of queries for using obs-sfd-bb and obs-fd-bb, and the
results show that obs-sfd-bb uses significantly less queries (around 1000 to 6000) than obs-fd-bb
(around 14,000) but achieves similar attack performance. The SFD method only samples part of the
pixels to calculate gradient while the vanilla FD method requires gradient computation at all pixels.

1Values are in range [0,1]

7

Under review as a conference paper at ICLR 2019

(a) Episodic Reward (b) Cumulative Reward (ε=0.05) (c) Cumulative Reward (ε=0.10)

Figure 2: Episodic reward under different attack methods and cumulative reward of different black-
box attacks on TORCS.

Therefore, obs-sfd-bb is more efficient in terms of running time than obs-fd-bb, which indicates the
effectiveness of our adaptive sampling algorithm in reducing gradient computation time and keeping
the attack performance.

Figure 3: Performance of universal attack based approach considering all starting images ((seq[Fk]-,
left two graphs) and subsets of frames with largest (seq[Lk]-) and smallest (seq[Sk]-) Q value
variance (right two images). Results shown for TORCS, under two perturbation bounds ε.

The results for comparing obs-seq[Fk]-fgsm-wb, obs-seq[Fk]-fd-bb, and obs-seq[Fk]-rand-bb
are shown in Figure 3 (left) for perturbation of different L∞ norm bound (ε = 0.05 and 0.1). The
two figures show the cumulative reward for one episode when the states are under attack. Comparing
the results, our proposed obs-seq[Fk]-fd-bb achieves close attack performance compared with our
obs-seq[Fk]-fgsm-wb, and the baseline obs-seq[Fk]-rand-bb is not effective. Figure 3 (right)
shows that when we select a set of states with the largest Q value variance (obs-seq[Lk]-fd-bb) to
estimate the gradient, the attack is more effective than selecting states with the smallest Q value
variance (obs-seq[Sk]-fd-bb), which indicates that selecting frames with large Q value variance is
more effective. We see that when k is very small (k = 10), the estimated universal perturbation may
be not accurate, and when k = 60, the attack performance is reasonably good.

Figure 4: Performance of universal perturbation generated based on different numbers of query
iterations with obs-seq-sfd-bb (left two graphs); final states of environment dynamics attack env-
search-bb on TORCS and Hopper (right two images). TORCS image shows the top view of the
driving environment when the car crashes.

In Figure 4 (left), we show the results of obs-seq[Lk]-s[i]fd-bb by varying the number of iterations i,
and select the 20% of frames with the largest Q value variance within the first k frames to estimate the
gradient using SFD. It is clear that with more iterations, we are able to get more accurate estimation
of the gradients and thus achieve better attack performance, while the total number of queries is still

8

Under review as a conference paper at ICLR 2019

(a) Atari and Torcs (b) Mujoco

Figure 5: Attack Action. Results of act-nn-wb
on Atari games, TORCS, and MuJoCo tasks.

Table 2: Environment Dynamics Attack Result.

Environment env-rand-bb env-search-bb

HalfCheetah 7.91 5.76
Hopper 1.89 0.0017
TORCS 25.02 22.75

significantly reduced. We conclude in the Appendix that when i = 100, the number of queries for
SFD is around 6k, which is significantly smaller than needed for FD, which takes 14k queries to
estimate the gradient on an image of size 84× 84 (14112 = 84× 84× 2). We put other results on
attacks on observations in our Appendix part. The Enduro environment is also an autonomous driving
environment that is simpler than the TORCS environment, and we observed consistent results in the
two environments. Note that different thresholds ε are applied according to the complexity of the two
environments.

Attacks on action selection. We present the results of our attacks on action selection in Figure 5.
The results show that action space attack is also effective. With the larger perturbation bound, we
achieve better attack performance.

Attacks on environment dynamics. In Table 2, we show our results for performing targeted
adversarial environment dynamics attack. The results are the L2 distance to the target state (the
smaller the better). Our goal is to attack the environment dynamics so the victim agent will fail in a
pre-specified way. For example, for a Hopper to turn over and for a self driving car to drive off road
and hit obstacles. The results show that random search method performs worse than RL based search
method in terms of reaching a specific state after certain steps. In Figure 4 (right), we show examples
of the final state of our env-search-bb attack on TORCS and Hopper. In the final state of TORCS,
the attacked car has hit the wall. The quality of the attack can be qualitatively evaluated by observing
the sequence of states when the agent is being attacked and see whether the target state has been
achieved. In Figures 11–13 in the Appendix, we show the sequences of states when the agents are
under attack with the random search or reinforcement learning based search method.

6 DISCUSSION AND CONCLUSIONS

Black-box and white-box. As can be seen from our results, white-box methods’ performance is
better or on par with black-box methods. All white-box methods have almost similar performance
and in some environments our proposed obs-nn-wb is better than obs-fgsm-wb. Within black-box
methods, obs-fgsm-bb has slightly worse performance than obs-imi-bb. Finite difference methods’
performance is worse than obs-imi-bb. Sampling based finite difference obs-sfd-bb is worse than
obs-fd-bb and the performance improves when the number of query increases. In sequential attack
based on optimal frame selection, selecting the frames with larger variance of Q-values to attack is
better than selecting the frames with smaller variance of Q-values to attack, as can be seen from the
results on TORCS.

Connection with Robust RL. There have been increasing interest in training RL algorithms that can
be robust to perturbations in the environment, or even adversarial attacks in the environment. Previous
methods that aim to improve the robustness of RL either try to apply some random perturbation to the
observation or apply some gradient based noise to the observation to induce the agent to choose some
sub-optimal actions. On the one hand, our finite difference and sampling based finite difference based
method can provide faster attack than traditional FGSM based attack that requires back-propagation
to calculate gradient, therefore can be incorporated into the training of RL policies to improve the
robustness of RL policy. The environment dynamics attack can help to find the environment where the
current agent is vulnerable. On the other hand, our methods provide tools to evaluate the vulnerability
of the trained RL policy. Finally, we hope that our proposed taxonomy helps guide future research in
making DRL systems robust, and we offer our experimental results as baselines for future robust RL
techniques to compare against.

9

Under review as a conference paper at ICLR 2019

REFERENCES

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection: Quantifying
interpretability of deep visual representations. In Computer Vision and Pattern Recognition (CVPR), 2017
IEEE Conference on, pp. 3319–3327. IEEE, 2017.

Vahid Behzadan and Arslan Munir. Vulnerability of deep reinforcement learning to policy induction attacks.
arXiv preprint arXiv:1701.04143, 2017.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, 2013.

Arjun Nitin Bhagoji, Warren He, Bo Li, and Dawn Song. Exploring the space of black-box attacks on deep
neural networks. arXiv preprint arXiv:1712.09491, 2017.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In IEEE Symposium
on Security and Privacy, 2017, 2017.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order optimization based
black-box attacks to deep neural networks without training substitute models. In ACM Workshop on Artificial
Intelligence and Security, pp. 15–26, 2017.

Xiaohui Dai, Chi-Kwong Li, and Ahmad B Rad. An approach to tune fuzzy controllers based on reinforcement
learning for autonomous vehicle control. IEEE Transactions on Intelligent Transportation Systems, 6(3):
285–293, 2005.

Prafulla Dhariwal, Christopher Hesse, Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor, and
Yuhuai Wu. Openai baselines, 2017.

Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo Li, Atul Prakash, Amir Rahmati, and
Dawn Song. Robust physical-world attacks on machine learning models. In Computer Vision and Pattern
Recognition (CVPR), 2018 IEEE Conference on. IEEE, 2018.

Imran Ghory. Reinforcement learning in board games. Department of Computer Science, University of Bristol,
Tech. Rep, 2004.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In
International Conference on Learning Representations, 2015.

Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger, Sanjeev
Satheesh, Shubho Sengupta, Adam Coates, et al. Deep speech: Scaling up end-to-end speech recognition.
arXiv preprint arXiv:1412.5567, 2014.

Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial attacks on neural
network policies. arXiv preprint arXiv:1702.02284, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems, pp. 1097–1105, 2012.

Pavel Laskov and Richard Lippmann. Machine learning in adversarial environments. Machine learning, 81(2):
115–119, 2010.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Bo Li and Yevgeniy Vorobeychik. Feature cross-substitution in adversarial classification. In Advances in Neural
Information Processing Systems, pp. 2087–2095, 2014.

Bo Li and Yevgeniy Vorobeychik. Scalable optimization of randomized operational decisions in adversarial
classification settings. In AISTATS, 2015.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra. Continuous control with deep reinforcement learning. In International Conference on
Learning Representations, 2016.

Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, and Min Sun. Tactics of
adversarial attack on deep reinforcement learning agents. In 26th International Joint Conference on Artificial
Intelligence, 2017.

10

Under review as a conference paper at ICLR 2019

Angela Lonzetta, Peter Cope, Joseph Campbell, Bassam Mohd, and Thaier Hayajneh. Security vulnerabilities in
bluetooth technology as used in iot. Journal of Sensor and Actuator Networks, 7(3):28, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David
Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In International
Conference on Machine Learning, pp. 1928–1937, 2016.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal adversarial
perturbations. In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on, pp. 1765–
1773. IEEE, 2017.

Xinlei Pan, Yurong You, Ziyan Wang, and Cewu Lu. Virtual to real reinforcement learning for autonomous
driving. In British Machine Vision Conference (BMVC), 2017.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram Swami.
Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, pp. 506–519. ACM, 2017.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforcement learning.
In ICML, volume 70 of Proceedings of Machine Learning Research, pp. 2817–2826. PMLR, 2017.

RE WORK. Deep learning in production & warehousing with Amazon Robotics.
https://link.medium.com/71WXEy3AaS, 2017.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirkpatrick, Razvan
Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy distillation. arXiv preprint
arXiv:1511.06295, 2015.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In Advances
in neural information processing systems, pp. 3104–3112, 2014.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026–5033. IEEE, 2012.

11

Under review as a conference paper at ICLR 2019

A EXPERIMENTAL SETUP

We trained DQN models on Pong, Enduro, and TORCS, and trained DDPG models on HalfCheetah
and Hopper. The DQN model for training Pong and Enduro consists of 3 convolutional layers and 2
fully connected layers. The two network architectures differ in their number of filters. Specifically,
the first network structure is C(4, 32, 8, 4) − C(32, 64, 4, 2) − C(64, 64, 3, 1) − F (3136, 512) −
F (512, na), where C(c1, c2, k, s) denotes a convolutional layer of input channel number c1, output
channel number c2, kernel size k, and stride s. F (h1, h2) denotes a fully connected layer with
input dimension h1 and output dimension h2, and na is the number of actions in the environment.
The DQN model for training TORCS consists of 3 convultional layers and 2 or 3 fully connected
layers. The convultional layers’ structure is C(12, 32, 8, 4)− C(32, 64, 4, 2)− C(64, 64, 3, 1), and
the fully connected layer structure is F (3136, 512)− F (512, 9) for one model and F (3136, 512)−
F (512, 128)− F (128, 9) for the other model.

The DDPG model for training HalfCheetah and Hopper consists of several fully connected layers.
We trained two different policy network structures on all MuJoCo environments. The first model’s
actor is a network of size F (dimin, 64)− F (64, 64)− F (64, na) and the critic is a network of size
F (dimin, 64)−F (64, 64)−F (64, 1). The second model’s actor is a network of size F (dimin, 64)−
F (64, 64)−F (64, 64)−F (64, 64)−F (64, na), and the critic is a network of size F (dimin, 64)−
F (64, 64)− F (64, 64)− F (64, 64)− F (64, 1). For both models, we added ReLU activation layers
between these fully connected layers.

The TORCS autonomous driving environment is a discrete action space control environment with 9
actions, they are turn left, turn right, keep going, turn left and accelerate, turn right and accelerate,
accelerate, turn left and decelerate, turn right and decelerate and decelerate. The other 4 games, Pong,
Enduro, HalfCheetah, and Hopper are standard OpenAI gym environment.

The trained model’s performance when tested without any attack is included in the following table 3.

Table 3: Model performance among different environments

Torcs Enduro Pong HalfCheetah Hopper

Episodic reward 1720.8 1308 21 8257 3061
Episodic length 1351 16634 1654 1000 1000

The DDPG neural network used for env-search-bb is the same as the first model (3-layer fully
connected network) used for training the policy for HalfCheetah, except that the input dimension
dimin is of the perturbation parameters’ dimension, and output dimension is also of the perturbation
parameters’ dimension. For HalfCheetah, Hopper and TORCS, these input and output dimensions
are 32, 20, and 10, respectively.

B DETAILS OF ADVERSARIAL ATTACKS ON DRL POLICIES

Objective functions of the attack obs-nn-wb. In obs-nn-wb, we train the parameters w of the
attacker network based on the given policy π to minimize victim policy’s expected return when the
perturbations are applied: w = arg maxw Eπ(a|s̃)[

∑
t γ

tr̃t] = arg maxw Eπ(a|s+h(s,w))[−
∑
t γ

trt].
For example, in DQN, our goal is to perform gradient update on w based on the following loss
function: L(w) = (Q(s + h(s, w), a) − (r̃ + γmaxa′ Q(s′ + h(s′, w), a′)))2, where Q is the
model under attack, s′ is the next state relative to current state s. In continuous control using
DDPG, our goal is to perform gradient update on w based on the following loss function L(w) =
(r̃ + γQ(s′ + h(s′, w), µ(s′ + h(s′, w)))−Q(s+ h(s, w), a))2, where Q is the value function and
µ is the actor function.

Imitation learning based black-box attack details. We provide the details of attack obs-imi-
bb, which trains a surrogate policy to imitate the victim policy and apply the perturbation gen-
erated from the surrogate policy to the victim policy to perform the attack. Formally, in a Deep
Q learning case, given a black-box policy πT with access to its policy outputs, we collect some
dataset DT = {(si,qi)}Ni=0, where each data sample consists of a short observation sequence
si and a vector qi which is the unnormalized Q-values, and one value corresponds to one ac-
tion. We will perform imitation learning to learn a new policy πS(·|s, θ) such that we mini-
mize the following loss function by taking gradient update with respect to network parameters

12

Under review as a conference paper at ICLR 2019

θ: L(DT , θ) =
∑|D|
i=1 softmax(

qTi
τ) ln

softmax(
qTi
τ)

softmax(qSi)
, where T corresponds to the victim policy, S corre-

sponds to our surrogate policy, and τ is a temperature factor. This attack works in the setting where
we don’t have access to the policy network’s architecture or parameters, but can query the network.

Finite difference based black-box attack details. FD based attack on DRL uses FD to estimate
gradient on the input observations, and then perform gradient descent to generate perturbations on
the input observations. The key step in FD is to estimate the gradient. Denote the loss function as L
and state input as s ∈ Rn. Then the canonical basis vector ei is defined as an d dimension vector
with 1 only in the i-th component and 0 otherwise. The finite difference method estimates gradients
via the following equation

FD(L(s), δ) =

[
L(s + δe1)− L(s− δe1)

2δ
, · · · , L(s + δed)− L(s− δed)

2δ

]ᵀ
, (2)

where δ is a parameter to control estimation accuracy.

C FINITE DIFFERENCE GRADIENT ESTIMATION USING SFD

Algorithm 1 shows the detailed steps in our obs-sfd-bb attack. Table 4 shows the number of queries
used in our experiments. We next provide a proof of proposed Corollary 1.

Algorithm 1: Adaptive sampling based finite difference (ASFD) algorithm

1

input: s ∈ Rd: state vector;
f(w): loss function with parameter w;
k: # of item to estimate gradient at each step ;
n: # of iteration;
θ: the gradient threshold used to filter out trivial gradients
δ: finite difference perturbation value ;

output: gradient∇sf(s;w);

2 Initialization :∇sf(s;w)← 0;
3 Randomly select k indexes from {1, 2, · · · , d} to form an index set P ;
4 for t← 0 to n do
5 for j ∈ P do
6 if ∇jf(s;w) has not been estimated then

/* Estimate gradient for position j */;
7 Get v ∈ Rd such that vj = 1 and vi = 0,∀i 6= j;
8 Set∇jf(s;w) = f(s+δv;w)−f(s−δv;w)

2δ ;
9 end

10 end
11 P ′ = {j ∈ P ;∇jf(s;w) ≥ θ};
12 P = indexes of neighbors of indexes in P ′;
13 end

Return: ∇sf(s;w)

Table 4: Number of queries for SFD on each image among different settings. (The number of query
for FD is 14112)

bound iteration
10 20 40 100

0.05 1233± 50 2042± 77 3513± 107 5926± 715
0.10 1234± 41 2028± 87 3555± 87 6093± 399

C.1 PROOF OF COROLLARY 1

Proof. Following the notation in Corollary 1, we use P (θ) to denote the probability that the to-be-
estimated gradient magnitude of a dimension is no less than θ for some iteration. Initially, we sample

13

Under review as a conference paper at ICLR 2019

k points uniformly. We have that out of the k sampled points, there are P (β + θ) · k points whose
gradient magnitudes are no less than β + θ. Similarly, we have P (θ) · k points where the gradient
magnitudes are no less than θ. At the second iteration, we start from the P (θ) · k points. According
to the assumptions, we have (1 − q)P (β + θ) · k points whose gradient magnitudes are no less
than β + θ. Similarly, we have q · P (β + θ) · k + (1− q)[P (θ)− P (β + θ)]k points with gradient
magnitudes in the range [θ, β + θ]. Now in tth iteration, we denote at as the number of points in this
iteration with gradient magnitudes no less than β + θ and bt as the number of points in this iteration
with gradient magnitudes in range [θ, β + θ]. The recurrence relationship is as follows:

at = (1− q) · at−1, bt = q · at−1 + (1− q) · bt−1, (3)

where a1 = (1− q)k · P (β + θ) and b1 = (1− q)k · P (θ) + (2q − 1)k · P (β + θ). We have:

bt
(1− q)t

=
q

(1− q)2
a1 +

bt−1
(1− q)t−1

,

bt
(1− q)t

=
q

(1− q)2
a1(t− 1) +

b1
(1− q)

.

(4)

Then we have:

at = (1− q)t−1a1, bt = (1− q)t−1 · [(t− 1)
q

1− q
· a1 + b1] (5)

Now we show that in each iteration, the probability that our algorithm samples dimensions with
gradient magnitudes no less than θ is larger than that of random sampling (Prandom(θ)).

P (θ) =
at + bt

at−1 + bt−1
= (1− q) ·

a1 + (t− 1) · q
1−q · a1 + b1

a1 + (t− 2) q
1−q · a1 + b1

> 1− q. (6)

Here from the previous iteration t−1 we obtained at−1+bt−1 number of dimensions whose gradients
have magnitude no less than θ. From all of their neighbors, we obtained in probability at + bt number
of dimensions with gradient magnitude no less than θ. Therefore, P (θ) > 1− q. In other words, in
each iteration, we have at least probability 1− q to sample the points with gradient magnitudes no
less than θ. Now since q measures the degree of steepness between two dimensions (typically around
1/2) and when the gradient distribution is sparse, which means a majority of pixels get very small
gradients, which means Prandom(θ) will be small, when we choose a relatively large θ. Therefore as
long as 1− q > Prandom(θ), our sampling algorithm outperforms the random sample counterpart.

Now we prove the second part of our corollary: when x ∈ R1, assume function f is C∞, by Taylor’s
series we have

f(x+ h) = f(x) + f ′(x)h+
h2

2
f ′′(x) +

h3

3!
f (3)(x) + · · ·

f(x− h) = f(x)− f ′(x)h+
h2

2
f ′′(x)− h3

3!
f (3)(x) + · · · .

(7)

Combine the two equations we get

f(x+ h)− f(x− h)

2h
− f ′(x) =

∞∑
i=1

h2i

(2i+ 1)!
f (2i+1)(x), (8)

which means the truncation error is bounded by O(h2). Moreover, we have∣∣f(x+ h)− f(x− h)

2h
− f ′(x)

∣∣ ≤ Ch2, (9)

where C = supt∈[x−h0,x+h0]
f(3)(t)

6 , and 0 < h ≤ h0.

We can regard each dimension as a single variable function f(xi), then we have∣∣f(xi + h)− f(xi − h)

2h
− f ′(xi)

∣∣ ≤ Ch2. (10)

For the dimensions where the gradient magnitudes are no less than θ, from the above estimation, the
total truncation error caused by these dimensions are no greater than SθCh2. For those dimensions

14

Under review as a conference paper at ICLR 2019

where the gradient magnitudes are less than θ, the error caused by not considering these dimensions
are no greater than (d−Sθ)θ. All in all, the truncation error of gradients estimation is upper bounded
by the following inequality.

‖∇f̂(x)−∇f(x)‖1 ≤ SθCh2 + (d− Sθ)θ, (11)

where C is some positive constant, and∇f̂(x) is the estimated gradient of f with respect to x.

D PROOF OF COROLLARY 2
Proof. Recall the definition of Q value is

Q(sτ , aτ) = Eπ[

H−1∑
t=τ

γt−τrt|sτ , aτ]. (12)

The variance of Q value at a state s is defined as

V ar(Q(s)) =
1

|A| − 1

|A|∑
i=1

(
Q(s, ai)−

1

|A|

|A|∑
j=1

Q(s, aj)
)2
, (13)

where A is the action space of the MDP, and |A| denotes the number of actions. Assume a fixed
horizon of length H . Suppose we are to attack state sm and state sn where the Q value variance
of this two states are V ar(Q(sm)) and V ar(Q(sn)), and assume m < n. Denote the state-action
pair Q values after attack are Q(sm, âm) and Q(sn, ân), respectively. During the attack, state sm is
modified to ŝm, and state sn is modified to ŝn, and their action’s Q-value also change, so we use âm
and ân to denote the actions after the attack. By using sm and sn instead of ŝm and ŝn, we mean that
though the observed states are modified by the attack algorithm, but the true states do not change.
By using a different action notation, we mean that since the observed states have been modified,
the optimal actions at the modified states can be different from the optimal actions at the original
observed states. Then the total discounted expected return for the entire episode can be expressed as
(assume all actions are optimal actions)

Q′ = Q(s0, a0)− γmQ(sm, am) + γmQ(sm, âm),

Q′′ = Q(s0, a0)− γnQ(sn, an) + γnQ(sn, ân).
(14)

Since m < n, Q′′ can also be expressed as

Q′′ = Q(s0, a0)− γmQ(sm, am) + γmQ(sm, am)

− γnQ(sn, an) + γnQ(sn, ân).
(15)

Subtract Q′ by Q′′ we get

Q′ −Q′′ = γm(Q(sm, âm)−Q(sm, am)) + γnQ(sn, an)− γnQ(sn, ân)

=− γm[Q(sm, am)−Q(sm, âm)− γn−m(Q(sn, an)−Q(sn, ân))].
(16)

According to our claim that states where the variance of Q value function is small will get better
attack effect, suppose V ar(Q(sm)) > V ar(Q(sn)), and assume the range of Q value at step m is
larger than step n, then we have

Q(sm, am)−Q(sm, âm) > Q(sn, an)−Q(sn, ân)

> γn−m[Q(sn, an)−Q(sn, ân)].
(17)

Therefore Q′ −Q′′ < 0 which means attack state m the agent will get less return in expectation. If
V ar(Q(sm)) < V ar(Q(sn)), assume the range of Q value at step m is smaller than step n, then we
have

Q(sm, am)−Q(sm, âm) < Q(sn, an)−Q(sn, ân). (18)
If n−m is very small orQ(sn, an)−Q(sn, ân) is large enough such thatQ(sm, am)−Q(sm, âm) <
γn−m[Q(sn, an)−Q(sn, ân)], then we have Q′ −Q′′ > 0 which means attacking state m the agent
will get more reward in expectation than attacking state n.

15

Under review as a conference paper at ICLR 2019

Figure 6: Episodic rewards among different attack methods on Atari games. Dotted lines are
black-box attack while dash lines are white-box attack.

(a) ε= 0.005 (b) ε= 0.01

Figure 7: Cumulative reward after adding optimal state based universal perturbation on Pong game

E RESULTS FOR ATTACK OBSERVATIONS IN OTHER ENVIRONMENTS

We provide the results of attack applied on observation space in Figure 6, Figure 7, Figure 8, Figure 9,
and Figure 10. It can be observed from these results that, for obs-seq[Lk]-fd-bb, there exists at least
one k > 0 such that when we estimate a universal perturbation from the top 20% frames of the first k
frames and apply the perturbation on all subsequent frames starting from the k-th frame, we are able
to achieve reasonably good attack performance. In some environments, such as in Pong, k = 10 is
already enough to induce strong attack; while in Enduro, k = 160 achieves better performance than
k = 10 or k = 60.

F RESULTS FOR DYNAMICS ATTACK

We include here the environment rollout sequence for dynamics attack experiment in Figure 11,
Figure 12 and Figure 13. The last image in each sequence denotes the state at same step t. The last
image in each abnormal dynamics rollout sequence corresponds to the target state, the last image in
the attacked dynamics using RL search denotes the attacked results using env-search-bb, and the last
image in the attacked dynamics using random search denotes the attacked results using env-rand-bb.
It can be seen from these figures that env-search-bb method is very effective at achieving targeted
attack while using random search, it is relatively hard to achieve this.

16

Under review as a conference paper at ICLR 2019

(a) ε=0.005 (b) ε=0.01

Figure 8: Cumulative reward after adding optimal state based universal perturbation on Enduro game.
The results are different from the TORCS results since the threshold ε is different from the TORCS
case.

(a) ε=0.005 — HalfCheetah (b) ε=0.01 — HalfCheetah

(c) ε=0.005 — Hopper (d) ε=0.01 — Hopper

Figure 9: Performance among different attack methods on MuJoCo. We use the format “L∞ bound—
Environment” to label the settings of each image.

17

Under review as a conference paper at ICLR 2019

(a) ε=0.005 — HalfCheetah (b) ε=0.01 — HalfCheetah

(c) ε=0.005 — Hopper (d) ε=0.01 — Hopper

Figure 10: Cumulative reward after adding optimal state based universal perturbation on Mujoco. We
use the format “L∞ bound— Environment” to label the settings of each image.

18

Under review as a conference paper at ICLR 2019

(a) Behavior of HalfCheetah Following Learned Policy under Normal Dynamics

(b) Behavior of HalfCheetah Following Learned Policy under Abnormal Dynamics

(c) Behavior of HalfCheetah Following Learned Policy under Attacked Dynamics using RL

(d) Behavior of HalfCheetah Following Learned Policy under Attacked Dynamics using Random Search

Figure 11: Results for Dynamics Attack on HalfCheetah

(a) Behavior of Hopper Following Learned Policy under Normal Dynamics

(b) Behavior of Hopper Following Learned Policy under Abnormal Dynamics

(c) Behavior of Hopper Following Learned Policy under Attacked Dynamics using RL

(d) Behavior of Hopper Following Learned Policy under Attacked Dynamics using Random Search

Figure 12: Results for Dynamics Attack on Hopper

19

Under review as a conference paper at ICLR 2019

(a) Behavior of TORCS Following Learned Policy under Normal Dynamics

(b) Behavior of TORCS Following Learned Policy under Abnormal Dynamics

(c) Behavior of TORCS Following Learned Policy under Attacked Dynamics using RL

(d) Behavior of TORCS Following Learned Policy under Attacked Dynamics using Random Search

Figure 13: Results for Dynamics Attack on TORCS

20

