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ABSTRACT

We propose a feature selection algorithm for supervised learning inspired by
the recently introduced knockoff framework for variable selection in statistical
regression. While variable selection in statistics aims to distinguish between
true and false predictors, feature selection in machine learning aims to reduce the
dimensionality of the data while preserving the performance of the learning method.
The knockoff framework has attracted significant interest due to its strong control
of false discoveries while preserving predictive power. In contrast to the original
approach and later variants that assume a given probabilistic model for the variables,
our proposed approach relies on data-driven generative models that learn mappings
from data space to a parametric space that characterizes the probability distribution
of the data. Our approach requires only the availability of mappings from data space
to a distribution in parametric space and from parametric space to a distribution
in data space; thus, it can be integrated with multiple popular generative models
from machine learning. We provide example knockoff designs using a variational
autoencoder and a Gaussian process latent variable model. We also propose a
knockoff score metric for a softmax classifier that accounts for the contribution of
each feature and its knockoff during supervised learning. Experimental results with
multiple benchmark datasets for feature selection showcase the advantages of our
knockoff designs and the knockoff framework with respect to existing approaches.

1 INTRODUCTION

The availability of digital sensors and low-priced storage, computation, and communication channels
is becoming increasingly pervasive. As a result, emerging applications involving extremely large
datasets are now feasible. Thus, we now often rely on data-centric inference, in which large amounts
of data are concentrated and processed via machine learning (ML) algorithms, based on suitable
data models, to extract relevant information from the observations. However, such approaches often
suffer from high computational complexity as well as limits on available storage, communication, and
processing resources. To alleviate such issues, dimensionality reduction (Samet, 2006) is commonly
applied at the beginning of the data processing pipeline. Dimensionality reduction also addresses
multiple issues with the performance of learning and inference from high-dimensional data that are
commonly referred to as the curse of dimensionality or Hughes Phenomenon (Jain & Zongker, 1997;
Pavlenko, 2003; Guyon & Elisseeff, 2003).

In the most demanding applications involving real-time data processing or complex sensing archi-
tectures (e.g., low-power sensing, streaming data analytics, particle physics, and genetics), it may
not be feasible to perform the sensing and/or computation required by most existing approaches to
dimensionality reduction during data acquisition. Thus, the practitioner is limited in these cases to
feature selection (FS) (Guyon & Elisseeff, 2003; Liu & Motoda, 2008), i.e., to selecting the subset of
the data dimensions that are most relevant in information extraction. These dimensions are the only
ones to be sensed to provide a simple form of dimensionality reduction.

FS has a strong connection with the variable selection (VS) problem in regression analysis for
statistics (Hastie et al., 2009), where the goal is to find a subset of the predictive variables that
capture statistical dependence to the response variable of interest. Informally, the goal of a VS
algorithm is to identify as many of the predictive variables on which the response variable is truly
dependent (measured by its predictive power) while minimizing the number of selected predictive
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variables that are actually unrelated (measured by the false discovery rate); such a strong distinction
between features is seldom observed in ML, where the focus of FS is to preserve performance while
maximizing dimensionality reduction.

The recent development of VS via knockoffs (Barber & Candès, 2015; 2019; Weinstein et al., 2017;
Barber et al., 2019) has attracted significant attention in the statistics community due to its guaranteed
control of the false discovery rate, as well as its applicability to arbitrary statistical models for the
variables. This new framework relies on the creation of samples of knockoff variables that provide
counterparts to the original variables on existing training samples. The knockoff variable design must
meet certain requirements: first, knockoff variables must follow the same probability distribution as
the original variables, but they must be independent from the labels to be predicted, conditioned on the
original variables; second, they should be pairwise uncorrelated with the original variables in order to
provide sufficient predictive power; finally, swapping any two corresponding entries of the original
and knockoff sample vectors must not change the likelihoods of these vectors. The framework then
relies on numerical scores to compare the statistical dependence of original and knockoff variables
with the response variable, discarding those variables for which the scores of these two variable
versions (original and knockoff) are indistinguishable. While the original framework focused on
jointly Gaussian variable models and Lasso-based linear regression, it has since been extended by
new knockoff variable constructions for more sophisticated data models, such as Markov models
and Bayesian networks (Sesia et al., 2019; Gimenez et al., 2018; Romano et al., 2019; Fan et al.,
2019; Liu & Zheng, 2018; Jordon et al., 2019), as well as proposing additional variable statistics for
other regression schemes (Lu et al., 2018); furthermore, technical conditions on the data models and
variable statistics have been simplified while preserving the original performance guarantees (Candès
et al., 2018).

In this paper, we propose a novel framework for FS in ML inspired by the knockoff framework
for VS that is geared towards applications featuring large-scale, high-dimensional datasets. We
leverage the flexibility of the framework by designing knockoff feature constructions and scores
based on data models that are popular in ML and driven by large-scale datasets. More specifically,
we leverage generative models that provide a data distribution characterization that is compatible
with the knockoff VS framework. Examples of knockoffs generated according to methods from
the literature and from our proposed method are illustrated in Figure 1 for multiple samples from
several benchmark image datasets, where it is clearly shown that the properties required for knockoff
variables are better met by our constructions than by those previously proposed. It is worth remarking
that since the analytical framework for VS performance evaluation does not translate to FS, the
proposed knockoff generation methods and scores are best described as heuristics.

This paper’s contributions can be summarized as follows. First, we propose a generic algorithm
for knockoff variable design that assumes the existence of a generative parameterized data model
composed of two mapping functions: one from the data feature space to the space of probability
distributions for a low-dimensional parameter, and another from the parameter space to the space of
probability distributions for the data. Second, we present example implementations of this algorithm
using two standard data-driven models in ML: variational autoencoders and Gaussian process latent
variable models. Third, we propose a knockoff-based scoring scheme that is designed for FS for
softmax classification. Fourth, we provide numerical examples that compare the performance of the
proposed FS schemes against multiple baselines, including approaches based on previously proposed
knockoff-based VS designs. Finally, we discuss open questions and directions for future work.

2 BACKGROUND

Feature Selection (FS) (Guyon & Elisseeff, 2003; Liu & Motoda, 2008) aims to identify a subset Ω
of the indices {1, . . . , N} for the entries of the original feature vector x = [x1, . . . , xN ]T ∈ RN so
that the resulting vector xΩ ∈ R|Ω| best preserves the dataset structure relevant for the ML problem at
hand. Three classes of FS approaches have been described in the literature (Guyon & Elisseeff, 2003;
Li et al., 2017): filter methods, wrapper methods, and embedded methods. Of particular interest to this
paper are filter methods, which consider a set of J labeled data examples {xj ,yj}Jj=1, and compute a
score for each dimension S(n) based on the values xj,n and yj for each data point. The features are
then ranked by this score and those with highest scores compose the set Ω. Common scores include
Fisher’s prediction score, the data-to-label correlation, the mutual information I(xj,n;yj), etc.
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(a) Original (b) Gaussian (c) Deep (d) VAE (e) GPLVM
Figure 1: Examples of knockoffs generated from (top to bottom) MNIST, COIL20, and Yale datasets with
several data models: (a) Original data, 16 sample images. (b) Multivariate Gaussian model knockoffs (Barber
& Candès, 2019), cf. Section 2. (c) Deep knockoffs (Romano et al., 2019). (d) Variational autoencoder (VAE)
model knockoffs, Section 3. (e) Gaussian process latent variable model (GPLVM) knockoffs, Section 3.

Variable Selection (VS) in statistics is similar to FS (Hastie et al., 2009). Consider a set of predictive
variables {x1, . . . , xN} (e.g., the entries of the vector x), and a response variable y (e.g„ the label
or parameter to be estimated), and assume that the data points and matching labels correspond to
independent and identically distributed (i.i.d.) samples of an underlying joint probability distribution
p(x, y). The goal of VS is to determine the set of true predictors {xj}j∈Ω so that the response
is statistically independent of the remaining predictors conditioned on the chosen predictors, i.e.,
y ⊥ xΩC |xΩ; the variables xΩC are often referred to as null variables. The selection mechanism
should have high power (e.g., high probability of the true predictors Ω being selected in a set estimate
Ω̂) while minimizing the false discovery rate (FDR) (e.g., the expected fraction E[|Ω̂ \Ω|/|Ω|] of null
variables included within the selected variable set). Standard methods, e.g., (Benjamini & Hochberg,
1995), require knowledge of the conditional distribution p(x|y).

A recent framework for VS based on the construction of knockoff variables (Barber & Candès,
2015; 2019; Weinstein et al., 2017; Barber et al., 2019; Candès et al., 2018) has been shown to
control the FDR while being applicable to a wide variety of cases without requiring any knowledge
of the conditional response distribution p(y|x). This generality of the approach is given by its
single prerequisite knowledge of the distribution of the data prior p(x). The knockoff variables
x̃ = {x̃1, . . . , x̃N} are constructed for each data sample using this prior so that any swap of a variable
with its knockoff does not affect the data distribution. More formally, denote by (x, x̃)swap(Γ) the
pair of vectors (x, x̃) where the entries of each of the vectors corresponding to the indices Γ has been
swapped with the other. The knockoff variables x̃ are designed so that (i) (x, x̃)swap(Γ) ≡ (x, x̃),
where ≡ denotes equality in distribution (and in practice, over the sample distribution); and (ii) x̃ is
independent of y given x (which is trivially met by ignoring y during the design of the knockoffs).

After knockoff samples are created for the VS training dataset, the framework relies on the com-
putation of variable statistics vn = vn((X, X̃),Y) for each predictor variable that may depend
on all the original variables, all the knockoff variables, and the label; here X, X̃ and Y denote
the set of samples of the original and knockoff variables and the corresponding labels, respec-
tively. The variable statistics generator must have a flip-sign property: the sign of the variable must
change when the corresponding entries of the vectors are swapped, i.e., vn((X, X̃)swap(n),Y) =

−vn((X, X̃),Y) for each n. Flip-sign variable statistics can be easily obtained by creating variable
importance scores (s, s̃) = ({s1, . . . , sN}, {s̃1, . . . , s̃N}) = t((X, X̃),Y), measuring the impor-
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tance of the corresponding variables for the set of sample labels Y, that obey the swap property
t((X, X̃)swap(n),Y) = (s, s̃)swap(n) for each n; we can then define vn = sn − s̃n. VS proceeds
by finding a magnitude threshold τ over the values of v = [v1, . . . vN ] that yields a sufficiently
small ratio q̂ = |{n : vn < −τ}|/|{n : vn > τ}| (e.g., the ratio between the number of indices with
negative evidence and the number of indices with positive evidence), since q̂ gives a proxy for the
target FDR q (Barber & Candès, 2019; Candès et al., 2018).

The promising recent development of model-X knockoffs (Candès et al., 2018) simplifies the original
framework above by showing that knockoffs only require distribution invariance to swapping on
a single variable basis. In other words, knockoffs can be constructed simply by sampling each
knockoff variable according to the conditional likelihood of the original variable given the rest of the
original variables and the previously obtained knockoff variables, p(xn|x̃1:n−1,x−n); therefore, each
knockoff variable can be generated independently in a particular sequence. The resulting simplicity
of the model-X knockoff framework provides an exciting opportunity for the use of modern data
models that aim to learn the distribution of the data x in novel schemes for knockoff generation.

An autoencoder is a neural network that aims to obtain a low-dimensional data representation by
(i) setting both the input and output of the network to be the data x itself, so that the network learns
to recreate the data based on any of the hidden layer representations; and (ii) including a specific
hidden layer of low dimensionality whose output activation z provides a compact representation
from which the data can be recovered. The neural network is thus naturally divided into encoder and
decoder portions. Autoencoders have been used in ML to provide compact data representations z
that are then fed into modern ML algorithms. However, the mapping obtained by the neural network
is deterministic, and does not provide information on the distribution of the data p(x). Variational
autoencoders (VAEs) inherit this name because they follow the structure mentioned above. However,
the low-dimensional representation z for the data follows a prescribed probability distribution p(z).
Consequently, the encoder and decoder aim to learn the forward and backward data distributions
p(z|x) and p(x|z) (Doersch, 2016).

More specifically, we assume that there exists a data generating function x = f(z; θ) : Z ×Θ→ X
that provides a map between a parameter value z and the expected signal x conditioned on z, where
θ denotes the various model parameters. Practical VAEs leverage the common Gaussian assumption
for the conditional data and parameter distributions. Under such a probabilistic model, the VAE
network aims to learn two separate functions in its two halves: the encoder learns an independent-entry
multivariate Gaussian approximationQ(z|x, θ) = N (z|µ̂z|x,θ, Σ̂z|x,θ) for the probability distribution
P (z|x, θ). Thus, the low-dimensional representation learned by the encoder in its narrowest layer
corresponds to the approximated mean µz|x ≈ E[z|x, θ] and the diagonal of the variance matrix
Σ̂z|x,θ ≈ Var(z|x, θ). The decoder learns the mapping x = f(z; θ) = E[x|z, θ] (Doersch, 2016).

Nonlinear manifold models also aim at learning mappings from the high-dimensional space containing
the data of interest to a low-dimensional representation space, which is usually described in terms
of providing a parametrization of the data. As with autoencoders, the large majority of approaches
are deterministic, as they aim at preserving the local geometry of the data in the high dimensional
space. Furthermore, almost all existing methods for manifold learning do not provide a bidirectional
mapping so that new data samples can be obtained from arbitrary representations, lacking a generative
model to obtain data from arbitrary points in the parameter space.

In contrast, Gaussian process latent variable models (GPLVMs) (Lawrence, 2003) have been
proposed to provide a probabilistic nonlinear mapping between the parameter space and the data
space, inspired by probabilistic principal component analysis and kernel methods, and scalable to
large-scale datasets (Hensman et al., 2013). As in principal component analysis, it is first assumed
that each data sample x can be written as x = Wz + e, where W is the basis for a subspace
approximation of the data, z is a low-dimensional parametrization vector, and e is the model error.
It is further assumed that z ∼ N (0, I), that e ∼ N (0, βI), and that each row of W is an i.i.d.
zero-mean Gaussian vector with covariance αI.

Given a data set X = [x1,x2, . . .], the corresponding parameter vectors Z can be obtained via
maximum likelihood estimation with the conditional distribution that marginalizes W:

p(X|Z, θ) =
1

(2π)
DN
2 |K|D2

exp

(
−1

2
trace(K−1XTX)

)
,
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Algorithm 1 Knockoff Construction from Arbitrary Probabilistic Generative Model (KnCAPGM)

Input: probability distributions p(x|z, θ), p(z|x, θ), input features x
Output: output knockoff features x̃

1: initialize knockoff x̃ = x
2: for n = 1, 2, . . . , N do
3: marginalize xn from the distribution p(z|x, θ) to obtain p(z|x−n, θ)
4: obtain z∗ as a sample from p(z|x̃−n, θ)
5: obtain x∗ as a sample from p(x|z∗, θ)
6: update knockoff vector x̃: x̃n = x∗n
7: end for
8: return knockoff x̃

where K = αZTZ + β−1I. In order to introduce nonlinearity in the map between z and x, the
matrix K is instead rebuilt using a kernel space representation (e.g., with a radial basis function
kernel): Ki,j = κ(zi, zj) = α exp

(
−γ2 ‖zi − zj‖22

)
+ β−1δi,j , where i, j are indices of the training

dataset X. GPLVM training obtains the parameters θ = {α, β, γ} and Z via an iterative method that
alternatively uses maximum likelihood for θ and maximum a posteriori estimation for Z with the
conditional likelihood of the data X given above, respectively (Lawrence, 2003; 2005).

3 KNOCKOFF FEATURE DESIGN FROM GENERATIVE MODELS

We introduce a basic algorithm for the construction of knockoff features using modern generative
models from ML for rich data sources that aim to express the underlying distribution of the data.
Note that in contrast to the prior work’s focus on VS with Gaussian and Markov chain models, the
models used here have shown to be significantly more accurate for datasets of interest, as evident by
the significant performance improvements obtained in ML algorithms that leverage these models.

Our proposed algorithm leverages a generative data model that relies on the construction or estimation
of two mappings between the data space x ∈ X and a parametric space z ∈ Z , and the probability
spaces for their counterparts, respectively, to express or approximate the conditional distributions
p(x|z, θ) and p(z|x, θ), where θ represents the model parameters. Our procedure is inspired by the
simplified framework of model-X knockoffs, which generates the knockoff sample entries {x̃n}
lexicographically by sampling from the distribution p(xn|x̃1:n−1,x−n). We thus proceed iteratively
over the data dimensions by (i) marginalizing the parameter space distribution p(z|x−n, θ) over the
data feature dimension under consideration; (ii) mapping a mixed knockoff/original feature data
vector to the parameter space, e.g., drawing a sample z∗ from p(z|[x̃1:n−1,xn+1:N ], θ); (iii) leverag-
ing the inverse mapping p(x|z∗, θ), from the parameter space to the data space, to infer the missing
values for the marginalized dimension xn; (iv) assigning the recovered data values to the knockoff
feature entry x̃n, and preserving it for the next iteration of the algorithm. This routine is formalized
as Algorithm 1; while the process described there does not take into account the values of the so-far
discarded dimensions of the original data x1:n−1, we note that the generative model used to compute
new knockoffs samples is trained over the original data samples, providing a dependence of the new
knockoff entry value on the original data distribution and the knockoff entry values computed so far.
We proceed by describing two instances of this algorithm that leverage popular generative models.

Knockoffs from VAEs: A VAE trained on a dataset of interest directly provides us with the relevant
data probability distributions for Algorithm 1. We begin by considering the marginalization p(z|x−n).

Lemma 1. Assume that x|z ∼ N (µx|z, σ
2
x|zI), z ∼ N (0, I), and z|x ∼ N (µz|x,Σz|x) (e.g., the

VAE model). Then p(z|x−n) ∝ p(z|x̄), where x̄[m] = 0 for m = n and x̄[m] = x[m] for m 6= n.

Proof. We begin by noting that

p(x−n|z) =
p(x̄|z)

√
2πσx|zexp

(
−µx|z[n]2

2σ2
x|z

) and p(x−n) =
p(x̄)

Cexp
(
µT
x−n

ρ−n−µx[n]2

2σ2
x[n]

) ,
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Table 1: Details of datasets and experiments used in this paper.

Dataset Features Samples Classes Type Training set size VAE size
BASEHOCK 4862 1988 2 Text 994 1024
Caltech101 (VGG19) 4096 3000 100 Image Features 1000 1024
COIL20 1024 1440 20 Image 720 512
Cub (VGG19) 4096 9750 195 Image Features 1950 1024
Isolet 617 1560 26 Audio 780 128
MNIST 784 27200 10 Image 1000 128
PCMAC 3289 1920 2 Text 960 1024
RELATHE 4322 1426 2 Text 713 1024
Yale 1024 165 15 Image 90 256

where ρ−n = E[(xn − µx[n])(x−n − µx−n
)] and C is a normalization constant. We then consider

the marginalization

p(z|x−n) =
p(x−n|z)p(z)

p(x−n)
=

p(x̄|z)p(z) · C · exp
(
µT
x−n

ρ−n−µx[n]2

2σ2
x[n]

)
p(x̄)
√

2πσx|z · exp
(
−µx|z[n]2

2σ2
x|z

) = C ′p(z|x̄),

Lemma 1 implies that the distribution learned by the VAE already provides us with a proxy for
the necessary marginal, if we set the value of xn = 0 in the input of the VAE. We then proceed
to obtain a sample z∗ ∼ p(z|x−n, θ), and use the decoder to obtain a new data sample x∗ drawn
from the distribution p(x|z∗). We set the knockoff feature x̃n = x∗n, which is akin to “inpainting”
the marginalized dimension from x according to the learned data distribution p(x|z∗). Figure 1(d)
illustrates the outcome of this process for several examples from three image datasets with VAE
hidden layer and training dataset sizes given in Table 1.

Knockoffs from GPLVMs: The GPLVM provides a generative probabilistic model that gives a dis-
tribution for the data vector x given the value of the parameter z∗ and the model parameters θ trained
from X. One can show that the underlying distribution is given by p(x|z∗, θ) = N (x|XK−1k∗, σ2

∗I);
here k∗ has entries k∗i = κ(zi, z

∗), where zi is the low-dimensional embedding for the training
sample xi, and σ2

∗ = k∗i
TK−1k∗i . While it is difficult to compute the additional mapping p(z|x̃, θ)

required by Algorithm 1 due to the use of the kernel, we propose a heuristic that replaces the sampling
procedure by a maximum a posteriori estimate procedure based on the distribution above, i.e., we
return the value of z that maximizes p(z|x̄, θ) = p(x̄|z, θ)p(z|θ)/p(x̄|θ). This procedure can be
interpreted as an out-of-sample extension of the GPLVM manifold model for the point x̄, e.g., a
method that provides an embedding for new (e.g., testing) data points into the low-dimensional pa-
rameter space established by the manifold. The independence assumption implicit in the conditional
distribution p(x|z∗, θ) simplifies the marginalization required by Algorithm 1. Figure 1(e) illustrates
the outcome of this process for several examples from three image datasets using a GPLVM featuring
a 10-dimensional parameter space and with a training set of size given in Table 1.

4 KNOCKOFF-BASED FEATURE SELECTION FOR SUPERVISED LEARNING

Existing importance scores to evaluate original and knockoff variables have been limited to regression
(i.e., estimation) problems. In particular, variable statistics have been developed for logistic regres-
sion (Sesia et al., 2019; Gimenez et al., 2018), linear regression via lasso and group lasso (Barber &
Candès, 2015; 2019; Candès et al., 2018; Sesia et al., 2019; Gao et al., 2018; Katsevich & Sabatti,
2019), Bayesian hierarchical regression (Candès et al., 2018), and deep learning estimators (Lu et al.,
2018). In contrast, our consideration of knockoffs for FS focuses on general ML problems; as a
starting point, we will consider standard supervised learning.

Our feature importance scores are designed for the application of a softmax classifier, which uses
class scores defined as lc(x) = exp(xTwc)∑C

c′=1
exp(xTwc′ )

for each of the classes 1, .., C. The sample x is

then assigned the predicted label ĉ(x) = arg maxc lc(x); the parameter weights wc are trained using
a cross-entropy loss between the scores and the sample labels. We propose a simplified scoring
scheme for FS, reminiscent of the concept in Lu et al. (2018), by expanding the softmax classifier
class scores to an expanded input, consisting of a concatenation of the original and knockoff features:
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lkc (x, x̃) = exp(xTwc+x̃T w̃c)∑C
c′=1

exp(xTwc′+x̃T w̃c′ )
. Importance scores for each original and variable knockoff can

then be obtained as the sums of squares sn =
∑C
c=1(wcn)2 and s̃n =

∑C
c=1(w̃cn)2, respectively.

Similarly to VS, the feature statistics vector is simply obtained as the difference of the original and
knockoff feature importance scores v = s− ŝ.

5 RELATED WORK

There are several recent contributions to the knockoff literature for VS that are related to our work.
Liu & Zheng (2018) proposed knockoff variable construction for regression based on autoencoders;
however, the design of these knockoffs does not make the value of each knockoff variable independent
from the original variable. In contrast, our approach is applicable to many generative models and
marginalizes the feature under consideration before starting the construction of the corresponding
knockoff. Jordon et al. (2019) proposed a construction for knockoff variables based on a generative
adversarial network (GAN). The GAN’s generative network uses the original variables and random
noise as inputs and generates the corresponding knockoff variables, while its discriminative network
takes as input a subset-swapped version of the concatenated original-knockoff feature vector and
attempts to estimate the set of swapped variables. The approach also uses a mutual information
estimate in the training objective function to promote independence between original and knockoff
variables. In contrast to the data models considered in this paper, GANs do not aim to obtain a
low-dimensional parameterization of the data or its distribution; furthermore, we are not aware of an
implementation of this method being available for comparison.

More recently, Romano et al. (2019) proposed the design of knockoffs based on a deep learning
network that is also inspired by the GAN architecture. Similarly to the original Gaussian knockoff
constructions of Barber & Candès (2015; 2019); Candès et al. (2018), the formulation of the objective
function for their proposed algorithm is still centered on the matching of moments between the
distributions for the original and knockoff variables. We compare the performance of this approach
with our own in the sequel.

Separately, Lu et al. (2018) proposed a framework for the design of variable statistics for estimation
based on a deep learning network. The statistics are obtained by augmenting the deep learning
network with a pair of pre-processing layers, featuring an input of original and knockoff variables,
that merge each pair of matching variables (original/knockoff) at the first layer, and assigns trainable
weights to each of them; the output of this layer is then mapped directly to the input of the original
deep learning network. This straightforward approach allows for easy implementation of variable
importance scores in cases where the first action on the input features is a linear projection, as is the
case with the softmax classifier leveraged in our experiments.

6 EXPERIMENTAL RESULTS

To test the performance of our proposed knockoff designs, we consider several datasets commonly
used as benchmarks for FS in ML (Li et al., 2017; 2019), including image, test, and audio data,
under a softmax classifier setup. Detailed properties of those datasets are summarized in Table 1.
We combine the variable relevance scores of Section 4 for the aforementioned softmax classifier
with the two knockoff construction schemes proposed in Section 3, as well as with two previously
proposed and available constructions: second order/Gaussian approximation (Candès et al., 2018)
and deep knockoffs (Romano et al., 2019). The knockoff construction schemes proposed in this
paper were implemented in Python using the Keras and GPy toolboxes (GPy, 2019); we used the
implementations available from (Sesia & Romano, 2019) for the two existing constructions tested
here. Additionally, we tested the performance of several FS approaches from the literature (Duda et al.,
2001; Robnik-Šikonja & Kononenko, 2003; Wright, 1965; Nie et al., 2010), using implementations
available from the scikit-feature toolbox (Li et al., 2017; Li & Cheng, 2019). The datasets were
randomly split in half into training and testing sets, except in cases where equal representation of
classes requires a smaller training set, or when the majority of the FS algorithm tests lasted more
than 30 CPU-days; see Table 1 for details.

For knockoff construction, we implemented VAEs with one hidden layer for both the encoder and
decoder of the sizes indicated in Table 1 for each dataset; the low-dimensional representation z is
five-dimensional for all datasets as well. The VAE nodes use the ReLU activation function; for the
VAE, datasets are normalized to be in the range [0,1]. We also implemented GPLVMs with parameter
space dimension 10 for all datasets. The latent dimensionalities of the models tested were selected by
evaluation of the quality of the reconstructions obtained from the original data.
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(a) Basehock (b) Caltech101 (VGG19) (c) COIL20

(d) Cub (VGG19) (e) Isolet (f) MNIST

(g) PCMAC (h) RELATHE (i) Yale

Figure 2: Performance of a deep learning softmax classifier for multiple datasets as a function of the percentage
of features selected by multiple baseline and knockoff-based algorithms. The algorithms tested for comparison
are Gaussian knockoffs (Candès et al., 2018), deep knockoffs (Romano et al., 2019), Fisher score (Duda et al.,
2001), ReliefF (Robnik-Šikonja & Kononenko, 2003), F-Score (Wright, 1965) and RFS (Nie et al., 2010), For
datasets featuring rich training data, knockoff-based algorithms outperform baselines, with Gaussian knockoffs
outperformed by their counterparts.

We evaluate the performance of the same softmax classifier trained and tested with the features
selected by each of the FS and VS frameworks using the score of Section 4, where the percentage
of selected features varies from 2% to 20%. Figure 2 shows that the proposed knockoff-based FS
methods outperform the baseline approaches in almost all instances. Note that results are missing for
some of the baseline methods because the relevant simulation did not complete after an upper limit
of 30 CPU-days. We see that VAE, GPLVM, and deep knockoffs often provide better performance
than standard Gaussian knockoffs. In some cases, the number of samples available to fit the data
models used in knockoff generation is not sufficient to obtain good performance for knockoff-
based algorithms. We also conjecture that the performance of the knockoff-based models studied is
dependent on the suitability of the underlying generative model for the dataset being considered. As
a sanity check, we tested the performance of uniform downsampling of the feature vector, as well as
the knockoff-based FS method where all knockoff feature scores have zero value (e.g., knockoffs are
not considered during feature selection), which we dub baseline in Figure 2.

7 DISCUSSION AND CONCLUSIONS
In this paper, we have proposed an algorithm for FS based on the knockoff variable framework.
Our goal is to extend its applicability to general problems in ML, and we focused on the specific
problem of classification using softmax activations. We have observed that the performance of FS is
dependent on the suitability of the model used in knockoff design for the data being considered and
for the number of data points available for training. Given that the data models used by our approach
(and by deep knockoffs) are better suited for many modern data-centric problems, we obtain better
performance using them vs. the original Gaussian model.

There is additional potential for the knockoffs described here. The fact that knockoff generation
does not require knowledge of the data labels (and their joint distribution with the data) implies
that knockoffs can be generated for data from unsupervised learning problems. Existing scores for
unsupervised FS could be used on knockoff features as well.
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