
Are All Layers Created Equal?

Chiyuan Zhang
chiyuan@google.com

Samy Bengio
bengio@google.com

Yoram Singer
singer@google.com

Abstract

Understanding learning with deep architectures has been a major research objective in the recent years with
notable theoretical progress. A main focal point of those studies stems from the success of excessively large networks.
We study empirically the layer-wise functional structure of overparameterized deep models. We provide evidence for
the heterogeneous characteristic of layers. To do so, we introduce the notion of (post training) re-initialization and
re-randomization robustness. We show that layers can be categorized into either “robust” or “critical”. In contrast
to critical layers, resetting the robust layers to their initial value has no negative consequence, and in many cases
they barely change throughout training. Our study provides evidence �atness or robustness analysis of the model
parameters needs to respect the network architectures.

1 Introduction
Deep neural networks have been remarkably successful in many real world machine learning applications. Distilled
understanding of the systems is at least as important as their state-of-the-art performance when applying them in
many critical domains. Recent work on understanding why deep networks perform so well in practice focused on
questions such as networks’ performance under drifting or even adversarially perturbed data distribution. Another
interesting and relevant to this work is research on how we can interpret or explain the decision function of trained
networks. While related, this work takes a di�erent angle as we focus on the role of the layers in trained networks
and then relate the empirical results to robustness properties.

Theoretical research on the representation power of neural networks is well studied. It is known that a neural network
with a single su�ciently wide hidden layer is universal approximator for continuous functions over a compact domain
[11, 18, 2]. More recent research further examines whether deep networks can have superior representation power
than shallow ones with the same number of units or edges [27, 5, 24, 35, 31, 9, 23, 29]. The capacity to represent
arbitrary functions with �nite samples is also extensively discussed in recent work [13, 40, 26, 39]. However, the
constructions used in the aforementioned work for building networks approximating particular functions are typically
“arti�cial” and are unlikely to be obtained by gradient-based learning algorithms. We focus instead on empirically
studying the role di�erent layers in deep architecture take post gradient-based training.

In particular, we show empirically that the layers in a deep network are not homogeneous in the role they play at
representing a prediction function. Some layers are critical to forming good predictions while others are fairly robust
to the assignment of their parameters along training. Moreover, depending on the capacity of the network and the
complexity of the target function, gradient-based trained networks conserve the complexity by not using excess
capacity.

2 Se�ing

Let D = {f� ∶ � = (�1,… , �D)} be the space of a particular neural network architecture with D (parametric) layers.
We use the term capacity to refer to properties of the entire space D before training takes place (e.g. Rademacher
complexity, VC Dimension). The term complexity refers to properties of a single neural network f� , often employing
with notion of norm of the parameters � and possibly normalized by empirical quantities such as the margin.

We are interested in analyzing post-training behavior of layers of popular deep networks. Such networks are typically
trained using SGD with randomly sampled initial weights from pre-de�ned distributions �0d ∼ d , typically depending

1

ReRnd 0 1 2 3 8 40 90 100
Checkpoint Index

layer1

layer2

layer3

layer4

fullmodel
0.2

0.4

0.6

0.8

(a) Test error

ReRnd 0 1 2 3 8 40 90 100
Checkpoint Index

layer1

layer2

layer3

layer4
0.0
0.1
0.2
0.3
0.4
0.5
0.6

(b) ‖� �d − �0d ‖

ReRnd 0 1 2 3 8 40 90 100
Checkpoint Index

layer1

layer2

layer3

layer4
0.0
0.1
0.2
0.3
0.4
0.5

(c) ‖� �d − �0d ‖∞

Figure 1: Robustness results for FCN 3 × 256 on MNIST. (a) Test error rate: each row corresponds to one layer in
the network. The last row shows the full model performance at the corresponding epoch as reference. The �rst column
designates robustness of each layer w.r.t re-randomization and the rest of the columns designate re-initialization
robustness at di�erent checkpoints. The last column shows the �nal performance (at the last checkpoint during
training) as reference. (b-c) Weights distances: each cell in the heatmaps depict the normalized 2-norm (b) or ∞-norm
(c) distance of trained parameters to their initial weights.

on the type, fan-in, and fan-out of of each layer. In a deep network, the representations at a particular layer recursively
depend on all the layers beneath it. This complex dependency makes it challenging to isolate and inspect each layer
independently in theoretical studies. In this paper, we introduce and use the following two empirical probes to inspect
the individual layers in a trained neural network.

Re-initialization After training, for a given layer d = 1,… , D, we can re-initialize the parameters through as-
signment �Td ← �0d , while keeping the parameters for the other layers unchanged. The model with the parameters
(�T1 ,… , �Td−1, �0d , �Td+1,… , �TD) is then evaluated. Unless noted otherwise, we use the term performance to designate
classi�cation error on test data. The performance of a network in which layer d was re-initialized is referred to as
the re-initialization robustness of layer d . Note that here �0d denotes the random values realized at the beginning of
the training. More generally, for k time steps 0 = �1 < �2 < ⋯ < �k−1 < �k = T , we can re-initialize the d-th layer by
setting �Td ← ��d , and obtain the re-initialization robustness of layer d after � updates.

Re-randomization To go one step further, we also examine re-randomization of a layer d by re-sampling random
values �̃d ∼ d and evaluate the model’s performance for (�T1 ,… , �Td−1, �̃d , �Td+1,… , �TD). Analogously, we refer to the
evaluated performance as the re-randomization robustness of layer d .

Note that there is no re-training or �netuning after re-initialization or re-randomization, and the network is evaluated
directly with mixed weights. When a network exhibits no or negligible decrease in performance after re-initializing
or re-randomizing of a layer, we say that the layer is robust, and otherwise the layer is called critical.

3 Robustness of individual layers

We start by examining robustness of fully-connected networks (FCN). A FCN D × H consists of D fully connected
layers each of which of output dimension H and ReLU activation function. The extra �nal layer is a linear multiclass
predictor with one output per class. As a starter, we trained an FCN 3 × 256 on the MNIST digit classi�cation task, and
applied the re-initialization and re-randomization analysis on the trained model. The results are shown in Figure 1(a).
As expected, due to the intricate dependency of the classi�cation function on each of the layers, re-randomizing any
of the layers completely disintegrate the representations and classi�cation accuracy drops to the level of random
guessing. However, for re-initialization, we �nd that while the �rst layer is very sensitive, the rest of the layers are
robust to re-initializing back to their pre-training random weights.

A plausible reason could be attributed to the fact that gradient norms increase during back-propagation to the point
that the bottom layers are being updated more aggressively than the top ones. If this was the case, we would expect a
smoother transition instead of a sharp contrast at the �rst layer. We thus measured how distant the weights of each
layer from their initialization using the normalized 2-norm and the ∞-norm, in Figure 1(b) and (c), respectively. It
turns out the robustness to re-initialization does not obviously correlate to either of the distances.

2

stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage4.block1

stage4.block2

stage5.block1

stage5.block2 fc1 fc2

final_linear
fullmodel

ReRnd

0

1

10

100 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) VGG13 on CIFAR10

stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage4.block1

stage4.block2

stage4.block3

stage5.block1

stage5.block2

stage5.block3 fc1 fc2

final_linear
fullmodel

ReRnd

0

1

10

100 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b) VGG16 on CIFAR10

stage0

stage1.resblk1

stage1.resblk2

stage2.resblk1

stage2.resblk2

stage3.resblk1

stage3.resblk2

stage4.resblk1

stage4.resblk2

final_linear
fullmodel

ReRnd

0

1

10

100 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(c) ResNet18 on CIFAR10

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(d) ResNet50 on CIFAR10

stage0

stage1.resblk1

stage1.resblk2

stage2.resblk1

stage2.resblk2

stage3.resblk1

stage3.resblk2

stage4.resblk1

stage4.resblk2

final_linear
fullmodel

ReRnd

0

1

10

100 0.5

0.6

0.7

0.8

0.9

(e) ResNet18 on ImageNet

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100 0.4

0.5

0.6

0.7

0.8

0.9

(f) ResNet50 on ImageNet

Figure 2: Layer-wise robustness analysis with ConvNets. The heatmaps use the same layout as in Figure 1, but
they are transposed, to visualize the deeper architectures more e�ectively.

On large ConvNets that are used in practice, similar obversations could be found in Figure 2. Moreover, the layerwise
robustness patterns for ResNets are quite unique. We found that each stage (in which the “image” size of each layer
is the same) in a ResNet acts as a sub-network, and the robustness patterns within each stage resembles the VGGs
and FCNs. The skip connections also allow the residual blocks to be robust not only to re-initialization, but also to
re-randomization. Please see Appendix B for the full results and analysis.

To assess the e�ects of the network capacity and the task complexity on the layer robustness, we apply the same
analysis procedure to a large number of di�erent con�gurations. In Figure 3(a), we compare the average re-initialization
robustness for all layers but the �rst with respect FCNs of varying hidden dimensions on MNIST. The upper layers
become more robust as the hidden dimension increases. We believe that it re�ects the fact that the wider FCNs have
higher model capacity. When the capacity is small, all layers are vigil participants in representing the prediction
function. As capacity increases, it su�ces to use the bottom layer while the rest act as random projections with
non-linearities. Similar observations can be found on CIFAR10, in Figure 3(b). These observations suggest that deep
networks automatically adjust their de-facto complexity. When a big network is trained on an easy task, only a few
layers seem to be playing critical roles.

4 Joint robustness and connection to other notions of robustness
In all the experiments so far, the analysis focuses on the robustness of each individual layer separately. A natural
question is that for all the layers that are individually robustness, are they also jointly robust? In other words,
if we re-initialize multiple layers jointly, would the trained network still retain the original performance? The
answer is no. It turns out that jointly re-initialize many consequtive layers (that are individually robust) completely

3

16 32 64 128 256 512
hidden dimensions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 3-layer MLPs 5-layer MLPs

Av
g
R
ob

us
tn
es
s
(in

te
st
er
ro
r)

(a) MNIST

16 32 64 128 256 512
hidden dimensions

0.4

0.5

0.6

0.7

0.8 3-layer MLPs 5-layer MLPs

(b) CIFAR10

Figure 3: Re-initialization robustness of all layers but the �rst using checkpoint-0 for FCNs. Each bar
designates the di�erence in classi�cation error between a fully trained model and a model with one layer re-initialized.
The error bars designate one standard deviation obtained by running �ve experiments with di�erent random
initialization.

destroy the model performance. However, via some clever grouping schemes of the layers, multiple layers can be
jointly re-initialized while maintaining resonable good model performances. Furthermore, if we explicitly constraing
the learning algorithm to not update a subset of layers, much better joint robustness can be achieved. Please see
Appendix D for full details.

The properties studied in this paper is closely related to a number of other notions of robustness. For example, the
notion of “�atness” refers to the property that neural network weights, after training, can be locally perturbed via
isotropic noises without changing the model performance. Our study is in a more restricted setting where we perturb
by moving along the training trajectory. More importantly, our empirical results show that while global �atness is
quite limited, (a subset of) the individual layers can have negligible a�ects when perturbed. Another interesting
connection is to the notion of adversarial robustness to the perturbations applied on the model inputs. Please see
Appendix E for a full study on those connections.

5 Conclusions
We investigated the functional structure on a layer-by-layer basis of over-parameterized deep models. We introduced
the notions of re-initialization and re-randomization robustness. Using these notions we provided evidence for the
heterogeneous characteristic of layers, which can be morally categorized into either “robust” or “critical”. Resetting
the robust layers to their initial value has no negative consequence on the model’s performance. Our empirical
results give evidence that optimization landscape based analysis (e.g. �atness or sharpness at the minimizer) is better
performed respecting the network architectures due to the heterogeneous behaviors of di�erent layers. For future
work, we are interested in devising a new algorithm which learns the interleaving trained and partially random
subnetworks within one large network.

Acknowledgments The authors would like to thank David Grangier, Lechao Xiao, Kunal Talwar and Hanie Sedghi
for helpful discussions and comments.

References

[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via Over-
Parameterization. CoRR, arXiv:1811.03962, 2018.

[2] Martin Anthony and Peter L Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge University
Press, 2009.

4

[3] Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for deep nets via a
compression approach. CoRR, arXiv:1802.05296, 2018.

[4] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs, Jennifer
Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient descent into wide valleys. In ICLR,
2017.

[5] Olivier Delalleau and Yoshua Bengio. Shallow vs. Deep Sum-Product Networks. In NIPS, pages 666–674, 2011.

[6] Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent �nds global minima of
deep neural networks. CoRR, arXiv:1811.03804, 2018.

[7] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes over-
parameterized neural networks. CoRR, arXiv:1810.02054, 2018.

[8] Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for deep (stochastic)
neural networks with many more parameters than training data. In UAI, 2016.

[9] Ronen Eldan and Ohad Shamir. The Power of Depth for Feedforward Neural Networks. CoRR, arXiv:1512.03965,
2015.

[10] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
CoRR, arXiv:1412.6572, 2014.

[11] G Gybenko. Approximation by superposition of sigmoidal functions. Mathematics of Control, Signals and Systems,
2(4):303–314, 1989.

[12] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with pruning,
trained quantization and hu�man coding. CoRR, arXiv:1510.00149, 2015.

[13] Moritz Hardt and Tengyu Ma. Identity matters in deep learning. In ICLR, 2017.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In
European conference on computer vision, pages 630–645. Springer, 2016.

[16] Geo�rey Hinton, Oriol Vinyals, and Je� Dean. Distilling the knowledge in a neural network. CoRR,
arXiv:1503.02531, 2015.

[17] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, 1997.

[18] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251–257,
1991.

[19] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization in
neural networks. In Advances in neural information processing systems, pages 8580–8589, 2018.

[20] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. On
large-batch training for deep learning: Generalization gap and sharp minima. In ICLR, 2017.

[21] Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Jascha Sohl-Dickstein, and Je�rey Penning-
ton. Wide neural networks of any depth evolve as linear models under gradient descent. arXiv preprint
arXiv:1902.06720, 2019.

[22] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep
learning models resistant to adversarial attacks. CoRR, arXiv:1706.06083, 2017.

[23] Hrushikesh Mhaskar and Tomaso A. Poggio. Deep vs. shallow networks : An approximation theory perspective.
CoRR, arXiv:1608.03287, 2016.

[24] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear regions of
deep neural networks. In Advances in neural information processing systems (NIPS), pages 2924–2932, 2014.

5

[25] Behnam Neyshabur, Ruslan Salakhutdinov, and Nathan Srebro. Path-sgd: Path-normalized optimization in deep
neural networks. In NIPS, pages 2422–2430, 2015.

[26] Quynh Nguyen and Matthias Hein. Optimization Landscape and Expressivity of Deep CNNs. In International
Conference on Machine Learning, pages 3727–3736, 2018.

[27] Allan Pinkus. Approximation theory of the MLP model in neural networks. Acta Numerica, 8:143–195, 1999.

[28] Tomaso Poggio, Qianli Liao, Brando Miranda, Andrzej Banburski, Xavier Boix, and Jack Hidary. Theory iiib:
Generalization in deep networks. Technical report, MIT, 2018.

[29] David Rolnick and Max Tegmark. The power of deeper networks for expressing natural functions. CoRR,
arXiv:1705.05502, 2017.

[30] Amir Rosenfeld and John K Tsotsos. Intriguing Properties of Randomly Weighted Networks: Generalizing While
Learning Next to Nothing. CoRR, arXiv:1802.00844, 2018.

[31] Uri Shaham, Alexander Cloninger, and Ronald R Coifman. Provable approximation properties for deep neural
networks. CoRR, arXiv:1509.07385, 2015.

[32] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[33] Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic gradient descent. In
ICLR, 2018.

[34] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. CoRR, arXiv:1312.6199, 2013.

[35] Matus Telgarsky. bene�ts of depth in neural networks. In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir,
editors, 29th Annual Conference on Learning Theory, volume 49 of Proceedings of Machine Learning Research,
pages 1517–1539, Columbia University, New York, New York, USA, 23–26 Jun 2016. PMLR.

[36] Vladimir N Vapnik. Statistical Learning Theory. Adaptive and learning systems for signal processing, communi-
cations, and control. Wiley, January 1998.

[37] Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of relatively
shallow networks. In Advances in Neural Information Processing Systems, pages 550–558, 2016.

[38] Huan Wang, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. Identifying Generalization Properties in
Neural Networks. CoRR, arXiv:1809.07402, 2018.

[39] Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Finite sample expressive power of small-width relu networks. CoRR,
arXiv:1810.07770, 2018.

[40] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning
requires rethinking generalization. In ICLR, 2017.

[41] Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P Adams, and Peter Orbanz. Non-vacuous generalization
bounds at the ImageNet scale: a PAC-Bayesian compression approach. In ICLR, 2019.

[42] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent optimizes over-
parameterized deep ReLU networks. CoRR, arXiv:1811.08888, 2018.

6

stage1.block1

stage2.block1

stage3.block1

stage3.block2

stage4.block1

stage4.block2

stage5.block1

stage5.block2 fc1 fc2

final_linear
fullmodel

ReRnd

0

1

10

100 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) VGG11

stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage3.block4

stage4.block1

stage4.block2

stage4.block3

stage4.block4

stage5.block1

stage5.block2

stage5.block3

stage5.block4 fc1 fc2

final_linear
fullmodel

ReRnd

0

1

10

100 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b) VGG19
stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage4.block1

stage4.block2

stage5.block1

stage5.block2 fc1 fc2

final_linear
fullmodel

ReRnd

0

1

10

100 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(c) VGG13

stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage4.block1

stage4.block2

stage4.block3

stage5.block1

stage5.block2

stage5.block3 fc1 fc2

final_linear
fullmodel

ReRnd

0

1

10

100 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(d) VGG16

Figure 4: Layer-wise robustness analysis with VGG networks on CIFAR10. The heatmaps use the same layout
as in Figure 1, but they are transposed, to visualize the deeper architectures more e�ectively.

A Related work
Modern neural networks are typically over-parameterized and thus have plenty of redundancy in their representation
capabilities. Previous work exploited over-parameterization to compress [12] or distill [16] a trained network.
Rosenfeld and Tsotsos [30] found that one can achieve comparable performance by training only a small fraction of
network parameters such as a subset of channels in each convolutional layer. Towards interpreting residual networks
as ensemble of shallow networks, Veit et al. [37] found that residual blocks in a trained network can be deleted or
permuted to some extent without hurting the performance too much. In another line of research, it is shown that
under extreme overparameterization, such as when the network width is polynomial in the training set size and input
dimension [1, 6, 7, 42], or even in the asymptotic regime of in�nite width [19, 21], the network weights move slowly
during training. The observations in this paper show that in more practical regime, di�erent layers could behave very
di�erently.

B Full results on layerwise robustness analysis of convolutional networks
On typical computer vision tasks beyond MNIST, densely connected FCNs are outperformed signi�cantly by convolu-
tional neural networks. VGGs and ResNets are among the most widely used convolutional network architectures.
Figure 4 and Figure 5 show the robustness analysis on the two types of networks, respectively.

Since those networks are much deeper than the FCNs, we transpose the heatmaps to show the layers as columns. For
VGGs, a large number of layers are sensitive to re-initialization, but the patterns are similar to the observations from
the simple FCNs on MNIST: the bottom layers are more critical but the upper layers are robust to re-initialization.

The results for ResNets in Figure 5 is to be considered together with results on ImageNet in Figure 6. We found the
robustness patterns for resnets more interesting mainly for two reasons:

ResNets re-distribute sensitive layers. Unlike the FCNs and VGGs which put the sensitive layers at the bottom
of the network, ResNets distribute them across the network. To better understand the patterns, let us do a brief
recap of the ResNets architectures. It is common in theoretical analysis to broadly de�ne ResNets as any neural
network architectures with residual blocks. In practice, a few “standard” architectures (and variants) that divide
the network into a few “stages” are commonly used. At the bottom, there is a pre-processing stage (stage0) with

7

stage0

stage1.resblk1

stage1.resblk2

stage2.resblk1

stage2.resblk2

stage3.resblk1

stage3.resblk2

stage4.resblk1

stage4.resblk2

final_linear
fullmodel

ReRnd

0

1

10

100 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) ResNet18

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b) ResNet50

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage3.resblk7

stage3.resblk8

stage3.resblk9

stage3.resblk10

stage3.resblk11

stage3.resblk12

stage3.resblk13

stage3.resblk14

stage3.resblk15

stage3.resblk16

stage3.resblk17

stage3.resblk18

stage3.resblk19

stage3.resblk20

stage3.resblk21

stage3.resblk22

stage3.resblk23

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(c) ResNet101
stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage2.resblk5

stage2.resblk6

stage2.resblk7

stage2.resblk8

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage3.resblk7

stage3.resblk8

stage3.resblk9

stage3.resblk10

stage3.resblk11

stage3.resblk12

stage3.resblk13

stage3.resblk14

stage3.resblk15

stage3.resblk16

stage3.resblk17

stage3.resblk18

stage3.resblk19

stage3.resblk20

stage3.resblk21

stage3.resblk22

stage3.resblk23

stage3.resblk24

stage3.resblk25

stage3.resblk26

stage3.resblk27

stage3.resblk28

stage3.resblk29

stage3.resblk30

stage3.resblk31

stage3.resblk32

stage3.resblk33

stage3.resblk34

stage3.resblk35

stage3.resblk36

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(d) ResNet152

Figure 5: Layer-wise robustness analysis on residual blocks of ResNets trained on CIFAR10.

vanilla convolutional layers. It is followed by a few (typically 4) residual stages (stage1 to stage4) consisting of
residual blocks, and then global average pooling and the densely connected linear classi�er (final_linear). The
image size shrinks and the number of convolutional feature channels doubles from each residual stage to the next
one1. As a result, while most of the residual blocks have real identity skip connections, the �rst block of each stage
(stage*.resblk1) that connects to the previous stage has a non-identity skip connection due to di�erent input /
output shapes. Figure 7 illustrates the two types of residual blocks.

With a big picture of the ResNet architectures, we can see that each stage in a ResNet acts as a sub-network, and the
layer-wise robustness patterns within each stage resembles the VGGs and FCNs.

Residual blocks can be robust to re-randomization. Among the layers that are robust to re-initialization, if
the layer is a residual block, it is also robust to re-randomization: e.g. compare the final_linear layer and any of
the robust residual blocks. A possible reason is that the identity skip connection dominates the residual branch in
those blocks. It is known from previous lesion studies [37] that residual blocks in a ResNet can be removed without
seriously hurting the performance. But our experiments put it in the context with other architectures and study the
adaptive robustness with respect to the interplay between the model capacity and the task di�culties. In particular,
comparing the results on CIFAR10 and ImageNet, we see that especially on ResNet18 from Figure 6(a), many residual
blocks with real identity skip connection also become sensitive comparing to bigger models due to smaller capacity.

C Theoretical Implications on Generalization
As mentioned earlier, if some parameters can be re-assigned to the randomly initialized values without a�ecting the
model performance, then the e�ective number of parameters is reduced as the random initialization is independent
of the training data. The bene�ts on improving generalization is most easily demonstrated with a naive parameter

1There are more subtle details especially at stage1 depending on factors like the input image size, whether residual blocks contain a bottleneck,
and the version of ResNets, etc.

8

stage0

stage1.resblk1

stage1.resblk2

stage2.resblk1

stage2.resblk2

stage3.resblk1

stage3.resblk2

stage4.resblk1

stage4.resblk2

final_linear
fullmodel

ReRnd

0

1

10

100 0.5

0.6

0.7

0.8

0.9

(a) ResNet18

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100 0.4

0.5

0.6

0.7

0.8

0.9

(b) ResNet50

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage3.resblk7

stage3.resblk8

stage3.resblk9

stage3.resblk10

stage3.resblk11

stage3.resblk12

stage3.resblk13

stage3.resblk14

stage3.resblk15

stage3.resblk16

stage3.resblk17

stage3.resblk18

stage3.resblk19

stage3.resblk20

stage3.resblk21

stage3.resblk22

stage3.resblk23

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100 0.4
0.5
0.6
0.7
0.8
0.9

(c) ResNet101
stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage2.resblk5

stage2.resblk6

stage2.resblk7

stage2.resblk8

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage3.resblk7

stage3.resblk8

stage3.resblk9

stage3.resblk10

stage3.resblk11

stage3.resblk12

stage3.resblk13

stage3.resblk14

stage3.resblk15

stage3.resblk16

stage3.resblk17

stage3.resblk18

stage3.resblk19

stage3.resblk20

stage3.resblk21

stage3.resblk22

stage3.resblk23

stage3.resblk24

stage3.resblk25

stage3.resblk26

stage3.resblk27

stage3.resblk28

stage3.resblk29

stage3.resblk30

stage3.resblk31

stage3.resblk32

stage3.resblk33

stage3.resblk34

stage3.resblk35

stage3.resblk36

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100 0.4
0.5
0.6
0.7
0.8
0.9

(d) ResNet152

Figure 6: Layer-wise robustness analysis on residual blocks of ResNets trained on ImageNet.

input N R +

C N R Cpreact

residual body

skip (identity) connection

(a) Residual block

input N R

C

+

C N R Cpreact

downsample

residual body

(b) Residual block with downsampling

Figure 7: Illustration of residual blocks (from ResNets V2) with and without a downsampling skip branch.
C, N and R stand for convolution, (batch) normalization and ReLU activation, respectively. Those are basic residual
blocks used in ResNet18 and ResNet34; for ResNet50 and more layers, the bottleneck residual blocks are used, which
are similar to the illustrations here except the residual body is now C → N → R → C → N → R → C with a 4×
reduction of the convolution channels in the middle for a “bottlenecked” residual.

counting generalization bound. For example, if we have a generalization bound of the form

R(f̂mn) ≤ R̂n(f̂mn) + ((m), n)

where f̂mn is a model withm parameters trained on n i.i.d. samples. (⋅) is some complexity measure based on counting
the number of parameters, and is the corresponding generalization bound. For example, Anthony and Bartlett [2]
provides various bounds on VC-dimension based on the number of weights in neural networks, which could then
be plugged into standard VC-dimension based generalization bounds for classi�cation [36]. Now if we know that a
fraction � ∈ (0, 1) of the neural network weights will be robust to re-initialization after training, with a loss of the
(empirical) risk of at most ", then we get

R(f̂ (1−�)mn) ≤ R̂n(f̂mn) + " + (((1 − �)m), n)

where f̂ (1−�)mn is a model obtained by re-initializing the � fraction of parameters of the trained model f̂mn . Note that
generalization bounds based on parameter counting generally does not work well for deep learning. Because of the

9

ReRnd 0 1 2 3 8 40 90 100
Checkpoint Index

 layer1

*layer2

*layer3

*layer4

*layer5

*layer6 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) layer2∼6

ReRnd 0 1 2 3 8 40 90 100
Checkpoint Index

 layer1

*layer2

*layer3

 layer4

*layer5

*layer6 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b) layer2,3,5,6

ReRnd 0 1 2 3 8 40 90 100
Checkpoint Index

 layer1

*layer2

 layer3

*layer4

 layer5

*layer6
0.2

0.4

0.6

0.8

(c) layer2,4,6

Figure 8: Joint robustness analysis of FCN 5 × 256 on MNIST. The heatmap layout is the same as in Figure 1, but
the layers are divided into two groups (indicated by the * mark on the layer names in each �gure) and re-randomization
and re-initialization are applied to all the layers in each group jointly. As a result, layers belonging to the same group
have identical rows in the heatmap, but we still show all the layers to make the �gures easier to read and compare with
the previous layer-wise robustness results. The sub�gures show the results from three di�erent grouping schemes.

heavy over-parameterization, the resulting bounds are usually trivial. However, as noted in Arora et al. [3], most of
the alternative generalization bounds proposed for deep neural network models recently are actually worse than naive
parameter counting. Moreover, by tweaking the existing analysis with additional layerwise robustness condition,
some PAC-Bayes based bounds can also be potentially improved [38, 3, 41].

Note that like the results in Arora et al. [3], Zhou et al. [41], the bounds provided by re-initialization robustness are
for a di�erent model (in our case the re-initialized one). Alternative approaches in the literature involve modifying
the training algorithms to explicitly optimize the robustness or some derived generalization bounds [25, 8]. However,
neither of the arguments provides guarantees for the model directly trained from SGD.

D Joint robustness
The theoretical analysis suggests that robustness to either re-initialization or re-randomization could imply better
generalization. Combined with the experimental results in previous sections, it seems to suggest a good way to
explain the empirical observations that hugely over-parameterized networks could still generalize well, as they are
only using a small portion of their full capacity. However, there is a caveat: the re-initialization and re-randomization
analysis in Section 3 study each layer independently. However, two or more layers being independently robust
does not necessarily imply that they are robust jointly. If, for example, we want a generalization bound that uses
only half of the capacity, we need to show that half of the layers are robust to re-initialization or re-randomization
simultaneously.

D.1 Are robust layers jointly robust?
In this section, we do joint robustness analysis on groups of layers. From Section 3, we see that on MNIST, for wide
enough FCNs, all the layers above layer1 are robust to re-initialization. So we divide the layer into two groups:
{layer1} and {layer2, layer3, . . . }, and perform the robustness studies on the two groups. The results for FCN 5 × 256
are shown in Figure 8(a). For clarity and ease of comparison, the �gure still spells out all the layers individually, but
the values from layer2 to layer6 are simply repeated rows. The values show that the upper-layer-group is clearly
not jointly robust to re-initialization (to checkpoint 0).

We also try some alternative grouping schemes: Figure 8(b) show the results when we group two in every three
layers, which has slightly improved joint robustness; In Figure 8(c), the grouping scheme that include every other
layer shows that with a clever grouping scheme, about half of the layers could be jointly robust.

Results on ResNets are similar. Figure 9 shows the joint robustness analysis on ResNets trained on CIFAR10. The
grouping is based on the layer-wise robustness results from Figure 5: all the residual blocks in stage1 to stage4 are
bundled and analyzed jointly. The results are similar to the FCNs: ResNet18 is relatively robust, but deeper ResNets
are not jointly robust under this grouping. Two alternative grouping schemes are shown in Figure 10. By including

10

 stage0

 stage1.resblk1

*stage1.resblk2

 stage2.resblk1

*stage2.resblk2

 stage3.resblk1

*stage3.resblk2

 stage4.resblk1

*stage4.resblk2

 final_linear

ReRnd

0

1

10

100 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) ResNet18: resblk2

 stage0

 stage1.resblk1

*stage1.resblk2

*stage1.resblk3

 stage2.resblk1

*stage2.resblk2

*stage2.resblk3

*stage2.resblk4

 stage3.resblk1

*stage3.resblk2

*stage3.resblk3

*stage3.resblk4

*stage3.resblk5

*stage3.resblk6

 stage4.resblk1

*stage4.resblk2

*stage4.resblk3

 final_linear

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b) ResNet50: resblk2, 3, . . .

 stage0

 stage1.resblk1

*stage1.resblk2

*stage1.resblk3

 stage2.resblk1

*stage2.resblk2

*stage2.resblk3

*stage2.resblk4

*stage2.resblk5

*stage2.resblk6

*stage2.resblk7

*stage2.resblk8

 stage3.resblk1

*stage3.resblk2

*stage3.resblk3

*stage3.resblk4

*stage3.resblk5

*stage3.resblk6

*stage3.resblk7

*stage3.resblk8

*stage3.resblk9

*stage3.resblk10

*stage3.resblk11

*stage3.resblk12

*stage3.resblk13

*stage3.resblk14

*stage3.resblk15

*stage3.resblk16

*stage3.resblk17

*stage3.resblk18

*stage3.resblk19

*stage3.resblk20

*stage3.resblk21

*stage3.resblk22

*stage3.resblk23

*stage3.resblk24

*stage3.resblk25

*stage3.resblk26

*stage3.resblk27

*stage3.resblk28

*stage3.resblk29

*stage3.resblk30

*stage3.resblk31

*stage3.resblk32

*stage3.resblk33

*stage3.resblk34

*stage3.resblk35

*stage3.resblk36

 stage4.resblk1

*stage4.resblk2

*stage4.resblk3

 final_linear

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(c) ResNet152: resblk2, 3, . . .

Figure 9: Joint robustness analysis of ResNets on CIFAR10, based on the scheme that group all but the �rst
residual blocks in all the residual stages. Grouping is indicated by the * on the layer names.

 stage0

 stage1.resblk1

 stage1.resblk2

 stage1.resblk3

 stage2.resblk1

*stage2.resblk2

*stage2.resblk3

*stage2.resblk4

 stage3.resblk1

*stage3.resblk2

*stage3.resblk3

*stage3.resblk4

*stage3.resblk5

*stage3.resblk6

 stage4.resblk1

 stage4.resblk2

 stage4.resblk3

 final_linear

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) ResNet50: resblk2, 3 . . . of stage2, 3

 stage0

 stage1.resblk1

*stage1.resblk2

 stage1.resblk3

 stage2.resblk1

*stage2.resblk2

 stage2.resblk3

*stage2.resblk4

 stage3.resblk1

*stage3.resblk2

 stage3.resblk3

*stage3.resblk4

 stage3.resblk5

*stage3.resblk6

 stage4.resblk1

*stage4.resblk2

 stage4.resblk3

 final_linear

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b) ResNet50: every second resblk

 stage0

 stage1.resblk1

*stage1.resblk2

 stage1.resblk3

 stage2.resblk1

*stage2.resblk2

 stage2.resblk3

*stage2.resblk4

 stage3.resblk1

*stage3.resblk2

 stage3.resblk3

*stage3.resblk4

 stage3.resblk5

*stage3.resblk6

 stage3.resblk7

*stage3.resblk8

 stage3.resblk9

*stage3.resblk10

 stage3.resblk11

*stage3.resblk12

 stage3.resblk13

*stage3.resblk14

 stage3.resblk15

*stage3.resblk16

 stage3.resblk17

*stage3.resblk18

 stage3.resblk19

*stage3.resblk20

 stage3.resblk21

*stage3.resblk22

 stage3.resblk23

 stage4.resblk1

*stage4.resblk2

 stage4.resblk3

 final_linear

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(c) ResNet101: every second resblk

 stage0

 stage1.resblk1

*stage1.resblk2

 stage1.resblk3

 stage2.resblk1

*stage2.resblk2

 stage2.resblk3

*stage2.resblk4

 stage2.resblk5

*stage2.resblk6

 stage2.resblk7

*stage2.resblk8

 stage3.resblk1

*stage3.resblk2

 stage3.resblk3

*stage3.resblk4

 stage3.resblk5

*stage3.resblk6

 stage3.resblk7

*stage3.resblk8

 stage3.resblk9

*stage3.resblk10

 stage3.resblk11

*stage3.resblk12

 stage3.resblk13

*stage3.resblk14

 stage3.resblk15

*stage3.resblk16

 stage3.resblk17

*stage3.resblk18

 stage3.resblk19

*stage3.resblk20

 stage3.resblk21

*stage3.resblk22

 stage3.resblk23

*stage3.resblk24

 stage3.resblk25

*stage3.resblk26

 stage3.resblk27

*stage3.resblk28

 stage3.resblk29

*stage3.resblk30

 stage3.resblk31

*stage3.resblk32

 stage3.resblk33

*stage3.resblk34

 stage3.resblk35

*stage3.resblk36

 stage4.resblk1

*stage4.resblk2

 stage4.resblk3

 final_linear

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(d) ResNet152: every second resblk

Figure 10: Joint robustness analysis of ResNets on CIFAR10, with alternative grouping schemes. Grouping is
indicated by the * on the layer names.

11

Table 1: Error rates (%) on CIFAR10 (top rows) and ImageNet (bottom rows), respectively. Each row shows
the performance of the full model, (the mean and std of) the layer-wise robustness to re-initialization, the performance
when training with a subset of layers �xed at random initialization, and the performance when training with a subset
of layers removed. In particular, the layer-wise robustness is averaged over all the residual blocks except the �rst one
at each stage. The layer-freezing and layer-removal operations are also applied to those residual blocks (jointly).

Arch Full Layer-wise Layers Layers
Model Robustness Frozen Removed

CI
FA

R1
0 ResNet50 8.40 9.77±1.38 11.74 9.23

ResNet101 8.53 8.87±0.50 9.21 9.23
ResNet152 8.54 8.74±0.39 9.17 9.23

Im
ag

eN
et ResNet50 34.74 38.54±5.36 44.36 41.50

ResNet101 32.78 33.84±2.10 36.03 41.50
ResNet152 31.74 32.42±1.55 35.75 41.50

only layers from stage1 and stage4, slightly improved robustness could be obtained on ResNet50. The scheme that
groups every other residual block shows further improvements.

In summary, the individually robust layers are generally not jointly robust. But with some clever way of picking
out a subset of the layers, joint robustness could still be achieved for up to half of the layers. In principle, one can
enumerate all possible grouping schemes to �nd the best with a trade-o� of the robustness and number of layers
included.

D.2 Could robust layers be made jointly robust?
Results from the previous section show that there is a gap between the layer-wise robustness patterns and the the
joint robustness. Here we try to see if we could close the gap by letting the training algorithm know that we are
interested in the robustness of a subset of the layers. It is complicated to express this desire algorithmically, but we
can make a stronger request by asking the learning algorithm to explicitly not “use” those layers. More speci�cally,
we try two approaches to the layers in the group that is desired to be robust: 1) freeze them so that their parameters
remain the same randomly initialized values; 2) remove the layers completely from the neural network architecture.

The results are shown in Table 1. When we explicitly freeze the layers, the test error rates are still higher than
the average layer-wise robustness measured in a normally trained model. However, the gap is much smaller than
directly measuring the joint robustness (see Figure 9 for comparison). Moreover, on CIFAR10, we found that similar
performance can be achieved even if we completely remove those layers from the network. On the other hand, on
ImageNet, the frozen random layers seem to be needed to achieve good performances, while the “layers-removed”
variant under-perform by a big gap. In this case, the random projections (with non-linearity) in those frozen layers
are helpful with the performance.

E Connections to other notions of robustness

The notion of layer-wise (and joint) robustness to re-initialization and re-randomization can be related to other
notions of robustness in deep learning. For example, the �atness of the solution is a notion of robustness with respect
to local perturbations to the network parameters (at convergence), and is extensively discussed in the context of
generalization [17, 4, 20, 33, 28]. For a �xed layer, our notion of robustness to re-initialization is more restricted
because the “perturbed values” can only be from the optimization trajectory; while the robustness to re-randomization
could potentially allow larger perturbation variances. However, as our studies here show, the robustness or �atness
at each layer could behave very di�erently, so analyzing each layer individually in the context of speci�c network
architectures allow us to get more insights to the robustness behaviors.

On the other hand, Adversarial robustness [34] focus on the robustness with respect to perturbations to the inputs. In

12

Table 2: Accuracies (%) of variousmodel con�gurations on clean CIFAR10 test set and under aweak (FGSM)
and a strong (PGD) adversarial attack, respectively. The adversarial attacks are evaluated on a subset of 1000
test examples. Every experiment is repeated 5 times and the average performance is reported. The hyperparameters
r and s in model con�gurations mean the number of random weights pre-created for each residual block, and the
number of stages that are re-randomized during each inference. 42 means a ResNet architecture with two stages,
where each stage contains four residual blocks; similarly 44 has four stages each with four residual blocks.

Model Con�guration Clean FGSM PGD

42
baseline 91.05 ± 0.00 12.75 ± 0.04 0.33 ± 0.16
r=4,s=1 89.45 ± 0.13 69.85 ± 1.60 6.71 ± 0.37
r=4,s=2 87.70 ± 0.25 71.18 ± 0.49 9.65 ± 0.27

44
baseline 90.08 ± 0.00 8.45 ± 0.00 0.00 ± 0.00
r=4,s=1 89.64 ± 0.12 62.76 ± 1.09 2.60 ± 0.26
r=4,s=2 89.13 ± 0.13 67.20 ± 0.63 3.56 ± 0.48
r=4,s=4 88.24 ± 0.18 69.09 ± 1.59 5.60 ± 0.53

particular, it is found that trained deep neural network models are sensitive to input perturbations: small adversarially
generated perturbations can usually change the prediction results to arbitrary di�erent classes. A large number of
defending and attacking algorithms have been proposed in recent years along this line. Here we brie�y discuss the
connection to adversarial robustness. In particular, take a normally trained ResNet2, say with S stages and (B1,… , BS)
residual blocks in each stage. Given con�guration r > 0 and 0 ≤ s ≤ S, during each test evaluation, a subset of s stages
are randomly chosen, and for each of the chosen stages, a random residual block is picked and replaced with one
of the r pre-initialized weights for that layer. We keep r pre-allocated weights for each residual block instead of
re-sampling random numbers on each evaluation call, primarily to reduce the computation burden during the test
time.

From the previous robustness analysis, we expect the stochastic classi�er to get only a small performance drop when
averaged over the test set. However, at individual example level, the randomness of the network outputs will make
it harder for the attacker to generate adversarial examples. We evaluate the adversarial robustness against a weak
FGSM [10] attack and a strong PGD [22] attack. The results in Table 2 show that, compared to the baseline (the
exact same trained model before being turned into a stochastic classi�er), the randomness signi�cantly increases the
adversarial robustness against weak attacks. The performances under strong PGD attack drop to very low, but still
with a non-trivial gap between the baseline.

In summary, the layer-wise robustness could improve the adversarial robustness of a trained model through injected
stochasticity. However, it is not a good defense against strong attackers. If we work hard enough, more sophisticated
attacks that explicitly deal with stochastic classi�ers are likely to completely break this model.

F Details on experiment setup
Our empirical studies are based on the MNIST, CIFAR10 and the ILSVRC 2012 ImageNet datasets. Stochastic Gradient
Descent (SGD) with a momentum of 0.9 is used to minimize the multi-class cross entropy loss. Each model is trained
for 100 epochs, using a stage-wise constant learning rate scheduling with a multiplicative factor of 0.2 on epoch 30,
60 and 90. Batch size of 128 is used, except for ResNets with more than 50 layers on ImageNet, where batch size of 64
is used due to device memory constraints.

We mainly study three types of neural network architectures:

• FCNs: the multi-layer perceptrons consist of fully connected layers with equal output dimension and ReLU
activation (except for the last layer, where the output dimension equals the number of classes and no ReLU is

2We use a slightly modi�ed variant by explicitly having a downsample layer between stages, so that all the residual blocks are with real identity
skip connections. See Figure 7.

13

Table 3: Test performance (classi�cation error rates %) of various models studied in this paper. The table
shows how much of the �nal performance is a�ected by training with or without weight decay (+wd) and batch
normalization (+bn).

Architecture N/A +wd +bn +wd+bn

CI
FA

R1
0

ResNet18 10.4 7.5 6.9 5.5
ResNet34 10.2 6.9 6.6 5.1
ResNet50 8.4 9.9 7.6 5.0
ResNet101 8.5 9.8 6.9 5.3
ResNet152 8.5 9.7 7.3 4.7
VGG11 11.8 10.7 9.4 8.2
VGG13 10.3 8.8 8.4 6.7
VGG16 11.0 11.4 8.5 6.7
VGG19 12.1 8.6 6.9

Im
ag

eN
et

ResNet18 41.1 33.1 33.5 31.5
ResNet34 39.9 30.6 30.1 27.2
ResNet50 34.8 31.8 28.2 25.0
ResNet101 32.9 29.9 26.9 22.9
ResNet152 31.9 29.1 27.6 22.6

applied). For example, FCN 3 × 256 has three layers of fully connected layers with the output dimension 256,
and an extra �nal (fully connected) classi�er layer.

• VGGs: widely used network architectures from Simonyan and Zisserman [32].

• ResNets: the results from our analysis are similar for ResNets V1 [14] and V2 [15]. We report our results with
ResNets V2 due to the slightly better performance in most of the cases. For large image sizes from ImageNet,
the stage0 contains a 7 × 7 convolution and a 3 × 3 max pooling (both with stride 2) to reduce the spatial
dimension (from 224 to 56). On smaller image sizes like CIFAR10, we use a 3 × 3 convolution with stride 1 here
to avoid reducing the spatial dimension.

During training, CIFAR10 images are padded with 4 pixels of zeros on all sides, then randomly �ipped (horizontally)
and cropped. ImageNet images are randomly cropped during training and center-cropped during testing. Global
mean and standard deviation are computed on all the training pixels and applied to normalize the inputs on each
dataset.

G Batch normalization and weight decay

The primary goal of this paper is to study the (co-)evolution of the representations at each layer during training
and the robustness of this representation with respect to the rest of the network. We try to minimize the factors
that explicitly encourage changing of the network weights or representations in the analysis. In particular, unless
otherwise speci�ed, weight decay and batch normalization are not used. This leads to some performance drop in the
trained models. Especially for deep residual networks: even though we could successfully train a residual network
with 100+ layers without batch normalization, the �nal generalization performance could be quite worse than the
state-of-the-art. Therefore, in this section, we include studies on networks trained with weight decay and batch
normalization for comparison.

In particular, Table 3 shows the �nal test error rates of models trained with or without weight decay and batch
normalization. Note the original VGG models do not use batch normalization [32], we list +bn variants here for
comparison, by applying batch normalization to the output of each convolutional layer. On CIFAR10, the performance
gap varies from 3% to 5%, but on ImageNet, a performance gap as large as 10% could be seen when trained without
weight decay and batch normalization. Figure 11 shows how di�erent training con�gurations a�ect the layerwise
robustness analysis patterns on VGG16 networks. We found that when batch normalization is used, none of the layers

14

stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage4.block1

stage4.block2

stage4.block3

stage5.block1

stage5.block2

stage5.block3 fc1 fc2

final_linear
fullmodel

ReRnd

0

1

10

100 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) VGG16

stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage4.block1

stage4.block2

stage4.block3

stage5.block1

stage5.block2

stage5.block3 fc1 fc2

final_linear
fullmodel

ReRnd

0

1

10

100 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b) VGG16 +wd
stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage4.block1

stage4.block2

stage4.block3

stage5.block1

stage5.block2

stage5.block3 fc1 fc2

final_linear
fullmodel

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(c) VGG16 +bn

stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage4.block1

stage4.block2

stage4.block3

stage5.block1

stage5.block2

stage5.block3 fc1 fc2

final_linear
fullmodel

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(d) VGG16 +wd +bn

Figure 11: Layer-wise robustness analysis with VGG16 on CIFAR10. The sub�gures show how training with
weight decay (+wd) and batch normalization (+bn) a�ects the layerwise robustness patterns.

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) ResNet50

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b) ResNet50 +wd

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(c) ResNet50 +bn

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(d) ResNet50 +wd +bn

Figure 12: Layer-wise robustness analysis with ResNet50 on CIFAR10. The sub�gures show how training with
weight decay (+wd) and batch normalization (+bn) a�ects the layerwise robustness patterns.

are robust any more.

Figure 12 and Figure 13 show similar comparisons for ResNet50 on CIFAR10 and ImageNet, respectively. Unlike VGGs,
we found that the layerwise robustness patterns are still quite pronounced under various training conditions for
ResNets. In Figure 12(d) and Figure 13(c,d), we see the mysterious phenomenon that re-initialing with checkpoint-1 is
less robust than with checkpoint-0 for many layers. We do not know exactly why this is happening. It might be that
during early stages, some aggressive learning is happening causing changes in the parameters or statistics with large
magnitudes, but later on when most of the training samples are classi�ed correctly, the network gradually re-balances
the layers to a more robust state. Figure 15(d-f) in the next section shows supportive evidence that, in this case the
distance of the parameters between checkpoint-0 and checkpoint-1 is larger than between checkpoint-0 and the �nal
checkpoint. However, on ImageNet this correlation is no longer clear as seen in Figure 16(d-f). See the discussions in
the next section for more details.

15

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100 0.4

0.5

0.6

0.7

0.8

0.9

(a) ResNet50

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100 0.4
0.5
0.6
0.7
0.8
0.9

(b) ResNet50 +wd

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(c) ResNet50 +bn

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100 0.3
0.4
0.5
0.6
0.7
0.8
0.9

(d) ResNet50 +wd +bn

Figure 13: Layer-wise robustness analysis with ResNet50 on ImageNet. The sub�gures show how training with
weight decay (+wd) and batch normalization (+bn) a�ects the layerwise robustness patterns.

stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage4.block1

stage4.block2

stage4.block3

stage5.block1

stage5.block2

stage5.block3 fc1 fc2

final_linear
fullmodel

ReRnd

0

1

10

100 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) Test error

stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage4.block1

stage4.block2

stage4.block3

stage5.block1

stage5.block2

stage5.block3 fc1 fc2

final_linear

ReRnd

0

1

10

100
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

(b) ‖� �d − �0d ‖

stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage4.block1

stage4.block2

stage4.block3

stage5.block1

stage5.block2

stage5.block3 fc1 fc2

final_linear

ReRnd

0

1

10

100
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(c) ‖� �d − �0d ‖∞

Figure 14: Layer-wise robustness studies of VGG16 on CIFAR10. (a) shows the robustness analysis measured
by the test error rate. (b) shows the normalized �2 distance of the parameters at each layer to the version realized
during the re-randomization and re-initialization analysis. (c) is the same as (b), except with the �∞ distance.

H Robustness and distances
In Figure 1 from Section 3, we compared the layerwise robustness pattern to the layerwise distances of the parameters
to the values at initialization (checkpoint-0). We found that for FCNs on MNIST, there is no obvious correlation
between the “amount of parameter updates received” at each layer and its robustness to re-initialization for the two
distances (the normalized 2 and ∞ norms) we measured. In this appendix, we list results on other models and datasets
studied in this paper for comparison.

Figure 14 shows the layerwise robustness plot along with the layerwise distance plots for VGG16 trained on CIFAR10.
We found that the �∞ distance of the top layers are large, but the model is robust when we re-initialize those layers.
However, the normalized �2 distance seem to be correlated with the layerwise robustness patterns: the lower layers
that are less robust have larger distances to their initialized values.

Similar plots for ResNet50 on CIFAR10 and ImageNet are shown in Figure 15 and Figure 16, respectively. In each
of the �gures, we also show extra results for models trained with weight decay and batch normalization. For the
case without weight decay and batch normalization, we can see a weak correlation: the layers that are sensitive have
slightly larger distances to their random initialization values. For the case with weight decay and batch normalization,
the situation is less clear. First of all, in Figure 15(e-f), we see very large distances in a few layers at checkpoint-1.
This provides a potential explanation to the mysterious pattern that re-initialization to checkpoint-1 is more sensitive
than to checkpoint-0. Similar observations can be found in Figure 16(e-f) for ImageNet.

16

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) Test error (-wd-bn)

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear

ReRnd

0

1

10

100
0

2

4

6

8

(b) ‖� �d − �0d ‖

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear

ReRnd

0

1

10

100
0

1

2

3

4

(c) ‖� �d − �0d ‖∞
stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(d) Test error (+wd+bn)

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear

ReRnd

0

1

10

100
0

5

10

15

20

25

(e) ‖� �d − �0d ‖

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear

ReRnd

0

1

10

100
0

20

40

60

80

100

120

(f) ‖� �d − �0d ‖∞

Figure 15: Layer robustness for ResNet50 on CIFAR10. Layouts are the same as in Figure 14. The �rst row (a-c)
is for ResNet50 trained without weight decay and batch normalization. The second row (d-f) is with weight decay
and batch normalization.

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100 0.4

0.5

0.6

0.7

0.8

0.9

(a) Test error (-wd-bn)

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear

ReRnd

0

1

10

100
0
2
4
6
8
10
12
14
16

(b) ‖� �d − �0d ‖

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear

ReRnd

0

1

10

100
0
1
2
3
4
5
6

(c) ‖� �d − �0d ‖∞
stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear
fullmodel

ReRnd

0

1

10

100 0.3
0.4
0.5
0.6
0.7
0.8
0.9

(d) Test error (+wd+bn)

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear

ReRnd

0

1

10

100
0

10

20

30

40

50

(e) ‖� �d − �0d ‖

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_linear

ReRnd

0

1

10

100
0
5
10
15
20
25
30
35
40

(f) ‖� �d − �0d ‖∞

Figure 16: Layer-wise robustness studies of ResNet50 on ImageNet. Layouts are the same as in Figure 14. The
�rst row (a-c) is for ResNet50 trained without weight decay and batch normalization. The second row (d-f) is with
weight decay and batch normalization.

I Alternative visualizations
The empirical results on layer robustness are mainly visualized as heatmaps in the main text. The heatmaps allow
uncluttered comparison of the results across layers and training epochs. However, it is not easy to tell the di�erence
between numerical values that are close to each other from the color coding. In this section, we provide alternative
visualizations that shows the same results with line plots. In particular, Figure 17 shows the layerwise robustness
analysis for VGG16 on CIFAR10. Figure 18 and Figure 19 show the results for ResNet50 on CIFAR10 and ImageNet,
respectively.

17

stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage4.block1

stage4.block2

stage4.block3

stage5.block1

stage5.block2

stage5.block3 fc1 fc2

final_lin
ear

0.2

0.4

0.6

0.8

1.0

final epoch
ReRnd

ReInit to E0
ReInit to E1

ReInit to E10

(a) Test error

stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage4.block1

stage4.block2

stage4.block3

stage5.block1

stage5.block2

stage5.block3 fc1 fc2

final_lin
ear

0.0

0.5

1.0

1.5

2.0

final epoch
ReRnd

ReInit to E0
ReInit to E1

ReInit to E10

(b) ‖� �d − �0d ‖
stage1.block1

stage1.block2

stage2.block1

stage2.block2

stage3.block1

stage3.block2

stage3.block3

stage4.block1

stage4.block2

stage4.block3

stage5.block1

stage5.block2

stage5.block3 fc1 fc2

final_lin
ear

0.0

0.2

0.4

0.6

0.8

final epoch
ReRnd

ReInit to E0
ReInit to E1

ReInit to E10

(c) ‖� �d − �0d ‖∞

Figure 17: Alternative visualization of layer robustness analysis for VGG16models on CIFAR10. This shows
the same results as Figure 14, but shown as curves instead of heatmaps.

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_lin
ear

0.2

0.4

0.6

0.8

final epoch
ReRnd

ReInit to E0
ReInit to E1

ReInit to E10

(a) Test error

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_lin
ear

0

2

4

6

8

10

final epoch
ReRnd

ReInit to E0
ReInit to E1

ReInit to E10

(b) ‖� �d − �0d ‖

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_lin
ear

0

1

2

3

4

final epoch
ReRnd

ReInit to E0
ReInit to E1

ReInit to E10

(c) ‖� �d − �0d ‖∞

Figure 18: Alternative visualization of layer robustness analysis for ResNet50 on CIFAR10.

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_lin
ear

0.4

0.6

0.8

1.0

final epoch
ReRnd

ReInit to E0
ReInit to E1

ReInit to E10

(a) Test error

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_lin
ear

0

5

10

15

final epoch
ReRnd

ReInit to E0
ReInit to E1

ReInit to E10

(b) ‖� �d − �0d ‖

stage0

stage1.resblk1

stage1.resblk2

stage1.resblk3

stage2.resblk1

stage2.resblk2

stage2.resblk3

stage2.resblk4

stage3.resblk1

stage3.resblk2

stage3.resblk3

stage3.resblk4

stage3.resblk5

stage3.resblk6

stage4.resblk1

stage4.resblk2

stage4.resblk3

final_lin
ear

0

2

4

6

final epoch
ReRnd

ReInit to E0
ReInit to E1

ReInit to E10

(c) ‖� �d − �0d ‖∞

Figure 19: Alternative visualization of layer robustness analysis for ResNet50 on ImageNet.

18

	Introduction
	Setting
	Robustness of individual layers
	Joint robustness and connection to other notions of robustness
	Conclusions
	Related work
	Full results on layerwise robustness analysis of convolutional networks
	Theoretical Implications on Generalization
	Joint robustness
	Are robust layers jointly robust?
	Could robust layers be made jointly robust?

	Connections to other notions of robustness
	Details on experiment setup
	Batch normalization and weight decay
	Robustness and distances
	Alternative visualizations

