
Published as a conference paper at ICLR 2020

ACTION SEMANTICS NETWORK: CONSIDERING THE
EFFECTS OF ACTIONS IN MULTIAGENT SYSTEMS

Weixun Wang1∗, Tianpei Yang1∗, Yong Liu2, Jianye Hao1,3,4†, Xiaotian Hao1, Yujing Hu5,
Yingfeng Chen5, Changjie Fan5, Yang Gao2

{wxwang, tpyang}@tju.edu.cn, lucasliunju@gmail.com, {jianye.hao, xiaotianhao}@tju.edu.cn,
{huyujing, chenyingfeng1, fanchangjie}@corp.netease.com, gaoy@nju.edu.cn
1College of Intelligence and Computing, Tianjin University
2Nanjing University
3Tianjin Key Lab of Machine Learning, Tianjin University
4Noah’s Ark Lab, Huawei
5NetEase Fuxi AI Lab

ABSTRACT

In multiagent systems (MASs), each agent makes individual decisions but all of
them contribute globally to the system evolution. Learning in MASs is difficult
since each agent’s selection of actions must take place in the presence of other
co-learning agents. Moreover, the environmental stochasticity and uncertainties
increase exponentially with the increase in the number of agents. Previous work-
s borrow various multiagent coordination mechanisms into deep learning archi-
tecture to facilitate multiagent coordination. However, none of them explicitly
consider action semantics between agents that different actions have different in-
fluence on other agents. In this paper, we propose a novel network architecture,
named Action Semantics Network (ASN), that explicitly represents such action
semantics between agents. ASN characterizes different actions’ influence on other
agents using neural networks based on the action semantics between them. ASN
can be easily combined with existing deep reinforcement learning (DRL) algo-
rithms to boost their performance. Experimental results on StarCraft II microman-
agement and Neural MMO show ASN significantly improves the performance of
state-of-the-art DRL approaches compared with several network architectures.

1 INTRODUCTION

Deep reinforcement learning (DRL) (Sutton & Barto, 2018) has achieved a lot of success at finding
optimal policies to address single-agent complex tasks (Mnih et al., 2015; Lillicrap et al., 2016;
Silver et al., 2017). However, there also exist a lot of challenges in multiagent systems (MASs) since
agents’ behaviors are influenced by each other and the environment exhibits more stochasticity and
uncertainties (Claus & Boutilier, 1998; Hu & Wellman, 1998; Bu et al., 2008; Hauwere et al., 2016).

Recently, a number of deep multiagent reinforcement learning (MARL) approaches have been pro-
posed to address complex multiagent problems, e.g., coordination of robot swarm systems (Sosic
et al., 2017) and autonomous cars (Oh et al., 2015). One major class of works incorporates various
multiagent coordination mechanisms into deep multiagent learning architecture (Lowe et al., 2017;
Foerster et al., 2018; Yang et al., 2018; Palmer et al., 2018). Lowe et al. (2017) proposed a cen-
tralized actor-critic architecture to address the partial observability in MASs. They also incorporate
the idea of joint action learner (JAL) (Littman, 1994) to facilitate multiagent coordination. Later,
Foerster et al. (2018) proposed Counterfactual Multi-Agent Policy Gradients (COMA) motivated
from the difference reward mechanism (Wolpert & Tumer, 2001) to address the challenges of multi-
agent credit assignment. Recently, Yang et al. (2018) proposed applying mean-field theory (Stanley,
1971) to solve large-scale multiagent learning problems. More recently, Palmer et al. (2018) extend-
ed the idea of leniency (Potter & Jong, 1994; Panait et al., 2008) to deep MARL and proposed the
retroactive temperature decay schedule to address stochastic rewards problems. However, all these
∗Equal contribution, † corresponding author

1

Published as a conference paper at ICLR 2020

works ignore the natural property of the action influence between agents, which we aim to exploit
to facilitate multiagent coordination.

Another class of works focus on specific network structure design to address multiagent learning
problems (Sunehag et al., 2018; Rashid et al., 2018; Sukhbaatar et al., 2016; Singh et al., 2019).
Sunehag et al. (2018) designed a value-decomposition network (VDN) to learn an optimal linear
value decomposition from the team reward signal based on the assumption that the joint action-
value function for the system can be additively decomposed into value functions across agents.
Later, Rashid et al. (2018) relaxed the linear assumption in VDN by assuming that the Q-values of
individual agents and the global one are also monotonic, and proposed QMIX employing a network
that estimates joint action-values as a complex non-linear combination of per-agent values. Recently,
Zambaldi et al. (2019) proposed the relational deep RL to learn environmental entities relations.
However, they considered the entity relations on the pixel-level of raw visual data, which ignores
the natural property of the influence of actions between agents. Tacchetti et al. (2019) proposed
a novel network architecture called Relational Forward Model (RFM) for predictive modeling in
multiagent learning. RFM takes a semantic description of the state of an environment as input,
and outputs either an action prediction for each agent or a prediction of the cumulative reward of
an episode. However, RFM does not consider from the perspective of the influence of each action
on other agents. OpenAI designed network structures to address multiagent learning problems in a
famous Multiplayer Online Battle Arena (MOBA), Dota2. They used a scaled-up version of PPO
(Schulman et al. (2017)), adopted the attention mechanism to compute the weight of choosing the
target unit, with some of information selected from all information as input. However, this selection
is not considered from the influence of each action on other agents. There are also a number of
works designing network structures for multiagent communication (Sukhbaatar et al., 2016; Singh
et al., 2019).

However, none of the above works explicitly leverage the fact that an agent’s different actions may
have different impacts on other agents, which is a natural property in MASs and should be considered
in the decision-making process. In multiagent settings, each agent’s action set can be naturally
divided into two types: one type containing actions that affect environmental information or its
private properties and the other type containing actions that directly influence other agents (i.e.,
their private properties). Intuitively, the estimation of performing actions with different types should
be evaluated separately by explicitly considering different information. We refer to the property that
different actions may have different impacts on other agents as action semantics. We can leverage the
action semantics information to improve an agent’s policy/Q network design toward more efficient
multiagent learning.

To this end, we propose a novel network architecture, named Action Semantics Network (ASN) to
characterize such action semantics for more efficient multiagent coordination. The main contribu-
tions of this paper can be summarized as follows: 1) to the best of our knowledge, we are the first
to explicitly consider action semantics and design a novel network to extract it to facilitate learn-
ing in MASs; 2) ASN can be easily combined with existing DRL algorithms to boost its learning
performance; 3) experimental results∗ on StarCraft II micromanagement (Samvelyan et al., 2019)
and Neural MMO (Suarez et al., 2019) show our ASN leads to better performance compared with
state-of-the-art approaches in terms of both convergence speed and final performance.

2 BACKGROUND

Stochastic games (SGs) (Littman, 1994) are a natural multiagent extension of Markov decision pro-
cesses (MDPs), which models the dynamic interactions among multiple agents. Considering the
fact that agents may not have access to the complete environmental information, we follow previous
work’s settings and model the multiagent learning problems as partially observable stochastic games
(POSGs) (Hansen et al., 2004).

A partially observable stochastic game (POSG) is defined as a tuple 〈N ,S,A1, · · · ,An, T ,R1, · · · ,
Rn,O1, · · · ,On〉, where N is the set of agents; S is the set of states; Ai is the set of actions
available to agent i (the joint action space A = A1 ×A2 × · · · × An); T is the transition function

∗More details can be found at https://sites.google.com/view/iclrasn, the source code is
put on https://github.com/MAS-anony/ASN

2

https://sites.google.com/view/iclrasn
https://github.com/MAS-anony/ASN

Published as a conference paper at ICLR 2020

that defines transition probabilities between global states: S × A × S → [0, 1]; Ri is the reward
function for agent i: S ×A → R and Oi is the set of observations for agent i.

Note that a state s ∈ S describes the environmental information and the possible configurations of
all agents, while each agent i draws a private observation oi correlated with the state: S 7→ Oi, e.g.,
an agent’s observation includes the agent’s private information and the relative distance between
itself and other agents. Formally, an observation of agent i at step t can be constructed as follows:
oit = {oi,envt ,mi

t, o
i,1
t , · · · , oi,i−1t , oi,i+1

t , · · · , oi,nt }, where oi,envt is the observed environmental
information, mi

t is the private property of agent i (e.g., in robotics, mi
t includes agent i’s location,

the battery power and the healthy status of each component) and the rest are the observations of
agent i on other agents (e.g., in robotics, oi,i−1t includes the relative location, the exterior of agent
i−1 that agent i observes). An policy πi: Oi×Ai → [0; 1] specifies the probability distribution over
the action space of agent i. The goal of agent i is to learn a policy πi that maximizes the expected
return with a discount factor γ: J = Eπi

[∑∞
t=0 γ

trit
]
.

3 THE ACTION SEMANTICS NETWORK ARCHITECTURE

3.1 MOTIVATION

In MASs, multiple agents interact with the environment simultaneously which increases the envi-
ronmental stochasticity and uncertainties, making it difficult to learn a consistent globally optimal
policy for each agent. A number of Deep Multiagent Reinforcement Learning (MARL) approaches
have been proposed to address such complex problems in MASs by either incorporating various mul-
tiagent coordination mechanisms into deep multiagent learning architecture (Foerster et al., 2018;
Yang et al., 2018; Palmer et al., 2018) or designing specialized network structures to facilitate mul-
tiagent learning (Sunehag et al., 2018; Rashid et al., 2018; Sukhbaatar et al., 2016). However, none
of them explicitly consider extracting action semantics, which we believe is a critical factor that we
can leverage to facilitate coordination in multiagent settings. Specifically, each agent’s action set can
be naturally classified into two types: one type containing actions that directly affect environmental
information or its private properties and the other type of actions directly influence other agents.
Therefore, if an agent’s action directly influences one of the other agents, the value of performing
this action should be explicitly dependent more on the agent’s observation for the environment and
the information of the agent to be influenced by this action, while any additional information (e.g.,
part of the agent’s observation for other agents) is irrelevant and may add noise. We refer to the
property that different actions may have different impacts on other agents as action semantics.

However, previous works usually use all available information for estimating the value of all actions,
which can be quite inefficient. To this end, we propose a new network architecture called Action
Semantics Network (ASN) that explicitly considers action semantics between agents to improve the
estimation accuracy over different actions. Instead of inputting an agent’s total observation into one
network, ASN consists of several sub-modules that take different parts of the agent’s observation
as input according to the semantics of actions. In this way, ASN can effectively avoid the negative
influence of the irrelevant information, and thus provide a more accurate estimation of performing
each action. Besides, ASN is general and can be incorporated into existing deep MARL frameworks
to improve the performance of existing DRL algorithms. In the next section, we will describe the
ASN structure in detail.

3.2 ASN

Considering the semantic difference of different actions, we classify an agent’s action setAi of agent
i into two subsets: Aiin and Aiout. Aiin contains actions that affect the environmental information or
its private properties and do not influence other agents directly, e.g., moving to different destinations
would only affect its own location information. Aiout corresponds to those actions that directly
influence some of other agents, e.g., attack agent j in competitive settings or communicate with
agent j in cooperative settings.

Following the above classification, the proposed network architecture, ASN, explicitly considers
the different influence of an agent’s actions on other agents by dividing the network into different
sub-modules, each of which takes different parts of the agent’s observation as input according to

3

Published as a conference paper at ICLR 2020

the semantics of actions (shown in Figure 1). Considering an agent i and n− 1 agents in its neigh-
borhood, ASN decouples agent i’s network into n sub-modules as follows. The first one shown
in Figure 1 (left side O2Ai) contains a network O2Ei which is used to generate the observation
embedding ei given the full observation oit of agent i as input, and a network E2Ai (embedding to
action) which generates the values of all action in Aiin as output. The rest of n − 1 sub-modules
(O2Ai,j , j ∈ N , j 6= i) are used to estimate the values of those actions in Aiout related with each
influenced agent, composed of n − 1 networks (O2Ei,j , j ∈ N , j 6= i) which are responsible for
determining the observation embeddings related with each influenced agent, denoted as ei,j . Each
of n − 1 sub-modules O2Ai,j only takes a part of agent i’s observation related with one neighbor
agent j, oi,jt as input.

!2#$,&

'($

)($

'($,*&+
!2,$

'($,-.($ '($,&�

�

�� ���
'($,&

,2#$
)($,&)($!2#$,-

� !2,$,&

��	��	�
	
������	�

��
��	�

� �

�

�
/('($,1) �� 3(1 |'($) 5 6 789 or	 = 789, 6 , 6 ∈ ?9@9

5 6 789 or	 = 789, 6 , 6 ∈ ?7A89

�

!2
#$

Figure 1: ASN of agent i contains n sub-modules:
O2Ai,O2Ai,1, · · · , O2Ai,i−1, O2Ai,i+1, · · · , O2Ai,n,
each of which takes different parts of the agent’s
observation as input.

For value-based RL methods, at each step
t, the evaluation of executing each action
ait ∈ Aiin is Q(oit, a

i
t) = fa(eit, a

i
t), where

fa(eit, a
i
t) is one of the outputs of theE2Ai

network corresponding to ait. To evalu-
ate the performance of executing an action
ai,jt ∈ Aiout on another agent j, ASN com-
bines these two embeddings eit and ei,jt us-
ing a pairwise interaction functionM (e.g.,
inner product):

Q(oit, a
i,j
t) =M(eit, e

i,j
t) (1)

then agent i selects the action ait =
argmax
ait∈Ai

{Q(oit, a
i
t)} with certain explo-

ration ε.

Similarly, if the policy is directly opti-
mized through policy-based RL method-
s, the probability of choosing each action
is proportional to the output of each sub-module: π(ait|oit) ∝ exp(fa(eit, a

i
t)), π(a

i,j
t |oit) ∝

exp(M(eit, e
i,j
t)). Then agent i selects an action following πi:

π(ait|oit) =
exp(fa(eit, a

i
t))

Zπi(oit)
, π(ai,jt |oit) =

exp(M(eit, e
i,j
t))

Zπi(oit)
(2)

where Zπi(oit) is the partition function that normalizes the distribution. Note that we only consider
the case that an action ai,j directly influences one particular agent j. In general, there may exist mul-
tiple actions directly influencing one particular agent and how to extend our ASN will be introduced
in Section 3.3(Multi-action ASN).

3.3 ASN-MARL

Next, we describe how ASN can be incorporated into existing deep MARL, which can be classified
into two paradigms: Independent Learner (IL) (Mnih et al., 2015; Schulman et al., 2017) and Joint
Action Learner (JAL) (Lowe et al., 2017; Rashid et al., 2018; Foerster et al., 2018). IL applies a
single-agent learning algorithm to a multiagent domain to treat other agents as part of the environ-
ment. In contrast, JALs observe the actions of other agents, and optimize the policy for each joint
action. Following the above two paradigms, we propose two classes of ASN-based MARL: ASN-IL
and ASN-JAL. For ASN-IL, we focus on the case of combing ASN with PPO (Schulman et al.,
2017), a popular single-agent policy-based RL. The way ASN combines with other single-agent RL
is similar. In contrast, ASN-JAL describes existing deep MARL approaches combined with ASN,
e.g., QMIX (Rashid et al., 2018) and VDN (Sunehag et al., 2018).

ASN-PPO For each agent i equipped with a policy network parameterized by θi, ASN-PPO
replaces the vanilla policy network architecture with ASN and optimizes the policy following PPO.

Generally, IL ignores the existence of other agents, thus, for each agent i, the expected return J(θi)
is optimized using the policy gradient theorem: ∇θiJ(θi) = Et

[
∇θi log πθi(ait|oit)At(oit, ait)

]
,

4

Published as a conference paper at ICLR 2020

!"#

$"#,<

!"#,=>

'2)#,=

'2*#,=

!"#,=?…
…

(a) Multi-action ASN

!"#

$"#,&

!"#,&

'2)#,&

'2*#,&

!"#

$"#,+

!"#,,

'2)#,,

'2*#,,

…

…

…

����������
�	�

(b) Homogeneous ASN

!"#

$"#,&

!"#,&

… $"#,@

!"#,@…
…

!"#

$"#,=

!"#,=

… $"#,,

!"#,,…
…

…

…

…'2*#,& '2*#,,

(c) Mixed ASN

Figure 3: Different variants of ASN. Here we only present the right part of ASN (excluding the left
part O2Ai of ASN) as different variants.

where At is the advantage function at timestep t. PPO uses constraints and advantage estimation to
reformulate the optimization problem as:

max
θi

Et
[
rt(θ

i)At(o
i
t, a

i
t)
]

(3)

where rt(θi) is the probability ratio πθi (a
i
t|o

i
t)

π
θi
old

(ait|oit)
, θiold is the policy parameters before the update.

Then in ASN-PPO, rt(θi) can be rewritten as follows by substituting Equation 2:

rt(θ
i) =

exp(fa(eit,a

i
t;θ

i))

exp(fa(eit,a
i
t;θ

i
old))

Zπi (oit;θ
i
old)

Zπi (oit;θ
i)

if ait ∈ Aiin
exp(M(eit,e

i,j
t ;θi))

exp(M(eit,e
i,j
t ;θiold))

Zπi (oit;θ
i
old)

Zπi (oit;θ
i)

if ait ∈ Aiout
(4)

Lastly, ASN-PPO maximizes the objective (Equation 3) following PPO during each iteration.

…

𝑄"(𝑜%", 𝑎%")
𝑜%"

𝑄"(𝑜%", 𝑎%")

𝑠%

𝑄%*%(𝑠%, 𝑎%)

𝑄+(𝑜%+, 𝑎%+)

𝑄%*%(𝑠%, 𝑎%)

𝑜%+ 𝑜%
+,,+-

𝑂2𝐸+

𝑜%
+,"𝑚%

+ …

…

=(),,

𝐸2𝐴+
𝑂2𝐴+,"

…

,

…

…

𝑄+(𝑜%3,4)

…
…

𝑄+(𝑜%+, 𝑎%+)

Agent 1

Mixing Network

𝑜%+

𝑄+(𝑜%+, 𝑎%+)

Agent n

𝑜%+

𝑠%

𝑊"

𝑊6

| 4 |

| 4 |

…
…

…

Figure 2: QMIX-ASN contains one mixing network and n
networks of all agents, and each agent network follows the
ASN architecture.

ASN-QMIX The way ASN com-
bines with deep MARL algorithms is
similar and we use QMIX (Rashid
et al., 2018) as an example to present.
Figure 2 illustrates the ASN-QMIX
network structure, where for each
agent i, ASN-QMIX replaces the
vanilla Q-network architecture with
ASN. At each step t, the individu-
al Q-function Q(oit, a

i
t) is first calcu-

lated following Section 3.2 and then
input into the mixing network. The
mixing network mixes the output of
all agents’ networks monotonically
and produces the joint action-value
function Qtot(st, at). The weights of
the mixing network are restricted to be non-negative and produced by separate hypernetworks, each
of which takes state st as input and generates the weights of one layer of the mixing network. Final-
ly, ASN-QMIX is trained to minimize the loss: L(θ) =

∑B
b=1

[
(ytotb −Qtot(s,a; θ))2

]
, where B is

the batch size of transitions, ytott = rt + γmaxa′ Qtot(s
′,a′; θ−), and θ− are the parameters of the

target network as in DQN (Mnih et al., 2015).

Multi-action ASN The general case in MASs is that an agent may have multiple actions which
can directly influence another agent, e.g., a router can send packages with different size to one of its
neighbors, a soldier can select different weapons to attack enemies and cause different damages. To
address this, we extend the basic ASN to a generalized version, named Multi-action ASN (shown in
Figure 3(a)), that takes oi,j as input, and produces a number of embeddings ei,j1 , · · · , ei,jm , where
m is the number of actions that directly influences agent j. After that, multi-action ASN calculates
the estimation of performing each action, which uses a pairwise interaction functionM to combine
the two embeddings ei,jk,k∈[1,m] and ei following Equation (1).

5

Published as a conference paper at ICLR 2020

Parameter-sharing between sub-modules Parameter-sharing (PS) mechanism is widely used in
MARL. If agents are homogeneous, their policy networks can be trained more efficiently using PS
which greatly reduces the training complexity (Gupta et al., 2017). Recent work (Rashid et al., 2018)
also incorporates PS on heterogeneous agents by adding extra information to identify agent type.
Following previous work, here we incorporate PS to enable parameter-sharing between different
sub-modules of ASN. The basic ASN (Figure 1) for agent i contains a number of sub-modules
O2Ai,j , each of which takes oi,j as input. In this way, if an action ai,jt ∈ Aiout has a direct impact
on any of another agent j, the number of sub-modules is equal to the number of other agents. The
training of basic ASN is inefficient since the number of sub-modules is increasing with the increase
in the number of agents. If the other agents that agent i can directly influence are homogeneous,
the sub-module parameters can be shared across those agents. Thus, in a homogeneous MAS, all
influencing agents can share one sub-module (shown in Figure 3 (b)); in a MAS that contains several
types of agents, each type of agents can share one sub-module (Mixed ASN in Figure 3 (c)). Note
that the basic ASN can be seen as the simplest case that designs a sub-module for each influencing
agent without PS.

4 SIMULATIONS

We evaluate the performance of ASN compared with different network structures including the
vanilla network (i.e., aggregate all information and input into one single network), the dueling net-
work (Wang et al., 2016), the attention network that expects to learn which information should be
focused on more automatically (i.e., adds an additional hidden layer to compute the weights of the
input and then generate an element-wise product to input into the next layer) and entity-attention
network (i.e., instead of computing attention weight for each dimension of the input, the weight is
computed for each entity/agent) under various DRL approaches. Other network architectures as we
mentioned before are not comparable here since they are orthogonal to our ASN. Our test domains
include StarCraft II micromanagement (Samvelyan et al., 2019) and Massively Multiplayer Online
Role-Playing Games (Neural MMO) (Suarez et al., 2019). The details of neural network structures
and parameter settings are in the appendix.

4.1 STARCRAFT II

StarCraft II is a real-time strategic game with one or more humans competing against each other or
a built-in game AI. Here we focus on a decentralized multiagent control that each of the learning
agents controls an individual army entity. At each step, each agent observes the local game state
which consists of the following information for all units in its field of view: relative distance between
other units, the position and unit type (detailed in the appendix) and selects one of the following
actions: move north, south, east or west, attack one of its enemies, stop and the null action. Agents
belonging to the same side receive the same joint reward at each time step that equals to the total
damage on the enemy units. Agents also receive a joint reward of 10 points after killing each
enemy, and 200 points after killing all enemies. The game ends when all agents on one side die
or the time exceeds a fixed period. Note that previous works (Foerster et al., 2018; Rashid et al.,
2018; Samvelyan et al., 2019) reduce the learning complexity by manually adding a rule that forbids
each agent to select an invalid action, e.g., attack an opponent that beyond the attack range and
move beyond the grid border. We relax this setting since it requires prior knowledge, which is
hard to obtain in the real world. We are interested in evaluating whether these rules can be learned
automatically through end-to-end training as well. Thus, the following results are based on the
setting that each agent can select an action that causes an invalid effect, and in result, the agent
will standstill at the current time step. We also evaluate ASN following previous settings (adding
the manual rule in StarCraft II that forbidding the invalid actions) and ASN still achieves better
performance which can be found in the appendix.

In StarCraft II 8m map (8 Marines vs 8 Marines), each agent is homogeneous to each other, so
we adopt homogeneous ASN to evaluate whether it can efficiently characterize action semantics
between two agents. Figure 4(a), (b) and (c) show the performance of ASN on an 8m map compared
with vanilla, dueling, attention and entity-attention networks under different DRL algorithms (IQL,
QMIX, VDN). We can see that ASN performs best among all of the network structures in terms
of both convergence rate and average win rates. By taking different observation information as the

6

Published as a conference paper at ICLR 2020

0.00 0.25 0.50 0.75 1.00 1.25
Step ×106

0.0

0.2

0.4

0.6

0.8

W
in

 r
at

es

Vanilla
ASN
Dueling
Attention
Entity Attention

(a) IQL

0.00 0.25 0.50 0.75 1.00 1.25
Step ×106

0.0

0.2

0.4

0.6

0.8

W
in

 r
at

es

Vanilla
ASN
Dueling
Attention
Entity Attention

(b) QMIX

0.00 0.25 0.50 0.75 1.00 1.25
Step ×106

0.0

0.2

0.4

0.6

0.8

W
in

 r
at

es

Vanilla
ASN
Dueling
Attention
Entity Attention

(c) VDN

Figure 4: Win rates of various methods on the StarCraft II 8m map.

input of different sub-modules, ASN enables an agent to learn the right timing to attack different
opponents to maximize its total damage on opponents. In contrast, existing network architectures
simply input all information into one network, thus an agent cannot distinguish the difference of
effects that different actions may have on the opponents and may choose the suboptimal opponent to
attack, thus resulting in lower performance than ASN. Attention network performs better than vanilla
and dueling when combined with IQL, while both of them show very similar performance with the
vanilla network when combined with QMIX and VDN. However, entity-attention performs worst
since it is hard to figure out the useful information for each entity when input all information into
one network initially. Since the performance difference of other network architecture is marginal,
we only present results of ASN-QMIX compared with the vanilla network under QMIX (denoted as
vanilla-QMIX) in the following sections.

0 1 2 3 4
Step ×106

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 r
at

es

Vanilla-QMIX
ASN-QMIX

(a) 2s3z

0.0 0.2 0.4 0.6 0.8 1.0
Step ×107

0.0

0.2

0.4

0.6

0.8

W
in

 r
at

es

Vanilla-QMIX
ASN-QMIX

(b) 15m

Figure 5: Win rates of ASN-QMIX and
vanilla-QMIX on different SC II maps.

Table 1: PCT of choosing a valid action
for ASN-QMIX and vanilla-QMIX.

ASN Vanilla
PCT 71.9 ± 0.15% 44.3 ± 0.11%

Next, we consider a more complex scenario: StarCraft
II 2S3Z (2 Stalkers and 3 Zealots vs 2 Stalkers and
3 Zealots) which contains two heterogeneous groups,
each agent inside one group are homogeneous and can
evaluate the performance of Mixed ASN compared
with vanilla-QMIX. From Figure 5(a) we can observe
that Mixed ASN-QMIX perform better than vanilla-
QMIX. The reason is that ASN efficiently identifies
action semantics between each type of two agents, thus
it selects more proper attack options each time and
achieves better performance last vanilla-QMIX.

Is ASN still effective on large-scale scenarios? We
further test on a large-scale agent space on a 15m
map. Figure 5 (b) depicts the dynamics of the aver-
age win rates of ASN-QMIX and vanilla-QMIX. We
can see that ASN-QMIX quickly learns the average
win rates of approximately 80 %, while vanilla-QMIX
fails, with the average win rates of approximately only
20 %. From Figure 4 (b) and 5 (b) we can find that
with the increase of the agent number, the margin be-
comes larger between two methods. Intuitively, ASN
enables an agent to explicitly consider more numbers
of other agents’ information with a larger agent size.
However, for the vanilla network, it is more difficult
to identify the action influence on other agents from
a larger amount of mixed information, which results
in lower average win rates than ASN. An interesting
observation for vanilla-QMIX is that they will learn to
run away to avoid all being killed, and testing videos
can be found in our anonymous website∗.

Can ASN recognize the influence of different actions? Table 1 presents the average percent-
ages of choosing a valid action for ASN-QMIX and vanilla-QMIX on a 15m map. Note that we

7

Published as a conference paper at ICLR 2020

Within the
attack range Beyond the attack range

(a) Scenario 1

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
HP Difference

0.24
0.23
0.22
0.21
0.20
0.19
0.18
0.17
0.16

Q
 v

al
ue

Opponent 1
Opponent 2

(b) Vanilla-QMIX on scenario 2

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
HP Difference

0.46

0.44

0.42

0.40

0.38

0.36

0.34

Q
 v

al
ue

Opponent 1
Opponent 2

(c) ASN-QMIX on scenario 2

Figure 6: The attack action’s Q-values of ASN and vanilla under different circumstances.

0.0 0.5 1.0 1.5 2.0 2.5
Step ×10

6

0.0

0.5

1.0

W
in

 ra
te

s

Vanilla
ASN
Dueling

Attention
Entity Attention

(a) −1-paddings

0.0 0.5 1.0 1.5 2.0 2.5
Step ×10

6

0.0

0.5

1.0

W
in

 ra
te

s

Vanilla
ASN
Dueling

Attention
Entity Attention

(b) 1-paddings

Figure 7: Win rates on SC II 8m map when replacing 0-paddings with−1-paddings and 1-paddings.

remove the manually added rule (which prevents selecting any invalid action), and agents would
probably select the invalid action and standstill, which increases the learning difficulties. We can
see that ASN-QMIX achieves an average percentage of approximately 71.9% for choosing a valid
action. However, vanilla-QMIX only achieves an average percentage of approximately 44.3%. This
phenomenon confirms that ASN effectively exploits action semantics between agents and enables
agents to learn which action can be chosen at each time step, facilitating more robust learning, even
in large-scale MASs.

Can ASN effectively improve the estimation accuracy of actions? We investigate whether ASN
can efficiently characterize the action semantics and facilitate multiagent coordination. To make the
analysis more clear, we test the model learned on a 15m map on two illustrating scenarios: 1) the
one-on-one combat scenario that the distance between two agents is dynamically changing; 2) the
one Marine vs two Marines scenario that the HPs (Hit Points) of two opponents are dynamically
different. Figure 6(a) shows the dynamics of the attack action’s Q-value with the distance change
of the ASN agent and its opponent. We can observe that the Q-value of the action that the ASN
agent attacking its opponent decreases as the distance of the agent and its opponent increases, and
stabilizes when the distance exceeds the attack range. However, the vanilla agent keeps the Q-
value of the attack action nearly unchanged. This indicates that ASN can automatically learn the
information of when an action is valid and behave appropriately, while the vanilla agent has to rely on
manually added rules to avoid choosing invalid actions. Figure 6 (b) and (c) shows the dynamics of
the attack action’s Q-value of ASN agent and vanilla agent with the HPs difference of two opponents
changing (i.e., the HP difference equals to the HP of opponent 1 minus the HP of opponent 2). We
can see that the ASN agent holds a higher Q-value of attacking opponent 1 when opponent 1’s HP
is lower than opponent 2 and vice versa. The symmetric curve of ASN is due to the fact that the
state description of two opponents is very similar in this scenario. However, the vanilla agent always
keeps a higher attack action’s Q-value on Opponent 1 than on Opponent 2, which means it always
selects to attack Opponent 1. These results indicate that ASN can effectively exploit the action
semantics between agents and improves the estimation accuracy on different actions, thus facilitates
robust learning among agents.

Does ASN exploits the 0-padding information? When one of the army units dies or some units
are beyond the range of vision, one common practice is to use 0-paddings as the input for the obser-
vation of the died army unit. In this section, we provide an ablation study on whether ASN design

8

Published as a conference paper at ICLR 2020

0.0 0.2 0.4 0.6 0.8 1.0
Step ×106

20

40

60

80

100
Av

g
R

ew
ar

d

Vanilla
ASN-M1
Attention

ASN-M
Entity Attention

(a) PPO

0 1 2 3 4
Step ×106

0

25

50

75

100

125

Av
g

R
ew

ar
d

Vanilla
ASN-M1
Attention
ASN-M
Entity Attention

(b) ACKTR

0.0 0.2 0.4 0.6 0.8 1.0
Step ×106

0

25

50

75

100

125

Av
g

R
ew

ar
d

Vanilla
ASN-M1
Attention
ASN-M
Entity Attention

(c) A2C

Figure 9: Average rewards of various methods on Neural MMO.

exploits the 0-padding information. Figure 7 shows the win rates of various network architectures
combined with QMIX when using 1-paddings and −1-paddings as the input for the observation of
the died army unit. We can see that ASN still performs best among all network architectures in
terms of both convergence speed and final win rates. This indicates that ASN effectively extracts the
action semantics between agents, instead of benefiting from the particular settings of 0-paddings.

4.2 NEURAL MMO

Mage

Range

Melee

Attack

RangeDamage
1

2

5

10

4

2

Figure 8: An illustration of Neural MMO that
contains two armies (red and green).

The Neural MMO (Suarez et al., 2019) is a
massively multiagent environment that defines
combat systems for a large number of agents.
Figure 8 illustrates a simple Neural MMO
scene with two groups of agents on a 10×10
tile. Each group contains 3 agents, each of
which starts at any of the tiles, with HP = 100.
At each step, each agent loses one unit of HP,
observes local game state (detailed in the ap-
pendix) and decides on an action, i.e., moves
one tile (up, right, left, down and stop) or makes
an attack using any of three attack options (shown in the left part in Figure 8: “Melee” with the at-
tack distance is 2, the amount of damage is 5; “Range” with the attack distance is 4, the amount of
damage is 2; “Mage” with the attack distance is 10, the amount of damage is 1). Each action that
causes an invalid effect (e.g., attack an opponent that beyond the attack range and move beyond the
grid border) would make the agent standstill. Each agent gets a penalty of −0.1 if the attack fails.
The game ends when all agents in one group die, and agents belonging to the same group receive a
joint reward, which is the difference of the total HPs between itself and its opposite side.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
vg

 D
am

ag
e

ASN-M1 ASN-M Attention Entity-
Attention

Vanilla

Melee Range Mage Total

Figure 10: The average damage
of choosing each attack when
distance dij ≤ 2 under A2C.

In Neural MMO, an agent can attack one of its opponent using
one of three different attack options, which can be used to eval-
uate whether multi-action ASN can efficiently identify the mul-
tiple action semantics between agents. Here we adopt two kinds
of multi-action ASN: ASN-M1 that shares parameters of the first
neural network layer across three attack actions on one enemy
(as shown in Figure 3(a)); and ASN-M that does not share. Fig-
ure 9(a), (b) and (c) present the performance of multi-action AS-
N on Neural MMO compared with vanilla, attention and entity-
attention networks under different IL methods (PPO, ACKTR
(Wu et al., 2017) and A2C (Mnih et al., 2016)). We can observe
that ASN performs best under all three IL approaches in terms
of average rewards. This is because ASN can learn to choose
appropriate actions against other agents at different time steps to
maximize the damage on others. However, the vanilla network
just mixes all information together which makes it difficult to identify and take advantage of the ac-
tion semantics between agents, thus it achieves lower performance than ASN. Since the information
is mixed initially, although the attention and entity-attention networks try to learn which information

9

Published as a conference paper at ICLR 2020

should be focused on more, it is hard to distinguish which part of the information is more useful,
thus achieving lower performance than ASN.

Can ASN recognize the best actions from multiple ones? We further investigate whether ASN
can efficiently exploit different action semantics between agents and enable an agent to identify the
best attack option (i.e., an attack that causes the most damage) with the distance between the agent
and its opponent changing. Figure 10 shows the average attack damage of each attack option in
Neural MMO when the distance between agent i and its opponent j is less than or equal to 2 (dij ≤
2). The best attack option is “Melee” within this distance range since it causes the maximum damage
among three attacks. We can see that both ASN-M1 agent and ASN-M cause higher total damage
than other methods, and ASN-M1 agent causes the highest total damage on average. However, the
attention network only causes average total damage of approximately 1.5, the entity-attention and
vanilla network only cause average total damage of approximately 1.0 due to the lower probability of
selecting the best attack action “Melee”. This is because two kinds of ASN have a larger probability
to select the best attach option “Melee” than other two networks, thus causing larger total damage.
Similar results on other distance ranges (di,j ≤ 4 , di,j ≤ 10) can be found in the appendix that
ASN always causes higher total damage than other networks.

5 CONCLUSION AND FUTURE WORK

We propose a new network architecture, ASN, to facilitate more efficient multiagent learning by
explicitly investigating the semantics of actions between agents. To the best of our knowledge, ASN
is the first to explicitly characterize the action semantics in MASs, which can be easily combined
with various multiagent DRL algorithms to boost the learning performance. ASN greatly improves
the performance of state-of-the-art DRL methods compared with a number of network architectures.
In this paper, we only consider the direct action influence between any of two agents. As future work,
it is worth investigating how to model the action semantics among more than two agents. Another
interesting direction is to consider the action semantics between agents in continuous action spaces.

6 ACKNOWLEDGEMENTS

This work is supported by the National Natural Science Foundation of China (Grant Nos.: 61702362,
U1836214, 61432008) and Science and Technology Innovation 2030 - “New Generation Artificial
Intelligence” Major Project No.(2018AAA0100905).

REFERENCES

Lucian Bu, Robert Babu, Bart De Schutter, et al. A comprehensive survey of multiagent reinforce-
ment learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 38(2):156–172, 2008.

Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative multia-
gent systems. In Proceedings of the Fifteenth National Conference on Artificial Intelligence and
Tenth Innovative Applications of Artificial Intelligence Conference, pp. 746–752, 1998.

Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence, 2018.

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using
deep reinforcement learning. In Proceedings of the 16th International Conference on Autonomous
Agents and Multiagent Systems, Workshops, pp. 66–83, 2017.

Eric A Hansen, Daniel S Bernstein, and Shlomo Zilberstein. Dynamic programming for partially
observable stochastic games. In Proceedings of the Nineteenth National Conference on Artificial
Intelligence, volume 4, pp. 709–715, 2004.

Yann-Michaël De Hauwere, Sam Devlin, Daniel Kudenko, and Ann Nowé. Context-sensitive reward
shaping for sparse interaction multi-agent systems. Knowledge Eng. Review, 31(1):59–76, 2016.

10

Published as a conference paper at ICLR 2020

Junling Hu and Michael P. Wellman. Multiagent reinforcement learning: Theoretical framework and
an algorithm. In Proceedings of the Fifteenth International Conference on Machine Learning, pp.
242–250, 1998.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tas-
sa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In
Proceedings of the 4th International Conference on Learning Representations, 2016.

Michael L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
Proceedings of the Eleventh International Conference on Machine Learning, pp. 157–163, 1994.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In Advances in Neural Information
Processing Systems, pp. 6379–6390, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Proceedings of the 33rd International conference on machine learning, pp. 1928–
1937, 2016.

Kwang-Kyo Oh, Myoung-Chul Park, and Hyo-Sung Ahn. A survey of multi-agent formation con-
trol. Automatica, 53:424–440, 2015.

OpenAI. Openai five. https://blog.openai.com/openai-five/.

Gregory Palmer, Karl Tuyls, Daan Bloembergen, and Rahul Savani. Lenient multi-agent deep rein-
forcement learning. In Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems, pp. 443–451, 2018.

Liviu Panait, Karl Tuyls, and Sean Luke. Theoretical advantages of lenient learners: An evolutionary
game theoretic perspective. J. Mach. Learn. Res., 9:423–457, 2008.

Mitchell A. Potter and Kenneth A. De Jong. A cooperative coevolutionary approach to function
optimization. In Proceedings of International Conference on Evolutionary Computation, pp. 249–
257, 1994.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent rein-
forcement learning. In Proceedings of the 35th International Conference on Machine Learning,
pp. 4292–4301, 2018.

Mikayel Samvelyan, Tabish Rashid, Christian Schröder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob N. Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. pp. 2186–2188, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of go without human knowledge. Nature, 550(7676):354, 2017.

Amanpreet Singh, Tushar Jain, and Sainbayar Sukhbaatar. Individualized controlled continuous
communication model for multiagent cooperative and competitive tasks. In Proceedings of the
7th International Conference on Learning Representations, 2019.

Adrian Sosic, Wasiur R. KhudaBukhsh, Abdelhak M. Zoubir, and Heinz Koeppl. Inverse reinforce-
ment learning in swarm systems. In Proceedings of the 16th Conference on Autonomous Agents
and MultiAgent Systems, pp. 1413–1421, 2017.

11

https://blog.openai.com/openai-five/

Published as a conference paper at ICLR 2020

H Eugene Stanley. Phase transitions and critical phenomena. Clarendon Press, Oxford, 1971.

Joseph Suarez, Yilun Du, Phillip Isola, and Igor Mordatch. Neural mmo: A massively mul-
tiagent game environment for training and evaluating intelligent agents. arXiv preprint arX-
iv:1903.00784, 2019.

Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with backpropaga-
tion. In Advances in Neural Information Processing Systems, pp. 2244–2252, 2016.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning based on team reward. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, pp. 2085–2087, 2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Andrea Tacchetti, H. Francis Song, Pedro A. M. Mediano, Vinı́cius Flores Zambaldi, János Kramár,
Neil C. Rabinowitz, Thore Graepel, Matthew Botvinick, and Peter W. Battaglia. Relational for-
ward models for multi-agent learning. In Proceedings of the 7th International Conference on
Learning Representations, 2019.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In Proceedings of the 33rd International
Conference on Machine Learning, pp. 1995–2003, 2016.

David H. Wolpert and Kagan Tumer. Optimal payoff functions for members of collectives. Advances
in Complex Systems, 4(2-3):265–280, 2001.

Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba. Scalable trust-region
method for deep reinforcement learning using kronecker-factored approximation. In Advances in
neural information processing systems, pp. 5279–5288, 2017.

Y Yang, R Luo, M Li, M Zhou, W Zhang, and J Wang. Mean field multi-agent reinforcement
learning. In Proceedings of the 35th International Conference on Machine Learning, volume 80,
pp. 5571–5580, 2018.

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin,
Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, Murray Shanahan, Victoria
Langston, Razvan Pascanu, Matthew Botvinick, Oriol Vinyals, and Peter Battaglia. Deep re-
inforcement learning with relational inductive biases. In Proceedings of the 7th International
Conference on Learning Representations, 2019.

12

Published as a conference paper at ICLR 2020

A APPENDIX

I. StarCraft II

State Description In StarCraft II, we follow the settings of previous works (Rashid et al., 2018;
Samvelyan et al., 2019). The local observation of each agent is drawn within their field of view,
which encompasses the circular area of the map surrounding units and has a radius equal to the
sight range. Each agent receives as input a vector consisting of the following features for all units
in its field of view (both allied and enemy): distance, relative x, relative y, and unit type. More
details can be found at https://github.com/MAS-anony/ASN or https://github.
com/oxwhirl/smac.

Network Structure

The details of different network structures for StarCraft II are shown in Figure 11. The vanilla
network (Figure 11(a)) of each agent i contains two fully-connected hidden layers with 64 units
and one GRU layer with 64 units, taking oit as input. The output layer is a fully-connected layer
outputs the Q-values of each action. The attention network (Figure 11(b)) of each agent i contains
two isolated fully-connected layers with 64 units, taking oit as input and computing the standard
attention value for each dimension of the input. The following hidden layer is a GRU with 64
units. The output contains the Q-values of each action. The entity-attention network (Figure 11(c))
is similar to that in Figure 11(b), except that the attention weight is calculated on each oi,jt . The
dueling network (Figure 11(d)) is the same as vanilla except for the output layer that outputs the
advantages of each action and also the state value. Our homogeneous ASN (Figure 11(e)) of each
agent i contains two sub-modules, one is the O2Ai which contains two fully-connected layers with
32 units, taking oit as input, following with a GRU layer with 32 units; the other is a parameter-
sharing sub-module which contains two fully-connected layers with 32 units, taking each oi,jt as
input, following with a GRU layer with 32 units; the output layer outputs the Q-values of each
action.

�� ������ �����

�� ������ �����

�� ������ �����

#" ������ �����

#$%

����

����

Vanilla

(a) Vanilla

�� ������ ����

#$%

�� ������ ����

����������������	��������

���

���

�� ������ ����

#" ������ ����
	��������

���������������
�����
	�� �����

(b) Attention

�� ������ �����

�� ������ �����

#" ������ �����

#$%
#+(,',- ������ �����

	�������� ������

������	��������

����

#$% #$%,./0 #$%,*1$% #$%,/��� ��� � �

�

#$%,./01$% ���

2$%,*�� �2$%,/� �
�

�

#$%,*
3 #$%,/

3
�� � �

����

Entity Attention

(c) Entity-attention

�� ������ �����

�� ������ �����

�� ������ �����

#" ������ �����

#$%

& ������ �����

����

����

Dueling

(d) Dueling

�� ������ �����

�� ������ �����

�� ������ �����

#"'(������ �����

#$%

�� ������ �����

�� ������ �����

�� ������ �����

#$%,*

������������
	������
����

����

����

����

����

������������	��

(e) Homogeneous ASN

Figure 11: Various network structures on a StartCraft II 8m map.

13

https://github.com/MAS-anony/ASN
https://github.com/oxwhirl/smac
https://github.com/oxwhirl/smac

Published as a conference paper at ICLR 2020

Table 2: Hyperparameter settings for StarCraft II.

Hyperparameter Value

Batch-size 32

Replay memory size 5000

Discount factor(γ) 0.99

Optimizer RMSProp

Learning rate 5e− 4

α 0.99

e 1e− 5

Gradient-norm-clip 10

Action-selector ε-greedy

ε-start 1.0

ε-finish 0.05

ε-anneal-time 50000 step

target-update-interval 200

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Step ×10

6

0.5
0.6
0.7
0.8
0.9

W
in

 ra
te

s

Vanilla
ASN

Figure 12: Win rates of ASN-QMIX and vanilla-QMIX under 5m StarCraft II map.

Parameter Settings

Here we provide the hyperparameters for StarCraft II † shown in Table 2.

Experimental results

The following results present the performance of ASN-QMIX and vanilla-QMIX under different
StarCraft II maps with adding the manual rule (forbids the agent to choose the invalid actions).

II. Neural MMO

State Description

In a 10x10 tile (where each tile can be set as different kinds, e.g., rocks, grass), there are two teams
of agents (green and red), each of which has 3 agents. At the beginning of each episode, each agent
appears on any of the 10x10 tiles. The observation of an agent is in the form of a 43-dimensional
vector, in which the first 8 dimensions are: time to live, HP, remaining foods (set 0), remaining
water (set 0), current position (x and y), the amount of damage suffered, frozen state (1 or 0); the
rest of 35 dimensions are divided equally to describe the other 5 agents’ information. The first 14
dimensions describe the information of 2 teammates, following with the description of 3 opponents’
information. Each observed agent’s information includes the relative position(x and y), whether it is
a teammate(1 or 0), HP, remaining foods, remaining water, and the frozen state.

†More details can be found at https://github.com/MAS-anony/ASN

14

https://github.com/MAS-anony/ASN

Published as a conference paper at ICLR 2020

Each agent chooses an action from a set of 14 discrete actions: stop, move left, right, up or down,
and three different attacks against one of its opponent (“Melee” with the attack distance is 2, the
amount of damage is 5; “Range” with the attack distance is 4, the amount of damage is 2; “Mage”
with the attack distance is 10, the amount of damage is 1).

Each agent gets a penalty of −0.1 if the attack fails. They get a −0.01 reward for each tick and a
−10 penalty for being killed. The game ends when a group of agents dies or the time exceeds a fixed
period, and agents belonging to the same group receive the same reward, which is the difference of
the total number of HPs between itself and its opposite side.

Network Structure

The details of vanilla, attention, entity-attention networks for Neural MMO are shown in Figure
13(a-c) which contains an actor network, and a critic network. All actors are similar to those for
StarCraft II in Figure 11, except that the GRU layer is excluded and the output is the logic probability
of choosing each action. All critics are the same as shown in Figure 13(a). Since in Neural MMO,
each agent has multiple actions that have direct influence on each other agent, i.e., three kinds of
attack options, we test two kinds of ASN variants: one (Figure 13(d)) is the Multi-action ASN we
mentioned in the previous section that shares the first layer parameters among multiple actions; the
other (Figure 13(e)) is the basic homogeneous ASN that does not share the first layer parameters
among multiple actions.

Parameter Settings

Here we provide the hyperparameters for Neural MMO shown in Table 3.

Experimental results

The above results present the average attack damage of each attack option under the different dis-
tance ranges between the agent and its opponent.

15

Published as a conference paper at ICLR 2020

	� ������ #��"!

	� ������ #��"!

#" ������ #��"!

#$%

����

����

Actor ����

	� ������ #��"!

	� ������ #��"!

& ������ #��"!

#$%

����

����

Critic
�������

(a) Vanilla

	� ������ #��"!

#" ������ #��"!

#$%

	� ������ #��"!

����������	�����""��"���

����

����

Actor
�""��"���

����

(b) Attention

	� ������ #��"!

#" ������ #��"!

#$%
#'()*)+ ������ #��"!

�""��"���������"

�"�"$��""��"���

����

#$% #$%,-./ #$%,01$% #$%,.�
� ��� � �

�

#$%,-./1$% ���

2$%,0�� �2$%,.� �
�

�

#$%,0
3 #$%,.

3
�� � �

����

Actor
�"�"$ �""��"���

����

(c) Entity-attention

�� ������ #��"!

�	 ������ #��"!

#"*(������ #��"!

#$%

�� ������ #��"!

�	 ������ #��"!

#$%,0

������������
	������
����

���� ����

���� �� ��#�"

�	 ������ #��"!
����

�	 ������ #��"!

����

���� �� ��#�" ���� �� ��#�"

���� ����

Actor
�#�"����"��� ���

����

(d) Multi-action ASN

�� ������ #��"!

�	 ������ #��"!

#"*(������ #��"!

#$%

�	 ������ #��"!

�	 ������ #��"!

#$%,0

������������
	������
����

���� ����

���� �� ��#�"

�	 ������ #��"!
����

�	 ������ #��"!

����

���� �� ��#�" ���� �� ��#�"

���� ����

Actor
��!�� ���

�	 ������ #��"! �	 ������ #��"!

���� ����

����

(e) Homogeneous ASN

Figure 13: Various network structures on Neural MMO.

16

Published as a conference paper at ICLR 2020

Table 3: Parameters of all algorithms.

(a) PPO

Hyperparameter Value

Number of processes 1

Discount factor(γ) 0.99

Optimizer Adam

Learning rate 7e− 4

e 1e− 5

Entropy term coefficient 1e-2

Value loss coefficient 0.5

Actor loss coefficient 1

(b) A2C

Hyperparameter Value

Number of processes 5

Discount factor(γ) 0.99

Optimizer RMSProp

Learning rate 7e− 4

α 0.99

e 1e− 5

Gradient-norm-clip 0.5

Entropy term coefficient 1e-2

Value loss coefficient 0.5

Actor loss coefficient 1

(c) ACKTR

Hyperparameter Value

Number of processes 5

Discount factor(γ) 0.99

Optimizer KFACOptimizer

Learning rate 0.25

Momentum 0.9

Stat decay 0.99

KL clip 1e-3

Damping 1e-2

Weight decay 0

Entropy term coefficient 1e-2

Value loss coefficient 0.5

Actor loss coefficient 1

17

Published as a conference paper at ICLR 2020

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

A
vg

 D
am

ag
e

ASN-M1 ASN-M Attention Entity-
Attention

Vanilla

Melee
Range
Mage
Total

(a) dij ≤ 2

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

A
vg

 D
am

ag
e

ASN-M1 ASN-M Attention Entity-
Attention

Vanilla

(b) dij ≤ 4

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

A
vg

 D
am

ag
e

ASN-M1 ASN-M Attention Entity-
Attention

Vanilla

(c) dij ≤ 10

Figure 14: The average probabilities of choosing each attack under different distance dij for various
network architectures combined with PPO in Neural MMO.

0

1

2

3

4

5

A
vg

 D
am

ag
e

ASN-M1 ASN-M Attention Entity-
Attention

Vanilla

Melee
Range
Mage
Total

(a) dij ≤ 2

0

1

2

3

4

5

A
vg

 D
am

ag
e

ASN-M1 ASN-M Attention Entity-
Attention

Vanilla

(b) dij ≤ 4

0

1

2

3

4

5

A
vg

 D
am

ag
e

ASN-M1 ASN-M Attention Entity-
Attention

Vanilla

(c) dij ≤ 10

Figure 15: The average probabilities of choosing each attack under different distance dij for various
network architectures combined with A2C in Neural MMO.

0

1

2

3

4

5

A
vg

 D
am

ag
e

ASN-M1 ASN-M Attention Entity-
Attention

Vanilla

Melee
Range
Mage
Total

(a) dij ≤ 2

0

1

2

3

4

5

A
vg

 D
am

ag
e

ASN-M1 ASN-M Attention Entity-
Attention

Vanilla

(b) dij ≤ 4

0

1

2

3

4

5

A
vg

 D
am

ag
e

ASN-M1 ASN-M Attention Entity-
Attention

Vanilla

(c) dij ≤ 10

Figure 16: The average probabilities of choosing each attack under different distance dij for various
network architectures combined with ACKTR in Neural MMO.

18

	Introduction
	Background
	The Action Semantics Network Architecture
	Motivation
	ASN
	ASN-MARL

	Simulations
	StarCraft II
	Neural MMO

	Conclusion and Future Work
	Acknowledgements
	Appendix

