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ABSTRACT

Predicting not only the target but also an accurate measure of uncertainty is im-
portant for many applications and in particular safety-critical ones. In this work
we study the calibration of uncertainty prediction for regression tasks which often
arise in real-world systems. We show that the existing definition for calibration
of a regression uncertainty (Kuleshov et al., 2018) has severe limitations in distin-
guishing informative from non-informative uncertainty predictions. We propose a
new definition that escapes this caveat and an evaluation method using a simple
histogram-based approach inspired by reliability diagrams used in classification
tasks. Our method clusters examples with similar uncertainty prediction and com-
pares the prediction with the empirical uncertainty on these examples. We also
propose a simple scaling-based calibration that preforms well in our experimental
tests. We show results on both a synthetic, controlled problem and on the object
detection bounding-box regression task using the COCO (Lin et al., 2014) and
KITTI (Geiger et al., 2012) datasets.

1 INTRODUCTION

Figure 1: Regression with random uncertainty (independent of actual uncertainty) almost perfectly
calibrated by the method proposed in (Kuleshov et al., 2018), when the expected and observed
confidence level are identical. As anything can be perfectly calibrated, this calibration definition
becomes uninformative. The task is object bounding box regression, using the KITTI dataset (Geiger
et al., 2012). See details in Section 4.2.

Regression problems arise in many real-world machine learning tasks. To name just a few: Depth
from a single image (Eigen et al., 2014), Object localization and Acoustic localization (Vera-Diaz
et al., 2018). Many of these tasks are solved by deep neural networks used within decision making
pipelines which require the machine learning block not only to predict the target but to also output
its confidence in the prediction. For example, the commonly used Kalman-Filter tracking algorithm
(Blackman, 2004) requiring variance estimation for the observed object’s location estimation. In
addition, we may want the system to output a final uncertainty, reflecting real-world empirical
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probabilities, to allow a safety-critical system such as a self-driving car agent to take appropriate
actions when confidence drops. In practice, using the confidence in the localization of objects has
been shown to improve the non-maximal suppression stage and consequently the overall detection
performance (He et al., 2018). Similarly, (Feng et al., 2018) describe a probabilistic 3D vehicle
detector for Lidar point clouds that can model both classification and spatial uncertainty.

To provide uncertainty estimation, each prediction produced by the machine learning module during
inference should be a distribution over the target domain. There are several approaches for achieving
this, most common are Bayesian neural networks (Gal, 2016; Gal & Ghahramani, 2016), ensembles
(Lakshminarayanan et al., 2017) and outputting a parametric distribution directly (Nix & Weigend,
1994). Bayesian neural networks place a probability distribution over the network parameters, which
is translated to an uncertainty in the prediction, providing a technically sound approach but with
overhead at inference time. In the direct approach, outputs of the network represent the parameters of
the output distribution for either discrete (Niculescu-Mizil & Caruana, 2005) or continuous (Nix &
Weigend, 1994) distributions. Note that the direct approach naturally captures the aleatoric uncertainty
(inherent observation noise), but captures less the epistemic uncertainty (uncertainty in the model)
(Kendall & Gal, 2017). We chose as a test case for our calibration method, the direct approach for
producing uncertainty: we transform the network output from a single scalar to a Gaussian distribution
by taking the scalar as the mean and adding a branch that predicts the standard deviation (STD) as in
(Lakshminarayanan et al., 2017). While this is probably the simplest form, it is commonly used in
practice, and our analysis is applicable to more complex distributions as well as other approaches.

Adjusting the output distributions to match the observed empirical ones via a post process is called
uncertainty calibration. It was shown that modern deep networks tend to be over confident in their
predictions (Guo et al., 2017). The same study revealed that for classification, Platt Scaling (Platt,
1999), a simple scaling of the pre-activation of the last layer, achieves well calibrated confidence
estimates (Guo et al., 2017). In this paper we show that a similar simple scaling strategy, applied to
the standard deviations of the output distributions, can calibrate regression algorithms as well.

One major question is how to define calibration for regression, where the model outputs a continuous
distribution over possible predictions. In recent work (Kuleshov et al., 2018) suggested a definition
based on credible intervals where if we take the p percentiles of each predicted distribution the output
should fall below them for exactly p percent of the data. Based on this definition the authors further
suggested a calibration evaluation metric and re-calibration method. While this seems very sensible
and has the advantage of considering the entire distribution, we found serious flaws in this definition.
The main problem arises from averaging over the whole dataset. We show, both empirically and
analytically, that one can calibrate using this evaluation metric practically any output distribution,
even one which is entirely uncorrelated with the empirical uncertainty as can be seen in Fig. 1. We
elaborate on this property of the evaluation method described in (Kuleshov et al., 2018) in Section 2
and show empirical evidence in Section 4.

We propose a new simple definition for calibration for regression, which is closer to the standard one
for classification. Calibration for classification can be viewed as expecting the output for every single
data point to correctly predict its error, in terms of misclassification probability. In a similar fashion,
we define calibration for regression by simply replacing the misclassification probability with the
mean square error. Based on this definition, we propose a new calibration evaluation metric similar
to the Expected Calibration Error (ECE) (Naeini et al., 2015), which groups examples into interval
bins with similar uncertainty, and then measures the discrepancy between each bin’s parameters
and the parameters of the empirical distribution within the bin. An additional dispersion measure
completes our set of diagnostic tools by revealing cases where the individual uncertainty outputs are
uninformative as they all return similar values.

Finally, we propose a calibration method where we re-adjust the predicted uncertainty, in our case
the outputted Gaussian variance, by minimizing the negative-log-likelihood (NLL) on a separate
re-calibration set. We show good calibration results on a real-world dataset using a simple parametric
model which scales the uncertainty by a constant factor. As opposed to (Kuleshov et al., 2018),
we show that our approach cannot calibrate predicted uncertainty that is uncorrelated with the real
uncertainty, as one would expect.

To summarize, our main contributions are:
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• Revealing the fundamental flaws in the current definition of calibrated regression uncertainty
(Kuleshov et al., 2018)

• A new proposed definition for calibrated uncertainty in regression tasks

• A simple scaling method that can reduce the calibration error similar to temperature scaling
for classification (Guo et al., 2017), evaluated on large scale real world vision datasets.

1.1 RELATED WORK

While shallow neural networks are typically well-calibrated (Niculescu-Mizil & Caruana, 2005),
modern, deep networks, albeit superior in accuracy, are no-longer calibrated (Guo et al., 2017).
Uncertainty calibration for classification is a relatively studied field. Calibration plots or Reliability
diagrams provide a visual representation of uncertainty prediction calibration (DeGroot & Fienberg,
1983; Niculescu-Mizil & Caruana, 2005) by plotting expected sample accuracy as a function of
confidence. Confidence values are grouped into interval bins to allow computing the sample accuracy.
A perfect model corresponds to the plot of the identity function. The Expected Calibration Error
(ECE) (Naeini et al., 2015) summarizes the reliability diagram by averaging the error (gap between
confidence and accuracy) in each bin, producing a single value measure of the calibration. Similarly,
the Maximum Calibration Error (MCE) (Naeini et al., 2015) measures the maximal gap. Negative
Log Likelihood (NLL) is a standard measure of a model’s fit to the data (Hastie et al., 2001) but
combines both accuracy of the model and its uncertainty estimation in one measure. Based on these
measures, several calibration methods were proposed, which transform the network’s confidence
output to one that will produce a calibrated prediction. Non-parametric transformations include
Histogram Binning (Zadrozny & Elkan, 2001), Bayesian Binning into Quantiles (Naeini et al., 2015)
and Isotonic Regression (Zadrozny & Elkan, 2001) while parametric transformations include versions
of Platt Scaling (Platt, 1999) such as Matrix Scaling and Temperature Scaling (Guo et al., 2017). In
(Guo et al., 2017) it is demonstrated that the simple Temperature Scaling, consisting of a one scaling-
parameter model which multiplies the last layer logits, suffices to produce excellent calibration on
many classification data-sets.

In comparison with classification, calibration of uncertainty prediction in regression, has received
little attention so far. As already described, (Kuleshov et al., 2018) propose a practical method
for evaluation and calibration based on confidence intervals and isotonic regression. The proposed
method is applied in the context of Bayesian neural networks. In recent work (Phan et al., 2018), the
authors follow (Kuleshov et al., 2018) definition and method of calibration for regression, but use a
standard deviation vs. MSE scatter plot, somewhat similar to our approach, as a sanity check.

2 CONFIDENCE-INTERVALS BASED CALIBRATION

We next review the method for regression uncertainty calibration proposed in (Kuleshov et al., 2018)
which is based on confidence intervals, and highlight its shortcomings. We refer to this method
in short as the “interval-based” calibration method. We start by introducing basic notations for
uncertainty calibration used throughout the paper.

Notations. Let X,Y ∼ P be two random variables jointly distributed according to P and X × Y
their corresponding domains. A dataset {(xt, yt)}Tt=1 consists of i.i.d samples of X,Y . A forecaster
H : X → P(Y) outputs per example xt a distribution pt ≡ H(xt) over the label space, where P(Y )
is the set of all distributions over Y . In classification tasks, Y is discrete and pt is a multinomial
distribution, and in regression tasks in which Y is a continuous domain, pt is usually a parametric
probability density function, e.g. a Gaussian. For regression, we denote by Ft : Y → [0, 1] the CDF
corresponding to pt.

According to (Kuleshov et al., 2018) a forecaster in a regression setting H is calibrated if:∑T
t=1 I{yt ≤ F−1t (p)}

T

T→∞−−−−→ p,∀p ∈ [0, 1] (1)

.
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Intuitively this means that the yt is smaller than F−1t (p) with probability approximately p, or that the
predicted CDF matches the empirical one as the dataset size goes to infinity. This is equivalent to

PX,Y

(
Y ≤ [F (X)]

−1
(p)
)

= p, ∀p ∈ [0, 1] (2)

Where F (X) represents the CDF corresponding to H(X). This notion is translated by (Kuleshov
et al., 2018) to a practical evaluation and calibration methodology. A re-calibration dataset S =
{(xt, yt)}Tt=1 is used to compute the empirical CDF value for each predicted CDF value p ∈ Ft (yt):

P̂ (p) =
|{yt|Ft (yt) ≤ p, t = 1 . . . T}|

T
(3)

The calibration consists of fitting a regression function R (i.e. isotonic regression) , to the set of
points {(p, P̂ (p))}Tt=1. For diagnosis the authors suggest a calibration plot of {(p, P̂ (p))} at equally
spaced values of p.

We start by intuitively explaining the basic limitation of this methodology. From Eq. 3 P̂ is non-
decreasing and therefore isotonic regression finds a perfect fit. Therefore, the modified CDF R ◦ Ft
will satisfy P̂ (p) = p on the re-calibration set, and the new forecaster is calibrated up to sampling
error. This means that perfect calibration is possible no matter what the CDF output is, even for
output CDFs which are statistically independent of the actual empirical uncertainty. We note that this
might be acceptable when the uncertainty prediction is degenerate, e.g. all output distributions are
Gaussian with the same variance, but this is not the case here. We also note that the issue is with the
calibration definition not the re-calibration, as we show with the following analytic example.

We next present a concise analytic example in which the output distribution and the ground truth
distribution are independent, yet fully calibrated according to Eq. 2. Consider the case where the
target has a normal distribution yt ∼ N (0, 1) and the network outputH(xt) has a Cauchy distribution
with zero location parameter and random scale parameter γt independent of xt and yt, defined as:

zt ∼ N (0, 1) (4)
γt = |zt|

H(xt) = Cauchy(0, γt)

Following a known equality for Cauchy distributions, the CDF output of the network Ft(y) = F
(
y
γt

)
,

where F is the CDF of a Cauchy distribution with zero location and 1 scale parameters. First we note
that ytγt and yt

zt
, i.e. with and without the absolute value, have the same distribution due to symmetry.

Next we recall the well known fact that the ratio of two independent normal random variables is
distributed as Cauchy with zero location and 1 scale parameters (i.e. yt

zt
∼ Cauchy(0, 1)). This

means that probability that Ft(yt) ≡ F ( ytγt ) ≤ p is exactly p (recall that F is a Cauchy(0, 1) CDF).
In other words, the prediction is perfectly calibrated according to the definition in Eq. 2, even though
the scale parameter was random and independent of the distribution of yt.

While the Cauchy distribution is a bit unusual due to the lack of mean and variance, the example does
not depend on it and it was chosen for simplicity of exposition. It is possible to prove the existence of
a distribution whose product of two independent samples is Gaussian (Thorin, 1977) and replace the
Cauchy with a Gaussian, but it is an implicit construction and not a familiar distribution.

3 OUR METHOD

We present a new definition for calibration for regression, as well as several evaluation measures
and a reliability diagram for calibration diagnosis, analogous to the ones used for classification (Guo
et al., 2017). The basic idea is that for each value of uncertainty, measured through standard deviation
σ, the expected mistake, measured in mean square error (MSE), matches the predicted error σ2. This
is similar to classification with MSE replacing the role of mis-classification error. More formally, if
µ(x) and σ(x)2 are the predicted mean and variance respectively then we consider a regressor well
calibrated if:
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∀σ : Ex,y
[
(µ(x)− y)2|σ(x)2 = σ2

]
= σ2. (5)

In contrast to to (Kuleshov et al., 2018) this does not average over points with different values of
σ2 (at least in the definition, for practical measures some binning is needed), but only considers the
mean and variance and not the entire distribution. We claim that this captures the desired meaning of
calibration, i.e. for each individual example you can correctly predict the expected mistake.

Since we can expect each exact value of σ2 in our dataset to appear exactly once, we evaluate eq.
3 empirically using binning, same as for classification. Formally, let σt be the standard deviation
of predicted output PDF pt and assume without loss of generality that the examples are ordered by
increasing values of σt. We also assume for notation simplicity that the number of bins, N , divides
the number of examples, T . We divide the indices of the examples to N bins, {Bj}Nj=1, such that:
Bj = {(j− 1) · TN + 1, . . . , j · TN }. Each resulting bin therefore represents an interval in the standard
deviation axis: [mint∈Bj{σt},maxt∈Bj{σt}]. The intervals are non-overlapping and their boundary
values are increasing.

To evaluate how calibrated the forecaster is, we compare per bin j two quantities as follows. The root
of the mean variance:

mVAR(j) =

√√√√ 1

|Bj |
∑
t∈Bj

σ2
t (6)

And the empirical root mean square error:

RMSE(j) =

√√√√ 1

|Bj |
∑
t∈Bj

(yt − ŷt)2 (7)

where ŷt is the mean of the predicted PDF (pt)

For diagnosis, we propose a reliability diagram which plots the RMSE as function of the mVAR
as shown in Figure 4. The idea is that for a calibrated forecaster per bin the mVAR and the observed
RMSE should be approximately equal, and hence the plot should be close to the identity function.
Apart from this diagnosis tool which as we will show is valuable for assessing calibration, we propose
additional scores for evaluation.

Expected Normalized Calibration Error (ENCE). For summarizing the error in the calibration we
propose the following measure:

ENCE =
1

N

N∑
j=1

|mVAR(j)−RMSE(j)|
mVAR(j)

(8)

This score averages the calibration error in each bin, normalized by the bin’s mean predicted variance,
since for larger variance we expect naturally larger errors. This measure is analogous to the expected
calibration error (ECE) used in classification.

STDs Coefficient of variation (CV ). In addition to the calibration error we would like to measure the
dispersion of the predicted uncertainties. If for example the forecaster predicts a single homogeneous
uncertainty measure for each example, which matches the empirical uncertainty of the predictor for
the entire population, then the ENCE would be zero, but the uncertainty estimation per example
would be uninformative. Therefore, we complement the ENCE measure with the Coefficient of
Variation (cv) for the predicted STDs which measures their dispersion:

cv =

√∑T
t=1(σt−µσ)2

T−1

µσ
(9)

where µσ = 1
T

∑T
t=1 σt. Ideally the cv should be high indicating a disperse uncertainty estimation

over the dataset. We propose using the ENCE as the primary calibration measure and the cv as a
secondary diagnostic tool.
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3.1 CALIBRATION

To understand the need for calibration, let us start by considering a trained neural network for
regression, which has very low mean squared error (MSE) on the train data. We now add a separate
branch that predicts uncertainty as standard deviation, which together with the original network
output interpreted as the mean, defines a Gaussian distribution per example. In this case, the NLL
loss on the train data can be minimized by lowering the standard deviation of the predictions, without
changing the MSE on train or test data. On test data however, MSE will be naturally higher. Since
the predicted STDs remain low on test examples, this will result in higher NLL and ENCE values for
the test data. This type of miss-calibration is defined as over-confidence, but opposite or mixed cases
can occur depending on how the model is trained.

Negative log-likelihood. NLL is a standard measure for a probabilistic model’s quality (Hastie et al.,
2001). When training the network to output classification confidence or a regression distribution, it is
commonly used as the objective function to minimize. It is defined as:

NLL = −
T∑
t=1

log ([H(xt)](yt)) (10)

We propose using the NLL on the re-calibration set as our objective for calibration, and the reliability
diagram, together with its summary measures (ENCE , cv) for diagnosis of the calibration. In the
most general setting a calibration function maps predicted PDFs to calibrated PDFs: R(Θ) : P(Y)→
P(Y) where θ is the set of parameters defining the mapping.

Optimizing calibration over the re-calibration set is obtained by finding θ yielding minimal NLL:

arg min
θ

(
−

T∑
t=1

log ([R(pt; Θ)] (yt))

)
. (11)

To ensure the calibration generalization, the diagnosis should be made on a separate validation set.
Multiple choices exist for the family of functions R belongs to. We propose using STD Scaling,
(in analogy to Temperature Scaling (Guo et al., 2017)), which essentially multiplies the STD of
each predicted distribution by a constant scaling factor s. If the predicted PDF is that of a Gaussian
distribution,N (µ, σ2), then the re-calibrated PDF isN (µ, (s·σ)2). Hence, in this case the calibration
objective (Eq. 11) is:

arg min
s

(
−

T∑
t=1

log

(
1√

2πsσt
e

(yt−µt)2

2s2σ2t

))
= arg min

s

(
T

2
log(s)−

T∑
t=1

(yt − µt)2

2s2σ2
t

)
(12)

If the original predictions are overconfident, as common in neural networks, then the calibration
should set s > 1. This is analogous to Temperature Scaling in classification: a single multiplicative
parameter is tuned to fix over or under-confidence of the model, and it does not modify the model’s
final prediction since µt remains unchanged.

More complex calibration methods. Histogram binning and Isotonic Regression applied to the
STDs can be also used as calibration methods. We chose STD scaling since: (a) it is less prone to
overfit the validation set, (b) it does not enforce minimal and maximal STD values, (c) it is easy to
implement and (d) empirically, it produced good calibration results.

4 EXPERIMENTAL RESULTS

We next show empirical results of our approach on two tasks: a controlled synthetic regression
problem and object detection bounding box regression. In both tasks we examine the effect of
outputting trained and random uncertainty on the calibration process. In all training and optimization
stages we use an SGD optimizer with learning rate 0.001 and 0.9 momentum.

4.1 SYNTHETIC REGRESSION PROBLEM

Experimenting with a synthetic regression problem enables us to control the target distribution Y and
to validate our method. We randomly generate T = 50, 000 input samples {xt, yt}Tt=1. We sample xt
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from X ∼ Uniform[0.1, 1] and yt from Y ∼ N (xt, x
2
t ). This way, the target standard deviation of

sample xt is xt. We train a fully-connected network with four layers and a ReLU activation function
on the generated training set using the smooth L1 loss function. We then add a separate branch with
its own four layers to predict uncertainty.

Per example xt, The original network output is considered the mean of a Gaussian distribution (µt) and
the additional output as its standard deviation (σt). For numerical stability, as suggested by (Kendall
& Gal, 2017), the network outputs log(σ2). In the random uncertainty experiment, per example, the
standard deviation representing the uncertainty is randomly drawn from Uniform[1, 10]. For the
predicted uncertainty experiment, the uncertainty branch is optimized using the NLL loss (Eq. 10)
while the rest of the network weights are fixed. By fixing the remaining weights, the predicted mean
(µt) remains unchanged making sure we do not calibrate using over-confident predictions. We then
re-calibrate as described in Sec. 3.1 on a separate re-calibration set consisting of 6, 000 samples.
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Figure 2: Reliability diagrams for the synthetic regression problem with random uncertainty
estimation. Reliability diagram using our method before (a) and after (b) calibration. (c) Before and
after calibration based on the confidence intervals method (Kuleshov et al., 2018).
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Figure 3: Synthetic regression problem with predicted uncertainty. (a) ground truth vs. predicted
standard deviation. (b) Reliability diagram before and after calibration. (c) Reliability diagram using
confidence intervals (Kuleshov et al., 2018) before and after calibration.

As one can see in Fig. 2 the confidence interval method can almost perfectly calibrate the random
independent uncertainty estimation, as the expected and observed confidence level match and we get
the desired identity curve. This phenomenon is extremely undesirable for safety critical applications
where falsely relying on uninformative uncertainty can lead to severe consequences. It is important
to note that the perfect calibration did not arise from giving the same fixed σ for each prediction,
which would be acceptable, as the isotonic regression modifies the probabilities directly and not the
outputted standard deviations. In contrast you can see how our method can only marginally improve
the calibration and one can clearly see, both from the ENCE value and visually from the graph, that
the predictions are not calibrated. In the trained experiment, in which uncertainty is predicted by the
network, we can see in Fig. 3 that the network almost perfectly learns the correct uncertainty, as
expected from the problem simplicity and the high data availability. In this case both methods do not
change the calibration results much. The important thing to note is that our calibration and evaluation
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method can easily differentiate between both cases, the random and predicted uncertainty, while they
are almost exactly the same after calibrating with (Kuleshov et al., 2018).

4.2 BOUNDING BOX REGRESSION FOR OBJECT DETECTION

In computer vision, an object detector outputs per input image a set of bounding boxes, each
commonly defined by 5 outputs: classification confidence and four positional outputs (tx, ty, tw, th)
representing its (x,y) position, width and height. We show results on each positional output as an
independent regression task using the R-FCN detector (Dai et al., 2016). To this architecture we
add an additional uncertainty branch predicting the corresponding STDs for each regression output,
(σx, σy, σw, σh). Thus, the network outputs a Gaussian distribution per regression task. For training
the network weights we use the entire Common objects in context (COCO) dataset (Lin et al., 2014).
For uncertainty calibration and validation we use two separate subsets of the KITTI (Geiger et al.,
2012) object detection benchmark dataset, which consists of road scenes. Training the uncertainty
output on one dataset and performing calibration on a different one reduces the risk of over-fitting
and increases the calibration validity. See Appendix A for further details.

We initially train the network without the additional uncertainty branch as in (Dai et al., 2016), while
the uncertainty branch weights are randomly initialized. Therefore, in this state which we refer to
as untrained uncertainty, random uncertainties are assigned to each example. We then train the
uncertainty branch by minimizing the NLL loss (Eq. 10) on the training set, freezing all network
weights but the uncertainty head for 1K training iterations with 6 images per iteration. Freezing the
rest of the network ensures that the additional uncertainty estimation does not sacrify accuracy. The
result of this stage is the network with predicted uncertainty. Finally, we train the NLL loss for 1K
additional training iterations on the re-calibration set, to optimize the single scaling parameter s, and
obtain the calibrated uncertainty.

Figure 4 shows the resulting reliability diagrams before calibration (predicted uncertainty) and after
(calibrated uncertainty) for all four positional outputs, on the validation set. As can be observed from
the monotonously increasing curve before calibration, the output uncertainties are indeed correlated
with the empirical ones. Additionally, since the curves are entirely above the ideal one, the predictions
are over confident. Using the learned scaling factor s which varies between 1.1 and 1.2, the ENCE
is significantly reduced as shown in table 1. The cv remains unchanged after calibration since it is
invariant to uniform scaling of the output STDs (Eq. 9). For untrained uncertainty, Fig. 1 shows
that after calibration, just as with the synthetic dataset, using the interval-based method, uncertainty
is almost perfectly calibrated. In contrast, our method reveals the lack of correlation between the
predictions and empirical uncertainties before/ after applying calibration (See results in Appendix A).
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Figure 4: Reliability diagrams for bounding box regression on the KITTI validation set before
and after calibration. Each plot compares the empirical RMSE and the root mean variance
(mVAR) in each bin. Grey dashed line indicates the ideal calibration line. See Sec. 4.2 for details.

5 CONCLUSIONS

Calibration, and more generally uncertainty prediction, are critical parts of machine learning especially
in safety-critial applications. In this work we exposed serious flaws in the current approach to define
and evaluate calibration for regression problem. We also proposed an alternative approach and showed
that even a very simple re-calibration method can lead to significant improvement in real-world
applications. Our proposed method for calibration effectively takes into consideration the first two
moments when comparing the output and real distributions. An interesting direction for future
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Table 1: Evaluation of uncertainty calibration for the bounding box regression tasks on the KITTI
validation dataset.

Before calibration After calibration
ENCE Cv ENCE Cv

tx 17.2% 0.38 8.3% 0.38

ty 25.0% 0.31 4.7% 0.31

tw 24.7% 0.36 8.4% 0.36

th 12.5% 0.25 5.7% 0.25

research would be extending our method to handle more complex distributions using, for example,
higher-order moments.
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A BOUNDING BOX REGRESSION FOR OBJECT DETECTION: ADDITIONAL
DETAILS AND RESULTS

In this section we provide additional details on the network architecture and datasets used for bounding
box prediction as well as additional results using random predictions. As our base architecture we
use the R-FCN detector (Dai et al., 2016) with a ResNet-101 backbone (He et al., 2016). The R-FCN
regression branch outputs per region candidate a 4-d vector that parametrizes the bounding box as
tb = (tx, ty, tw, th) following the accepted parametrization in (Girshick, 2015). We use these outputs
in our experiments as four seperate regression outputs. To this architecture we add an uncertainty
branch, identical in structure to the regression branch, that outputs a 4-d vector (u1, u2, u3, u4) ≡
(log(σ2

x).log(σ2
y), log(σ2

w), log(σ2
h)), each representing the log variance of the Gaussian distributions

of the corresponding output. As before, the original regression output represents the Gaussian mean
(i.e. µx = tx).

For training the network weights we use the entire Common objects in context (COCO) dataset (Lin
et al., 2014). As stated previously we use a two-stage training approach. We first train the original R-
FCN network, and then freeze all weights and train only the additional uncertainty prediction branch.
In this way we train uncertainty prediction without sacrificing the network’s accuracy. Note however
that our method completely holds if the entire network is trained at once (e.g. if confidence estimation
importance is such that accuracy may be marginally sacrified). For uncertainty calibration we use
the KITTI (Geiger et al., 2012) object detection benchmark dataset, which consists of road scenes.
We divide the KITTI dataset into a re-calibration set used for training the calibration parameters
(∼ 6K images), and a validation set (∼ 1.5K images, 37K object instances). The classes in the
KITTI dataset represent a small subset of the classes in the COCO dataset, and therefore we reduce
our model training on COCO to the 9 relevant classes (e.g. car, person) and map them accordingly to
the KITTI classes.

Figure 5 shows the reliability diagrams for the four bounding box regression outputs with untrained
uncertainty before and after we apply our calibration method. As with the synthetic dataset, the
graphs immediately reveal the disconnect between the random values and the empirical uncertainties.
In all the cases the calibration results in a highly non-calibrated uncertainty according to our metrics.
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Figure 5: Reliability diagrams for bounding box regression with untrained uncertainty estima-
tion for the bounding box regression outputs (tx, ty, tw, th). Top row: before calibration, bottom
row: after calibration.
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