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Abstract

Brain surface analysis is challenging due to the high variability of the cortical geometry.
This paper presents a novel graph convolutional based approach for learning surface data
directly across multiple surfaces. Current methods either rely on costly geometrical simpli-
fication processes or lack the ability to compare surface data across different domains. Our
work leverages advances in spectral graph matching to align incompatible surface bases to
a reference surface for direct learning of surface data. We illustrate with a cortical parcella-
tion application the benefits of our method. We validate the algorithm over 101 manually
labeled brain surfaces. The improvements in parcellation reveal a 29% increase in accuracy
with drastic speed gains over conventional methods. The proposed method can be applied
to other analysis of surface data, particularly relevant for studying neurological disorders.
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1. Introduction

Statistical frameworks on brain surfaces are of particular interest to neuroscience, due to
their key role in cognition, vision and perception. Conventional approaches rely on costly
geometrical simplification processes (Tustison et al., 2014). For instance, the widely used
FreeSurfer (Fischl et al., 2004) slowly deforms brain models towards labeled atlases, taking
around 3 hours to parcellate brain surfaces. State-of-the-art learning methods (Litjens
et al., 2017; Kamnitsas et al., 2017; Dolz et al., 2018) are mostly limited to images, on
grid-like structures. Recent geometric deep learning methods (Bronstein et al., 2017; Monti
et al., 2017) propose to use convolutional filters on irregular graphs offering a drastic speed
advantage. The main concern of (Bronstein et al., 2013; Kovnatsky et al., 2013; Eynard
et al., 2015; Parisot et al., 2017) is their inability to compare surface data across different
surface domains. One approach is to rely on surface parameterization, for instance, by
mapping local graph information onto geodesic patches. Recent approaches are, however,
fundamentally defined in Euclidean spaces (Masci et al., 2015; Boscaini et al., 2016; Monti
et al., 2017).

The proposed approach leverages recent advances in spectral graph matching to trans-
fer surface data across aligned spectral domains (Lombaert et al., 2015a). This spectral
alignment was exploited to learn surface data (Lombaert et al., 2015b), but was limited to
pointwise information, ignoring local patterns within surface neighborhoods. Our contri-
butions are multifold. Our novel approach enables a direct learning of surface data across
compatible surface bases by exploiting spectral filters over intrinsic representations of sur-
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Figure 1: Overview of the network architecture – Dense connections are used among successive
layers. Weights (w), biases (b), and spectral filters (µ, σ) are learned.

face neighborhoods. Further details are available in (Gopinath et al., 2019). We illustrate
the learning capabilities of this approach over 101 manually labeled brain surfaces (Klein
et al., 2017) with brain parcellation as an application. Significant improvements of spectral
graph convolutions over Euclidean approaches are observed, from Dice scores of 50% to
85%. The accuracy is similar to FreeSurfer (Fischl et al., 2004), scoring 84% (Klein et al.,
2017), however the computation gains speed, from hours to seconds.

2. Method

An overview of the proposed network is shown in Fig. 1. Firstly, cortical surfaces are
modeled as a brain graph G = {V, E} , such that |V| = N , and edge set E . Each node i
has a feature vector xi ∈ R4 representing its 3D coordinates and sulcal depth. We map G
to a low-dimension spectral manifold using a normalized graph Laplacian operator L. The
eigendecomposition L is given by L = UΛU−1, with the normalized spectral coordinates of
nodes as Û = Λ−

1
2 U. The spectral embedding of different brain surfaces are then aligned

in the manifold to a reference Ûref (Gopinath et al., 2019). The optimal transformation
between matched nodes is then obtained by iterating until convergence. Finally, a geometric
convolutional neural network is used to map input features, corresponding to the spectral
coordinates and sulcal depth of brain graph nodes, to a labeled graph. A generalized
convolution operation on a graph G = {V, E}, with Ni = {j | (i, j) ∈ E}, as the neighbors of
node i ∈ V, is defined as:

z
(l)
ip =

∑
j∈Ni

Ml∑
q=1

Kl∑
k=1

w
(l)
pqk · y

(l)
jq · ϕ(ûi, ûj ; Θ

(l)
k ) + b(l)p , (1)

where ϕ(ûi, ûj ; Θk) is a symmetric kernel in the embedding space with parameter Θk. In
this work, we follow (Monti et al., 2017) and use a Gaussian kernel: ϕ(ûi, ûj ;µk, σk) =
exp

(
−σk ‖(ûj−ûi)−µk‖2

)
. Using the formulation of Eq. (1), we define a fully-convolutional

network with output layer of the network being the number of parcels to be segmented, 32
in our case.
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Figure 2: Cortical Parcellation – (a,d) Learning in Euclidean domian yields low dice score (45.8% with
Random Forests, 50.8% with graph convolutions). (b,e) Learning with Spectral coordinates:
improves Dice score (79.8% with Spectral Forests, 85.3% with our Spectral convolutions). (c)
A pure spectral alignment without learning yields a Dice score of 77.6%.(f ) MRF regularization
leads to an improvement in Dice score (86.6%) and boundary regularity. (g) Reference ground
truth for comparison purposes. Brain surfaces are inflated for visualization.

3. Results

First, we assess the improvement in accuracy of learning frameworks when operating directly
in a spectral domain rather than a conventional Euclidean domain. The effect of learning
over a spectral domain is also assessed using, first, pointwise information in the Random
Forest framework and in graph convolutional networks. Fig. 2 shows that indeed learning
using spectral method produces an improved parcellation quantitatively.

Second, we highlight the advantages of spectral alignment in this framework. We train
and test our algorithm with 5 different reference brains to verify the independence of our
method with respect to the choice of a reference for alignment. The evaluation shows a
similar performance for all references with an average dice score of 86.4% and a standard
deviation of only 0.17%, indicating robustness to the choice of references.

Shifting graph convolutions into a spectral domain endows the learning process with
a geometry-aware representation of surface data with classification improving from a 50%
Dice score in a conventional Euclidean domain to an 85% Dice score in a spectral domain.
An extra improvement of 29% is also gained by exploiting spectral neighborhoods from 50%
to 79%.

4. Conclusion

This paper presents a novel framework for learning surface data via spectral graph con-
volutions. This is a particularly challenging problem where current graph convolution ap-
proaches remain limited by the inability to compare surface data across brain geometries.
The algorithm leverages recent advances in spectral matching to enable such comparisons.
While the potential of our method was demonstrated on cortical parcellation, it can be ap-
plied to other analyses of surface data, potentially leading to new families of geometry-based
biomarkers for neurological disorders.
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