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ABSTRACT

Watermarks have been used for various purposes. Recently, researchers started
to look into using them for deep neural networks. Some works try to hide at-
tack triggers on their adversarial samples when attacking neural networks and
others want to watermark neural networks to prove their ownership against pla-
giarism. Implanting a backdoor watermark module into a neural network is get-
ting more attention from the community. In this paper, we present a general pur-
pose encoder-decoder joint training method, inspired by generative adversarial
networks (GANs). Unlike GANs, however, our encoder and decoder neural net-
works cooperate to find the best watermarking scheme given data samples. In
other words, we do not design any new watermarking strategy but our proposed
two neural networks will find the best suited method on their own. After being
trained, the decoder can be implanted into other neural networks to attack or pro-
tect them (see Appendix for their use cases and real implementations). To this end,
the decoder should be very tiny in order not to incur any overhead when attached
to other neural networks but at the same time provide very high decoding success
rates, which is very challenging. Our joint training method successfully solves the
problem and in our experiments maintain almost 100% encoding-decoding suc-
cess rates for multiple datasets with very little modifications on data samples to
hide watermarks. We also present several real-world use cases in Appendix.

1 INTRODUCTION

Security issues of deep learning have been very actively being studied. It had been already
demonstrated that deep learning methods are vulnerable to some carefully devised adversarial at-
tacks (Krizhevsky et al., 2012; Graves et al., 2013; Kim, 2014; Chen et al., 2015). At the same time,
many researchers are also studying about how to make them more robust against such attacks. A
couple of recent works, for example, proposed to use watermarks (Zhang et al., 2018; Adi et al.,
2018) to protect neural networks. At the same time, other work wanted to use a similar watermark
technique to attack neural networks (Liu et al., 2018).

The method of adding watermarks to data samples can be used in various ways to protect deep
learning models. First, the decoder can be implanted into a trained deep learning model and later
one can prove the ownership, when other people copied the model, by showing that the copied model
reacts to one’s watermarked samples. Second, the implanted decoder may allow only legitimately
watermarked samples and reject other non-watermarked samples. In this case, only people that have
the encoder can access the deep learning model. However, there is one very strict requirement that
the decoder should be tiny to minimize the incurred overheads by attaching it as part of the main
deep learning model. Similar techniques can also be used to attack neural networks.

In this paper, we do not propose any specific watermarking techniques. Instead, we want the en-
coder and decoder discuss and decide their watermarking method. Inspired from generative adver-
sarial networks (GANs) (Goodfellow et al., 2014), the encoder and decoder work for the same goal
and are jointly trained. They do not perform the adversarial game of GANs. Their relationship is
rather cooperative than adversarial in our method. The decoder is a tiny neural network to decode
watermarks and the encoder is a high-capacity neural network that can watermark samples in such
a way that the tiny neural network can successfully decode. Therefore, those two neural networks
should cooperate to find such a watermarking scheme — in GANs, one neural network (generator)
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tries to fool the other neural network (discriminator). Because the decoder has a limited capacity
due to its tiny neural network size, the encoder should not decide the watermarking scheme alone.
The encoder should receive feedback from the decoder to revise its watermarking scheme. After
training them, one should keep the encoder in a secure place but can deploy the decoder to as many
places as one wants. We also show that our method can be used for both defences and attacks (refer
to Appendix for some of these examples we implemented using our proposed method).

We adopt residual blocks (He et al., 2016) to design the encoder. Each residual block of the encoder
is supposed to learn f(x)+xwhere x is an input to the block. One can consider f(x) as a watermark
signal discovered by the joint training of the encoder and the decoder. The signal produced by f(x)
should be strong enough to be detected by the decoder but weak enough not to be detected by human
eyes. We design our training loss definition to achieve this goal. The encoder should modify original
samples to implant watermarks. As more modifications are allowed, stronger watermarks will be
implanted but they can be readily detected by human eyes. Our loss definition has a parameter that
can be set by user to limit the modifications by the encoder. Our experiments show that we can find
a well-balanced watermarking scheme that be detected only by the decoder.

We tested many different datasets: face recognition(VGG-Face Data-set), speech recognition (Pan-
nous, 2016), images with general objects (Krizhevsky et al., 2012), and flowers (Flowers Data-set).
Two of them are reported in the main paper with the comparison with other watermarking methods
and others are introduced in Appendix. During experiments, our methods marked 100% decoding
success rates for all datasets (in at least one hyper-parameter configuration). This well outperforms
other baseline methods.

In addition, we also found that different watermarking schemes are trained for different datasets. For
instance, the encoder modified the tone of colors for the face recognition images. For the general
object images, however, the encoder explicitly marks some dots rather than modifying their color
tones (see Figure 3 and Figure 4). This proves our goal that two neural networks cooperate to find
the best suited watermarking method for each dataset.

2 RELATED WORK

2.1 WATERMARKING TECHNIQUES FOR DEFENDERS

Watermarking data samples, such as images, videos, etc., is a long-standing research problem. In
many cases, watermarking systems merge a specific watermark signal s (set by user) and a data
sample x to produce a watermarked sample x′, i.e., x′ = encode(x, s) and s = decode(x′). In
general, the signal s is secret and later used to check where the watermarked sample x′ is originated
from.

There exist many different watermarking techniques for relational databases, images, videos, and so
forth. However, watermarking deep neural networks is still under-explored except for a couple of
recent papers (Zhang et al., 2018; Adi et al., 2018). For instance, one can implant a certain signal
on neural network weights – technically, this is similar to implanting a signal on a column of table
for watermarking a relational database. However, the signal on the weights will disappear after fine-
tuning the neural network which can preserve its accuracy but reorganize its weight values. Instead,
we need a more robust way for watermarking neural networks.

To this end, a backdoor based watermarking method has been recently proposed (Zhang et al., 2018;
Adi et al., 2018). In general, a backdoor means a certain malware piece that can be exploited to
avoid authentication processes in computer security. In their contexts, however, a neural network
backdoor means a way to control the final prediction of a target neural network — for instance,
retraining a target neural network so that it classifies a certain type of cats as dogs. The authors want
to use the backdoor mechanism to protect the ownership of a neural network. Because the backdoor
reacts to the samples specially watermarked by the owner, the proof of its ownership is available
when other people copied the neural network. Of course, if the backdoor is successfully identified
and removed, the proof of the ownership is not possible. However, this incurs additional costs and
greatly decreases the motivation of copying the model.

2



Under review as a conference paper at ICLR 2019

2.2 WATERMARKING TECHNIQUES FOR ATTACKERS

The same watermarking technique can be used for attacks. In (Liu et al., 2018), the attacker implants
an attack trigger into a data sample using a simple watermarking technique and the target neural
network is already compromised by the attack to make it react to their trigger. Their goal is to induce
the compromised neural network outputs a certain label encoded in the attack trigger and preferred
by the attacker. Because this paper uses a very strong watermark signal, their watermarked images
are visually impaired. Due to its strong watermarks, however, their attack shows very high success
rates.

2.3 GENERATIVE ADVERSARIAL NETWORKS

GANs are one of the most successful generative models. They consist of two neural networks, one
generator and one discriminator. They perform the following zero-sum minimax game:

min
G

max
D

V (G,D) =E[logD(x)]x∼pdata(x) + E[log(1−D(G(z)))]z∼p(z), (1)

where p(z) is a prior distribution, G(·) is a generator function, and D(·) is a discriminator function
whose output spans [0, 1]. D(x) = 0 (resp. D(x) = 1) indicates that the discriminator D classifies
a sample x as generated (resp. real).

The generator tries to obfuscate the task of the discriminator by producing realistic fake samples.
We redesign the adversarial game model for our purposes. In our case, two neural networks, one
encoder and one decoder, perform a cooperative game.

3 MOTIVATION

A watermarking framework consists of encoder and decoder. The encoder modifies original samples
by adding a watermark signal into them and the decoder is a binary classification to detect the
presence of the watermark signal. Watermarks are used for various purposes in deep learning. They
were used for both of defenses and attacks for deep neural networks. In our case, we are interested
in developing a pair of encoder and decoder and the decoder should be pluggable to other neural
networks (as in the malware piece or backdoor in computer security). Our encoder-decoder pair can
be used for both defenses and attacks (refer to Appendix for our case studies).

There are several watermarking methods based on CNNs that can be described by x′ = encode(x, s)
and s = decode(x′) (Mun et al., 2017). However, existing methods do not care about the size of the
decoder and we are not interested in implanting a watermark signal s into a data sample x. We let the
encoder modify x in a way that the decoder wants and the decoder performs the binary classification
of watermarked or non-watermarked. Thus, our model can be described as x′ = encode(x) and
decode(x′) ∈ {0, 1} without s. In real world applications, this binary classification decoder suffices
(refer to our use cases in Appendix) and the decoder should be so tiny that it does not incur any
overheads when attached to other main neural networks — this is a strong requirement especially
for the backdoor based watermarking method.

Our goal is to develop a watermarking framework that consists of one large encoder (a fatty network)
and one tiny decoder (a skinny network) and they should decide their own watermarking scheme
without human efforts.

4 PROPOSED METHOD

Our overall idea is greatly inspired by generative adversarial networks (GANs). In GANs, there
are two neural networks, generator and discriminator, that are comparable to each other in terms of
their neural network capacity. In our case, however, the encoder and decoder are highly imbalanced
in their neural network capacity and they perform a cooperative game (rather than the zero-sum
adversarial game of GANs).

In our method, the encoder should be capable of generating simple but robust watermarked samples
because the decoder has very low capacity and as a result, it may not be able to decode complicated
watermarks. Therefore, the encoder should be large and trained enough to find the watermarking
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Figure 1: The proposed encoder architecture. Based on the attention map, a series of residual
blocks generate a watermark signal specific to the input sample x which will be later merged with
the generated watermark signal. All those convolutions in this encoder use the stride of 1 and the
channel of 3 to maintain the identical input and output dimensions.

mechanism suitable for the low-capacity decoder. In other words, we do not teach any watermarking
mechanism but let them discover on their own considering the neural network capacity difference.

4.1 ENCODER

The encoder (comparable to the generator of GANs) should modify original samples to implant a
watermark signal. We adopt residual blocks to design the encoder as shown in Figure 1. Residual
blocks are proven to be effective in designing a deep architecture and adopted by many works (e.g.,
ResNet (He et al., 2016)). Each residual block that can be described as x + f(x) is suitable to
perform the watermarking task. After the multiple stages of residual blocks, the encoder generates
a watermark signal1 that will be merged with the original sample x. We use the multiple residual
blocks because it is very unlikely that one residual block is able to generate a robust watermark
signal. The overall watermarked sample generation process can be described as follows:

x+ f1(x
′) + f2(x

′ + f1(x
′)) + f3(x

′ + f1(x
′) + f2(x

′ + f1(x
′))) + · · · ,

x′ = x�A,
(2)

where x is the original sample; A is the attention map of x produced after two convolutions, one
activation, and a softmax; � means the Hadamard product; fi(·) represent an additive term by i-th
residual block. In particular, we use the swish activation (Ramachandran et al., 2017). Thus, one
can consider our generated watermark signal is an ensemble of all those additive terms (Veit et al.,
2016). Note that our watermark signal is generated after ignoring unimportant parts of x after the
element-wise product with the attention map.

After merging the input sample x and the generated watermark, we have one post-processing block
to refine the watermarked sample. This process includes a couple of more convolutions.

In Figures 2, 3, and 4, we show watermarking examples for various datasets. In Figures 2 and 4,
watermarks are generated for the parts where the attention map focuses on. In Figure 3, watermakrs
are dispersed over many pixels and in this case, the attention also provides similar weights for those
pixels.

4.2 DECODER

The decoder (comparable to the discriminator of GANs) should classify if an input sample has
a watermark signal or not. We adopt the discriminator of DCGAN (Radford et al., 2015) (after
shrinking its size) as decoder. Its discriminator follows a standard CNN architecture. One of its

1In conventional watermarking schemes, the watermark signal is set by user and the encoder tries to implant
the signal into data samples. In our case, the encoder generates a latent signal that is suitable for the tiny
decoder to detect. It is unlikely that a user defined watermark signal can be readily detected by the tiny decoder.
We encourage that they try to find the watermark scheme on their own.
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(a) Original (b) Watermark (c) Watermarked (d) Original (e) Watermark (f) Watermarked

Figure 2: Watermarking examples. (b) and (e) are generated watermarks (before being merged with
images). These are cases where watermarks are generated, aided by attention. For (e), there is a
watermark in the most lower right corner and its attention also focuses on the same area. However,
attention maps sometimes provide similar weights over almost all pixels, in which cases watermarks
are scattered over all pixels — examples in Figure 3 correspond to this case.

advantageous is that it is very hard to identity the decoder after being implanted into a neural network
model because it is tiny and uses only very standard neural operators. We perform experiments by
varying the number of convolution layers in order to find the smallest decoder configuration.

4.3 TRAINING LOSS

We introduce our training method. The main training loss can be described as follows:

max
E

max
D

V (E,D) = E[log(1−D(x))]x∼pdata(x) + E[logD(E(x))]x∼pdata(x), (3)

where E(·) is an encoder, and D(·) is a decoder, and x is a data sample.

This loss definition looks similar to the one in GANs. However, we do not perform the minimax
zero-sum game of GANs. Both the encoder and decoder cooperate to find the best performing wa-
termarking scheme. Its equilibrium state analysis is rather meaningless because they do not perform
the zero-sum adversarial game of GANs. It is obvious that the main loss representing equation 3 will
be optimized when the decoding success rate of watermarked and non-watermarked cases is 100%.
The main loss can be implemented using the cross-entropy loss as in other GANs.

In addition, we also use one more regularization term to limit the modification by the encoder. Let
L be the main loss in equation 3. The final loss term is defined as follows:

Lfinal =10−3L+max(0,Lcontent − γ),

Lcontent =
1

Wi,jHi,j

Wi,j∑
s=1

Hi,j∑
t=1

(
φ(x)s,t − φ(E(x))s,t

)2
,

(4)

where φ(·)s,t means the feature map taken after t-th convolution (after activation) before s-th max-
pooling layer in the VGG19 network2, γ is the maximum margin in the hinge-loss based regulariza-
tion. We allow the modification up to γ. Note that the hinge-loss based regularization does not incur
any loss up to γ.

Lcontent compares two samples, the original sample x and the watermarked sample E(x), in terms
of the feature maps created by the VGG19 network (Liu & Deng, 2015). We found that this is better
than the pixel-wise mean squared error regularization. In our case, we add the hinge-loss to control
the modification of the input sample x. If γ is large, more modifications are allowed and as a result,
our watermark signals will be more robust. However, the modified sample can be very different
from the original sample in this case, which is not a desired result. Therefore, γ should be adjusted
very carefully.

Our training algorithm is similar to that of GANs. The encoder and the decoder are alternately
trained to collaboratively minimize Lfinal. We omit the detailed algorithm due to its similarity to
the training algorithm of GANs.

2In this paper, we consider only images and other data types that can be represented by matrix and will
extend to other types of data samples in the future. For other data types, one can choose a proper neural
network instead of the VGG19 network.
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5 EXPERIMENTS

We first select several neural networks and their official datasets, considering the diversity in their
task and dataset types. After that, we train the encoder-decoder network using 80% of training
samples and check the decoding error rate for the remaining 20% of testing samples. For this,
we test both cases where each testing sample is watermarked or not — i.e., the decoder should
successfully distinguish watermarked and non-watermarked cases for the same set of samples. By
varying the number of convolution layers in the decoder and the margin γ, we repeat the experiment.

We also test how much damage those implanted watermarks introduce to data samples. If the wa-
termark signal is weak, there should not be any differences between them for several popular image
comparison metrics. We introduce detailed experiment results for two neural networks in this paper
and some more in Appendix.

5.1 BASELINE METHODS

To evaluate our method, we compare with the following watermarking techniques. Note that our
baseline selection is so extensive that all different types of watermarking methods are included.

1. In the statistical watermarking method (SWM) introduced in (Shehab et al., 2008), authors
proposed a method to hide a series of bits (set by user) in a column of table — after flat-
tening an image to an array of pixels, this method can be applied. It explicitly solves an
optimization problem to find the weakest watermark (enough to hide the bits) and performs
some statistical tests to decode the watermarked bit pattern. We test the following two bit
patterns to hide: ‘0101010101’, and ‘0000100001’. This method cannot be implemented
by neural networks but we use this method only for comparison purposes.

2. Trojan in (Liu et al., 2018) uses a relatively stronger watermark signal, called attack trigger
in their paper, than SWM. This papers proposed a very effective backdoor attack method
and our motivation is also influenced by the paper.

5.2 DATASETS AND NEURAL NETWORKS

We choose the following neural networks and their datasets. All selected neural networks include
their official datasets and we use them.

1. Face Recognition (FR): FR is a deep CNN-based neural network developed by (Parkhi
et al., 2015) as VGG-FACE. It has 16 layers and its data-set is available at (VGG-Face
Data-set).

2. Speech Recognition (SR): A CNN model proposed in (Pannous, 2016) is to recognize spo-
ken languages. It achieves superhuman performance in recognizing spoken numbers. It
uses the dataset of pulse-code modulation (PCM) images of spoken numbers.

We also tested for the ImageNet (Krizhevsky et al., 2012) and Flowers (Flowers Data-set) datasets.
Experiments for those other neural networks and datasets are in Appendix.

5.3 FACE RECOGNITION NEURAL NETWORK

We report i) how many non-watermarked and watermarked samples are correctly recognized and ii)
how much damage each watermarking method brings to data samples in each method.

5.3.1 WATERMARK DECODING SUCCESS RATE

We compare the proposed method with the aforementioned baseline methods. Our method (de-
coder size = 3 and γ = 0.01) marks the best decoding success rate, i.e., 100% in our method vs.
95.5% in the method of (Liu et al., 2018) vs. 89.3% in the statistical watermarking method. Other
configurations in our method also outperform all the baseline methods.
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Table 1: The decoding success rate and the damage on samples for the face recognition neural
network and its dataset. The decoder size means the number of convolutions in the decoder. The
best results are indicated in bold font. The 100% decoding success rate means that the decoder can
distinguish non-watermarked and watermarked samples without any mistakes.

Metric SWM
(0101010101)

SWM
(0000100001) Trojan

Our method
Decoder Size = 1 Decoder Size = 2 Decoder Size = 3

γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.01 γ = 0.05 γ = 0.1
Decoding

Success Rate 87.0% 89.3% 95.5% 98.2% 99.9% 99.3% 99.9% 99.9% 97.0% 100.0% 98.7% 98.3%

MS-SSIM 0.9998 0.9998 0.91818 0.9976 0.9917 0.9574 0.99782 0.9901 0.9744 0.9960 0.9870 0.98296
PSNR 58.479 58.851 21.029 37.735 31.3 22.797 39.852 30.8802 26.591 36.580 28.755 27.955

Watermarked Entropy
Non-watermarked Entropy 1.0000 1.0000 1.0005 1.0006 0.9993 1.0008 0.9998 0.9982 1.0004 0.9970 1.0004 0.9972

(a) Our method (γ =
0.01)

(b) Our method
(γ = 0.05)

(c) Our method (γ =
0.1)

(d) Trojan (e) Original Image

(f) Our method (γ =
0.01)

(g) Our method
(γ = 0.05)

(h) Our method
(γ = 0.1)

(i) Trojan (j) Original Image

Figure 3: Examples of watermarking FR images. (d) and (i) are watermarked by the method of (Liu
et al., 2018). Others are watermarked by our method. The decoder has 3 convolution layers in
these examples. Note that there are more modifications on the color tone of images as γ increases.
For all cases, the trained decoder can successfully decode their watermarks. Refer to Appendix for
examples of watermarking other samples.

5.3.2 DAMAGE ON DATA SAMPLES

Sometimes watermarks incur irreparable damage on images, and as a result, its contents are changed
a lot. We visualize watermarked samples and measure the difference from their original images
using the multi-scale structural similarity (MS-SSIM), the peak signal to noise ratio (PSNR), and
the Shannon entropy increase after watermarked.

Figure 3 shows several original and watermarked samples. Figure 3 (d) and (i) are watermarked
by the method of (Liu et al., 2018) and their attack trigger signal (in the lower right corner) is very
strong. Compared to them, our methods provide much weaker watermarks. However, our decoding
success rates are much higher than other methods including (Liu et al., 2018). This proves the
efficacy of the joint training mechanism of the encoder and decoder.

Our method is clearly better than Trojan for both PSNR and the entropy change, i.e., 36.580 vs.
21.029 for PSNR. SWM solves an optimization problem to find the best case to hide watermarks
with the smallest changes. Thus, its PSNR and entropy change are better than our method and
Trojan. However, SWM does not provides reliable decoding success rates.

We also checked the accuracy drop after watermarking images. With the original images, the FR
network’s accuracy is 0.795576 and after watermarking them with γ = 0.01 and the decoder with
3 convolutions, it becomes 0.797864. After watermarking, the accuracy is slightly improved but we
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Table 2: The decoding success rate and the damage on samples for the speech recognition neural
network and its dataset. The decoder size means the number of convolutions in the decoder.

Metric SWM
(0101010101)

SWM
(0000100001) Trojan

Our method
Decoder Size = 1 Decoder Size = 2 Decoder Size = 3

γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.01 γ = 0.05 γ = 0.1
Decoding

Success Rate 12.0% 21.0% 100% 99.9% 99.6% 100.0% 94.9% 99.3% 99.1% 91.8% 90.7% 97.4%

MS-SSIM 0.999 0.999 0.188 0.9687 0.9491 0.9307 0.9823 0.9480 0.9737 0.9578 0.9624 0.8793
PSNR 57.4924 57.3948 8.053 36.5606 33.5501 31.2187 37.7017 33.3228 29.5841 35.1865 33.9897 31.1498

Watermarked Entropy
Non-watermarked Entropy 1.0000 1.0000 1.0202 1.0992 0.9464 1.1274 1.1815 0.9993 1.1684 1.1618 1.1303 1.0344

think this is within its error margin and not significant. They are more or less the same. Likewise,
in almost all cases, their accuracy difference is very trivial.

Other watermarking examples are in Appendix. For example, Figure 4 in Appendix shows several
watermarking examples for the ImageNet dataset. Watermarks in Figure 3 and Figures 2 and 4 are
very different. In Figure 3, watermarks are implanted in the tone of colors but in Figures 2 and 4,
several small dots are explicitly marked. This is because the encoder and decoder networks discover
a suitable watermarking method for each dataset. It is very interesting that they discover how to hide
watermarks on their own.

5.4 SPEECH RECOGNITION NEURAL NETWORK

For this SR network netork ans dataset, we repeat the same experiments as the FR case. In general,
these experiment results have the same pattern as the FR results.

5.4.1 WATERMARK DECODING SUCCESS RATE

In SR, SWM shows very poor decoding success rates. Both our method and Trojan provides the
rate of 100%. Considering the large damage on samples by Trojan which will be shortly described,
however, Trojan’s 100% decoding success rate is rather meaningless. In many configurations in our
method, their success rates are more than 99%.

5.4.2 DAMAGE ON DATA SAMPLES

SWM marked the smallest damage but considering it very low success rates, we don’t think SWM
is suitable for SR. It cannot be even implemented by neural networks. Our method introduces less
damage to samples than that of Trojan. Especially, the PSNR of Trojan is much worse than other
method. Because the PSNR is in the log scale, those values mean huge differences. Its MS-SSIM is
also greatly damaged. Our method shows very stable values for those three metrics.

6 CONCLUSIONS

We present a joint training method of the watermark encoder and decoder. Our decoder is a very low-
capacity neural network and the encoder is a very high-capacity neural network. These two skinny
and fatty neural networks collaborate to find the best watermarking scheme given data samples. In
particular, we use residual blocks to build the encoder because the definition of the residual block
is very appropriate for the task of watermarking samples. We demonstrated that two different types
of watermarks (one to change the color tone and the other to add dots) are found by them without
human interventions.

For our experiments with various datasets, our method marked 100% decoding success rates, which
means our tiny decoder is able to distinguish watermarked and non-watermarked samples perfectly.

We also listed three use cases in Appendix about how to utilize our proposed encoder and decoder
for real-world attacks and defenses. Our future research will be to implement those use cases.
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(a) Watermarked Image
(γ = 0.01)

(b) Watermarked Image
(γ = 0.05)

(c) Watermarked Image
(γ = 0.1)

(d) Non-watermarked
Original Image

(e) Watermarked Image
(γ = 0.01)

(f) Watermarked Image
(γ = 0.05)

(g) Watermarked Image
(γ = 0.1)

(h) Non-watermarked
Original Image

Figure 4: Examples of watermarking ImageNet images. Some dots are marked explicitly to hide
watermarks when γ >= 0.05. Recall that watermarks are hidden in the tone of colors for FR
images. This is a very interesting point because our proposed method can discover two very different
watermarking schemes for them. This is because adding dots does not make the regularization term
greatly exceed the margin γ. When γ = 0.01, a similar watermarking scheme to the FR exmaples
will be used. This proves that our method is able to fine the best suited watermarking scheme given
data samples. The decoder has 3 convolution layers in these examples. Note that there are more
modifications in general as γ increases. For all cases, the trained decoder can successfully decode
their watermarks.

Figure 5: The decoding success rate in the ImageNet dataset. We report the decoding success rate
for non-watermarked/watermarked cases with our method after varying the convolution numbers in
the decoder (i.e. decoder size) and γ.

Our method
Decoder size = 1 Decoder size = 3

γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.01 γ = 0.05 γ = 0.1
81.2%/100.0% 89.2%/100.0% 92.0%/100.0% 99.0%/100.0% 98.0%/99.4% 99.5%/100.0%

Figure 6: The decoding success rate in the Flowers dataset
Our method

Decoder size = 1 Decoder size = 3
γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.01 γ = 0.05 γ = 0.1

94.6%/97.1.0% 96.9%/94.5% 97.9%/99.9% 100.0%/99.0% 100.0%/99.8% 100.0%/99.0%

A ADDITIONAL EXPERIMENT RESULTS

A.1 IMAGENET

We introduce additional experiments that were removed from the main paper. In Table 5, we report
the decoding success rate for the ImageNet dataset. In all configurations, their success rates are very
high. In particular, the decoder with 3 convolution layers provides the highest decoding success rate.
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Table 3: Original target neural network vs. Modified target neural network. They differ only at one
part marked in red.

Original Target NN Modified Target NN
c1 ← relu(conv(x)) c1 ← relu(conv(x))
c2 ← relu(conv(c1)) c2 ← relu(conv(c1))

...
...

... ci ← relu(conv(ci−1)) + decode&inject(x)

...
...

cn ← relu(conv(cn−1)) cn ← relu(conv(cn−1))
logit← linear(cn) logit← linear(cn)

label← softmax(logit) label← softmax(logit)

Figure 4 shows several watermarked and non-watermarked samples. With γ = 0.01, modifications
are very limited. In Figure 4 (e), it is very hard to recognize its watermark with human eyes, but
the decoder can detect its hidden watermark signal surprisingly. The smallest decoder with only one
convolution works well too. However, its decoding success rates are smaller than that of the decoder
with three convolutions.

A.2 FLOWERS

We also test the flower images in (Flowers Data-set). We choose this dataset to test with various types
of images. We tested with face and object images. Flower images have different characteristics from
the previous image datasets. In the decoder size of 3, the decoding success rates are very high for
all γ configurations. When there is only one convolution in the decoder, the decoding success rate
is proportional to γ.

B USE CASES

In this section, we introduce three use cases to both attack and protect neural networks. The first
use case is to utilize the proposed encoder and decoder for backdoor attacks. The second use case
is to allow only legitimately watermarked input samples and comparable to the admission control in
operating systems and computer networks, and the last use case is to prove the ownership using the
proposed watermarking technique.

B.1 BACKDOOR ATTACK ON NEURAL NETWORKS

The backdoor attack in the context of machine learning means that the attacker modifies a target
model and the modified model reacts to samples specially marked by the attacker — the attacker
may redistribute it after the modification, and careless users may download and use it. The special
marker is called attack trigger and it contains a target label that is different from its ground-truth
label but preferred by the attacker. The attack trigger is usually implanted using a watermarking
method. We demonstrate that how the attacker utilize our encoder and decoder networks.

We first describe the proposed decode&inject module and how to attach it to the target neural net-
work. The code snippet in the left column of Table 3 represents a typical multi-class image classi-
fication target neural network — we use this image classification neural network as an example but
our attack can be applied to any other neural networks. We attach the module into one of its convolu-
tion layers as shown in the right column of the table, i.e., ci ← relu(conv(ci−1)) + decode&inject(x)
where x is an image and ci is feature maps in i-th convolution layer. Note that the module reads
the input image x and outputs a tensor whose dimensionality is the same as that of the convolution
layer if watermarked by the attacker. Thus, the role of the module is i) decoding the watermark
signal and ii) injecting a signal (tensor) to the target neural network to control its final output. If not
watermarked, the module should inject a zero tensor (i.e., keep silent). The module can be defined

12



Under review as a conference paper at ICLR 2019

Table 4: The attack success rate for their original testing samples. Our attack method outperforms
the Trojan attack in all cases. The best results are indicated in bold font.

Target Neural Network Trojan
(Liu et al., 2018)

Our method
(Decoder size = 3, γ = 0.01)

IN N/A 100%
FR 95.5% 100%
SR 100% 100%

as follows:

decode&inject(x) =

{
0 if no watermark
w if watermark exists on x

(5)

It should outputs 0 if no watermark, i.e., x is a non-modified image. Because of this, the module has
zero influences on the target neural network for non-modified images. If x has a certain watermark,
it should output a corresponding tensor w for the label preferred by the attacker. For instance, all
watermarked images with cats can be classified as dogs with the additional feature map w injected
to the target neural network.

All the convolution, linear, softmax are initialized and fixed with the weights of the original target
neural network and our trained decoder, and we train only w. After being trained, the module can
inject a trained feature map w that is able to control the final softmax outputs, i.e., class labels.

The implementation of decode&inject(x) is very straightforward. On top of the proposed decoder,
one trick to implement an if-else statement is enough to make the module fully functioning. We
attacked the neural networks of FR and SR, and the following one more using the proposed backdoor
attack mechanism based on our encoder-decoder neural networks.

Inception-v4 Network (IN) Inception-v4 Network is a CNN-based classifier developed by
Google (Szegedy et al., 2016). It uses inception modules to make training very deep networks
very efficient. We use the Flowers dataset released in (Flowers Data-set).

To evaluate the proposed attack, we followed the steps used in (Liu et al., 2018). A backdoor mod-
ification proposed by (Liu et al., 2018) makes the target neural network react to their watermarked
attack trigger and output the preferred label by the attacker — this is the same as our decode&inject
module. We first prepare the modified target neural network where the decode&inject module is
attached3. To perform attacks, we use the original testing set for each target neural network. Each
sample is attacked multiple times for all non-ground-truth labels. Their attack success rates are
summarized in Table 4. As you see, our method provides better success rates than the other state-
of-the-art method.

B.2 ALLOW ONLY WATERMARKED INPUTS

The same method can be used for admission control. For this, we can use the following module that
reject or forward input samples to target neural networks.

reject or bypass(x) =

{
0 if no watermark
x if watermark exists on x

(6)

The module in equation 6 says that x will be delivered to the target neural network only if x is
properly watermarked. The implementation of the module is similar to that of the backdoor attack.
However, we do not need to train w in this case.

Recall that our watermarks did not decrease the accuracy for both FR and SR netural networks.
This property of no (or very little) accuracy drop is required to use the watermarking method for
admission control. Our method meets the requirement.

3This step is very easy if source codes are available. If not, one can use the graph editor (TensorFlow, 2018)
to modify pre-trained neural network models.
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B.3 PROVE THE OWNERSHIP OF NEURAL NETWORKS

The proposed decode&inject module can be used to prove the ownership of neural networks. One
can implant the module in the way we described and later use it to prove the ownership against the
plagiarism of neural networks. If other people copy the neural network protected by our watermark-
ing method, you can show that the copied neural network reacts to your watermarked samples and
prove that the copied neural network is originally designed by you.
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