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Abstract

The work investigates deep generative models, which allow us to use training data1

from one domain to build a model for another domain. We propose the Variational2

Bi-domain Triplet Autoencoder (VBTA) that learns a joint distribution of objects3

from different domains. We extend the VBTAs objective function by the relative4

constraints or triplets that sampled from the shared latent space across domains. In5

other words, we combine the deep generative models with a metric learning ideas in6

order to improve the final objective with the triplets information. The performance7

of the VBTA model is demonstrated on different tasks: image-to-image translation,8

bi-directional image generation and cross-lingual document classification.9

1 Introduction10

Learning distributed representations from data is one of the most challenging task in many machine11

learning problems. Recent advances in probabilistic deep generative models allow us to specify a12

model as joint probability distribution over the data and latent variable consider the representations13

as samples from the posterior distribution on latent variables given data.14

Variational autoencoders (VAEs) Kingma and Welling [2013] estimate the data using variational15

inference with a few assumptions about data distribution and approximate posterior distribution. They16

make it possible to use latent variables as our learned representation.17

Inspired by works Karaletsos et al. [2015], Kingma et al. [2014], Suzuki et al. [2016] we propose18

Variational Bi-domain Triplet Autoencoder (VBTA) that learns a joint distribution of objects from19

different domains x and y having a similar structure (e. g. texts, images). VBTA allows using20

distributed representations as samples from shared latent space z that captures characteristics from21

both domains. In Section (3) similar to Liu et al. [2017] we make assumptions about shared-latent22

space, in which the paired objects (images, sentences) from different domains are close to each23

other. In Section (4) we define the joint probability of the proposed model. Our domains x and y24

have similar structures and dimensions, and we suppose approximate posterior distributions will be25

represented in form of qφx(zx|x)(zx|x) and qφy(zy|y)(zy|y). The proposed model builds the joint26

probability p(x,y) of domains x and y that are conditioned independently on latent variable z (joint27

representation in the shared latent space).28

Like Karaletsos et al. [2015] we propose to use relative constraints or learning triplets t to help our29

model catch domain characteristics and similarity between domains better. We sample these triplets30

from the shared latent space. We argue that the use of this implicit knowledge about the data provides31

slight regularization of the proposed model and improve the performance. We sample negative triplets’32

examples by using Jensen-Shannon divergence as distance function between distributions during33

training and we suppose that on each training epoch the information from the triplets regularizes our34

objective.35
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We use the approximate posterior in the form of qφ(z|x) and qφ(z|y) because we want to solve the36

translation tasks — in images and languages. If we have a mapping between domains f : x→ y and37

inverse mapping g : y → x, then f and g should be inverse of each other. We want g(f(x)) ≈ x̂38

and f(g(y)) ≈ ŷ, where x̂ and ŷ are reconstructed input. At Zhu et al. [2017] these conditions are39

called cycle consistency loss.40

It is worth to be mentioning that either in image-to-image translation or in machine translation tasks41

paired (or parallel) data is not always in sufficient quantities and obtaining such data can be difficult42

and in some tasks, like artistic style transfer, quite ambiguous. So we argue that the proposed model43

can translate between domains with slight supervision provided by triplets. We proved this in (6.3),44

where we do not use parallel corpora for our algorithm.45

In Section (6) we describe the results on several different datasets and different tasks. The first46

dataset is MNIST LeCun et al. [1998], the second dataset is CelebA Liu et al. [2015], the third is47

RCV1/RCV2 corpora Lewis et al. [2004]. We show that our method is comparable with the previous48

methods on these datasets. We also show that it outperformes some of these methods methods. The49

main contributions of this paper are the following:50

• We introduce the Variational Bi-domain Triplet Autoencoder (VBTA) — new extension51

of variational autoencoder that trains a joint distribution of objects across domains with52

learning triplet information. We propose negative sampling method that samples from the53

shared latent space purely unsupervised during training.54

• We demonstrate the performance of the proposed model on different tasks such as bi-55

directional image generation, image-to-image translation, cross-lingual document classifica-56

tion.57

2 Related work58

In this Section we consider some previous works that are close to ours, both in theoretical and59

practical sense.60

Deep Generative Models Various Deep Generative Models were proposed recently for many deep61

architectures. Kingma and Welling [2013] introduced Variational Autoencoder, where it is assumed62

that the data is generated using some latent continuous random variable z. In paper Kingma et al.63

[2014] extended the approach for semi-supervised settings. Chung et al. [2015] presented a Recurrent64

Latent Variable Model for Sequential Data. Kulkarni et al. [2015] presented Deep Convolution65

Inverse Graphics Network and Goodfellow et al. [2014] proposed Generative Adversarial Nets.66

Joint Models Several works investigate joint models based on variational autoencoders in the67

similar way but in different training settings and tasks. VCCA objective was presented by Wang68

et al. [2016] for multi-view representation learning. Suzuki et al. [2016] introduced JMVAE model69

to represent different modalities, that are independently conditioned on joint representation. Also, the70

sampling process from qφ(z|x,y) and qφ(z|x) was showed, when x and y were different modalities.71

Vedantam et al. [2017] presented an extension of joint VAE for multimodal setting and introduced the72

TELBO objective. However, Suzuki et al. [2016] and Vedantam et al. [2017] considered the task for73

modalities with different kind of structures (e.g. images and text attributes for this images).74

Triplet learning Many works investigate the metric learning approach, see Bellet et al. [2013],75

especially constructing the objective with the learning triplets: T = (xi, xj , xk), where xi should76

be more similar to xj than to xk in the sense of some distance function. Karaletsos et al. [2015]77

proposed the OPBN model with the VAEs objective extension with triplets. Norouzi et al. [2012]78

sampled the triplets that are close to each other by Hamming distance. Wieting et al. [2015] sampled79

triplets from the training batches using combination of some strategies. The triplet loss for face80

recognition has been introduced by the paper Schroff et al. [2015]. They describe a new approach for81

training face embeddings using online triplet mining with different strategies.82

Distributed representation learning Mikolov et al. [2013] demonstrated the potential of dis-83

tributed representations for crosslingual case. In works Su et al. [2015], Zhang et al. [2016] bilingual84

autoencoder was demonstrated. Recent works by Wei and Deng [2017], Su et al. [2018b] described85
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the Variational Autoencoder for distributed representation learning, where variational distribution86

depends on both domains (languages) qφ(z|x,y).87

Image-to-image translation In our work we also consider image-to-image translation problem,88

where the goal of which to learn a mapping between an image from one domain to an image from89

another. The most common approach for this task is GAN modification Isola et al. [2016] using90

Cycle-Consistent Adversarial Networks Zhu et al. [2017], DualGANs Yi et al. [2017], Coupled91

GANs Liu et al. [2017], Triangle GANs Gan et al. [2017].92

3 Assumptions93

Consider dataset (X,Y) = {x,y}Nn=1 consisting of N i.i.d. objects from different domains. We94

assume that these objects are generated independently by the random process using the same latent95

variable z. We make an assumption that for each pair (x, y) there exists a shared latent space variable96

z, from which we can reconstruct both x and y. Latent space variable z is built from the domain space97

variables hx, hy according to equations:98

z = E(hx) = E (Ex(x)) ,
99

z = E(hy) = E (Ey(y)) ,

where hx and hy are produced from x and y accordingly:100

hx = Ex(x),hy = Ey(y)

We define a shared intermediate variable h, which is used to obtain corresponding domain variables101

x̂, ŷ from y, x through z:102

h = D(z) = D (E(Ex(x))) = D (E(Ey(y))) .

The necessary condition for f and g to exist is the cycle-consistency constraint. That is, the proposed103

assumptions requires the cycle-consistency assumption.104

ŷ = Dy(z) = Dy (D(E(Ex(x)))) = f(x) ≈ y,
105

x̂ = Dx(z) = Dx (D(E(Ey(x)))) = g(y) ≈ x.

The following diagram on Figure 1 presents VBTA generative process. Objects zi, zi and zk form106

triplet. We define how we sample zk in (5).
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Figure 1: VBTA generative process
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4 Variational Bi-domain Triplet Autoencoder108

The marginal likelihood defined by this model is:109

p(x,y, t) =

∫
z

pθx(x|z)pθy(y|z)p(ti,j,k|zi, zj , zk)p(z)dz

We can assume the following generative process:110

• generate z from prior distribution p(z) = N (0, I),111

• value x is generated from some conditional distribution pθx(x|z),112

• value y is generated from some conditional distribution pθy(y|z).113

The lower bound of the log-likelihood:114

LV BTA = Eqφx (zx|x) log
pθx(x,y, t, zx)

qφx(zx|x)
+ Eqφy (zy|y) log

pθy (x,y, t, zy)

qφy (zy|y)
=

= −
[
KL

(
qφx(zx|x)(zx|x) ‖ pθx(zx)

)
+KL

(
qφy(zy|y)(zy|y) ‖ pθy(zy)

)]
︸ ︷︷ ︸

Penalty

+

+
[
Eqφx (zx|x)

[
log pθx(x|zx)

]
+ Eqφy (zy|y)

[
log pθy(y|zy)

]]
︸ ︷︷ ︸

Reconstruction

+

+
[
Eqφx (zx|x)

[
log pθx(y|zx)

]
+ Eqφy (zy|y)

[
log pθy(x|zy)

]]
︸ ︷︷ ︸

Cycle-consistency

+

+ Eqφx (zx|x)
[
log p(t|zx)

]
+ Eqφy (zy|x)

[
log p(t|zy)

]︸ ︷︷ ︸
Triplet likelihood

Both qφx(zx|x)(zx|x) and qφy(zy|y)(zy|y) are encoders, pθx(x|zx) and pθy(y|zy) are decoders,115

modeled by the deep neural networks. Similar to Liu et al. [2017] our decoders and encoders use the116

common functions E and D, see (3). We apply the Stochastic Gradient Variational Bayes (SGVB)117

and optimize the variational parameters θx, θy, φx and φy.118

5 Learning Triplets119

Based on the metric learning approach and similar to Karaletsos et al. [2015] we extend our model by120

relative constraints or triplets: T = {(zi, zj , zk) : d(zi, zj) < d(zi, zk)}. We define the conditional121

triplet likelihood in the following form:122

p(ti,j,k = True|i, j, k) =

∫
z

p(ti,j,k|zi, zj , zk)p(zi)p(zj)p(zk)dzidzjdzk,

that was modelled by Bernoulli distribution over the states True and False parametrized with the use123

of softmax-function124

p(ti,j,k|i, j, k) =
e−d(zi,zj)

e−d(zi,zj) + e−d(zi,zk)

Triplets — three objects from shared latent space z. zi, zj — shared latent representation of objects
from X and Y domains. The third object zk is sampled from domain y with the minimal distance
function to the corresponding objects from domain x (and vice versa):

zk = arg min
z
i
′∈Sb\(zi,zj)

d(zi, zi′ ),

where Sb ∈ S — current mini-batch, zi and zj — the paired objects from different domains. As d125

we use approximate form of JS-divergence, like Karaletsos et al. [2015]. In other words, we want to126

choose an example zk that is similar to zi according to the current model parameters.127
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6 Experiment and Results128

We presented the results on an image-to-image translation task: MNIST LeCun et al. [1998] and129

CelebA Liu et al. [2015]. We presented results on cross-lingual text classification task on RCV1/RCV2130

corpora Lewis et al. [2004].131

6.1 Image-to-image translation for MNIST dataset132

We evaluated our approach on MNIST-transpose, where the two image domains x and y are the133

MNIST images and their corresponding transposed ones. We used one-layer network of 512 hidden134

units with ReLU for decoder D and encoders Ex, Ey. For the modeling shared encoder E and135

decoder Dx, Dy the linear mappings are used. The shared latent space dimension was set to 64.136

Training set consist 50,000 objects and the test set consist 10,000.137

Similar to Gan et al. [2017] we used the classifier that trained on MNIST images as a ground-138

truth evaluator. For the classification evaluation we set pθx(x|zx) and pθy(y|zy) to be Gaussian139

distribution. For all the transposed images we encoded them via the model encoder E ◦ Ey and140

decoded via decoder Dx ◦D. Then we classified it. The results of the classification are shown in141

Table 1, where n is the number of objects used for triplets sampling and cycle-consistency.142

Table 1: Classification accuracy (%) on the MNIST-transpose dataset. The DiscoGAN, Triple GAN
and ∆-GAN results are taken from Gan et al. [2017]

Model n = 0 n = 10 n = 100 n = 1000 All
DiscoGAN - - - - 15.00 ± 0.20
Triple GAN - - 63.79 ± 0.85 84.93 ± 1.63 86.70 ± 1.52
∆-GAN - - 83.20 ± 1.88 88.98 ± 1.50 93.34 ± 1.46
VBTA 18.89 ± 3.59 0.86 ± 0.06 90.44± 0.003 90± 0.0026 95± 0.0006

The intermediate results of the proposed method are illustrated in Figure 2. Figure 3 shows PCA143

vizualization on MNIST dataset. The right Figure shows the projection of the translated version of144

MNIST-transpose projected using the same PCA model. As we can see, the translation function f(x)145

preserves the latent information of the dataset.

Figure 2: Intermediate results of training model
for 10 epochs. As we can see, the digit “2” is
purely reconstructed and similar to “3”. There-
fore the corresponding negative sample from do-
main y is chosen to distinguish them.

Figure 3: PCA projection of the dataset y (left)
and the translation of Y, i.e. g(y) (right). In
both cases the PCA model was optimized only
using the dataset y.

146

We evaluated the marginal log-likelihood of our model on binarized versions of MNIST and MNIST-147

transpose. The results are listed in Table 2. For the comparison to JMVAE model we set pθx(x|z)148

and pθy(y|z) to be Bernoulli. We set model of JMVAE to the same configuration.

Table 2: Marginal log-likelihood for MNIST as logp(x) and MNIST-transpose datasets as logp(y).

Model < logp(x) < logp(y)
VAE Kingma and Welling [2013] -81.13 -81.01
JVMAE Suzuki et al. [2016] -85.35 -85.44
VBTA −80.92 −80.91

149
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6.2 Qualitative results for CelebA dataset150

CelebA consists of 202,599 face images with 40 binary attributes. In this section we considered this151

dataset as a union of two domains: faces of men X and faces of women Y. Similar to Suzuki et al.152

[2016] we cropped and normalized the images and resized them to 64x64. Since we did not have153

any paired men and women in CelebA dataset, we considered that the object y (women) is similar to154

object x (men) if they had the largest matching of their attributes.155

We used encoders Ex, Ey with two convolution layers and a flattened layer with ReLU. For the156

shared encoder E and decoder Dx, Dy we used linear mapping into 64 hidden units. For the decoder157

D we used a network with one dense layer with 8192 units and a deconvolution layer. We considered158

pθx(x|z) and pθy(y|z) as a Gaussian distribution. Figure 4 shows the face images from datasets and159

their translation into different domains.160

Figure 4: Results of image-to-image translation for CelebA dataset. The first row corresponds to the
original images that were considered as similar because of high amount of matching attrbutes. The
second row shows the reconstruction of the images. The third row illustrates the image translation
from domain X into domain Y and from Y into X.

Figure 5 shows faces generated from Gaussian distribution. We found that our algorithm works rather161

well and can reproduce similar faces for both domains from one sample in latent space.162

Figure 5: Results of image generation from the common shared space. Each column corresponds
to the faces generated from one sample of z. The latent variable z was sampled from Gaussian
distribution: z ∼ N (0, I).

6.3 Cross Lingual Document Classification163

We use experimental setup similar to introduced in Klementiev et al. [2012]. Given a classifier trained164

on documents in language A (X domain), one should use that classifier to predict labels of documents165

in language B (Y domain).166
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Previous work Chandar et al. [2014], Wei and Deng [2017] and Gouws et al. [2015] used Europarl167

v7 parallel corpus Koehn [2005] to pretrain embeddings and then utilize it to classify subset of168

RCV1/RCV2 corpora Lewis et al. [2004]. To handle this task we need to construct meaningful169

bilingual text representations. For train and test we used RCV1/RCV2 corpora, where documents are170

assigned to one of four predefined topics: CCAT (Corporate/Industrial), ECAT (Economics), GCAT171

(Government/Social), MCAT (Markets). In contrast to previous work, we do not use parallel data172

at all. We artificially paired documents according to their topics. We select 15000 documents from173

both English and German for classification experiments. The other part of RCV corpora was used to174

construct training triplets. Algorithm was trained for approximately 300K iterations with batch size175

equals to 50. We use Moses Koehn et al. [2007] preprocessing tools to lowercase and tokenize texts.176

Bag-of-words was used as an initial document representation. We keep 30000 top-frequency words177

for each language as a vocabulary.178

For classification experiment, 10000 documents in English was used to train classifier and test it179

on 5000 documents in German and vice versa. We train logistic regression using low-dimensional180

representation obtained by our algorithm as features. Classification results are in Table 3.181

Table 3: Text classification accuracy

Model en→ de de→ en

Majority Baseline 46.8 46.8
MT Baseline 68.1 67.4

Klementiev et al. [2012] 77.6 71.1
Gouws et al. [2015] 86.5 75.0
Chandar et al. [2014] 91.8 74.2
Wei and Deng [2017] 92.7 80.4
Su et al. [2018a] 91.3 77.8

This work 94.3 82.8

7 Conclusion182

In this paper we proposed the Variational Bi-domain Triplet Autoencoder (VBTA) that learns a joint183

distribution of objects from different domains with the help of the learning triplets that sampled184

from the shared latent space across domains. We demonstrated the performance of the VBTA model185

on different tasks: image-to-image translation, bi-directional image generation and cross-lingual186

document classification.187
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