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Abstract

Natural language understanding research has recently shifted towards complex Ma-
chine Learning and Deep Learning algorithms. Such models often outperform their simpler
counterparts significantly. However, their performance relies on the availability of large
amounts of labeled data, which are rarely available. To tackle this problem, we propose a
methodology for extending training datasets to arbitrarily big sizes and training complex,
data-hungry models using weak supervision. We apply this methodology on biomedical re-
lation extraction, a task where training datasets are excessively time-consuming and expen-
sive to create, yet has a major impact on downstream applications such as drug discovery.
We demonstrate in two small-scale controlled experiments that our method consistently
enhances the performance of an LSTM network, with performance improvements compa-
rable to hand-labeled training data. Finally, we discuss the optimal setting for applying
weak supervision using this methodology.

1. Introduction

The amount of scientific papers in the biomedical field is ever increasing. Published papers
contain important information, however, encoded in unstructured text, making it difficult
for researchers to locate it. Extracting this information in a structured format and storing
it within a knowledge base can have a remarkable impact on a variety of important tasks,
ranging from drug design to detecting adverse drug effects. During the past decade, there
have been efforts towards automation of Information Extraction [Wei et al., 2016, Krallinger
et al., 2017a, Wei et al., 2015], due to the fact that manual annotation of documents from
domain experts is labor-intensive to perform on a large scale [Krallinger et al., 2017b].

The broader focus of this work is to help automation of semantic triple extraction from
biomedical abstracts. We apply our methodology on two different relations: (a) Regula-
tions, indicating that a Chemical increases (up-regulates) or decreases (down-regulates) the
production of a Protein (CPR) and (b) Chemically Induced Diseases (CID). Both relations
are particularly important for areas such as drug design, safety, and discovery, as it will
enable researchers to filter out or select chemical substances with specific properties, faster
[Krallinger et al., 2017b, Li et al., 2016].



Relation Subject Object ‘ Dataset
Regulation (CPR)  Chemical Protein/Gene | BioCreative VI - CHEMPROT

Chemically-Induced . . . .
Disease (CID) Chemical Disease BioCreative V - CDR

Table 1: Relationships and datasets

Extracting semantic triples is a structured Information Extraction problem. First, one
needs to identify the entities of interest (subjects & objects) in the unstructured text, op-
tionally distinguishing them with a unique identifier, and then build a classifier to recognize
whether the text describes the target relationship (Relation Extraction).

Our main focus lies on the subtask of relation extraction. As this is a complex and
challenging task, increasing the capacity of the learning algorithm is justified, but should
coincide with an appropriate increase in the training dataset size [Goodfellow et al., 2016].
However, annotating training datasets for this task is an excessively labor-intensive process.
To tackle this problem, we propose a new methodology based on weak supervision, which
combines and incorporates ideas from semi-supervised and ensemble learning. The outline
of this methodology is the following: (a) We train multiple base learners on a small labeled
dataset and use them to predict the labels of a bigger unlabeled dataset; (b) we then use a
denoiser to derive weak labels for the unlabeled set using the predictions of the base learners;
and (c) we finally train a strong meta-learner using weak supervision on the (previously)
unlabeled set.

Our main contributions include: (a) proposing a detailed methodology specific to rela-
tion extraction, which can be adapted and generalized to most supervised learning tasks;
(b) demonstrating the effectiveness and usability of this methodology in a small-scale con-
trolled experiment; (c) investigating the effect of various denoising methods on the overall
system behavior and performance.

To ensure reproducibility of our results and encourage the research community to further
experiment with this methodology, we release the code in our GitHub repository!.

2. Related work

In this section we discuss literature related to three topics: information extraction, relation
extraction from biomedical text, and semi-supervised and ensemble learning methods.

2.1 Information extraction

Information extraction is typically modeled as a fully-, semi- or un-supervised learning prob-
lem. Unsupervised methods, such as Open Information Extraction [Banko et al., 2007], do
not make use of any training data, but they can only be used for unstructured Information
Extraction. On the contrary, fully-supervised methods rely on labeled examples, which
have to be manually annotated. Semi-supervised or bootstrapping methods are similar to
our approach, as they try to leverage both labeled and unlabeled data. One of the first
bootstrapping algorithms was DIRPE [Brin, 1998], which starts from some seed (positive)

1. https://github.com/littlewine/snorkel-ml/



examples, extracts patterns from them and use them for finding new positive examples.
Other semi-supervised algorithms include Snowball [Agichtein and Gravano, 2000], Know-
ItAll [Etzioni et al., 2004] and TextRunner [Banko et al., 2007]. Recent approaches also
consider contextual data augmentation, which paraphrases the training samples [Kobayashi,
2018]. All of the aforementioned work focuses on bootstrapping new data to avoid excessive
manual annotation, however, different from this work, it does not use the combination of
learning algorithms to do so.

Distant supervision [Mintz et al., 2009] is a method to generate weak labels for unlabeled
data on relation extraction problems. Specifically, it uses Knowledge Bases (KB) for the
creation of weak (positive and negative) labels instead of pre-trained classifiers. Despite the
creation of many noisy examples, this approach has proven to be beneficial on large-scale (or
web-scale) datasets, as no human annotation is required. The core idea of weakly-labeled
datasets remains the same, but is achieved by different means. Our work is complementary
to distant supervision, as such algorithms can constitute weak classifiers in our framework.

2.2 Relation extraction from biomedical text

Most of the research on biomedical relation extraction has been motivated by BioCreative
competitions and their corresponding annotated documents (datasets). BioCreative V (CID
task) focused on extracting Chemically-induced Diseases on a document-level [Wei et al.,
2015]. The best performing team implemented an ensemble of Support Vector Machines
[Xu et al., 2015], while more recent research demonstrated that extending the training
set using distant supervision improves the performance [Peng et al., 2016]. A following
competition (BioCreative VI - CPR task) focused on identifying relations between Chemicals
and Proteins (or Genes) on a sentence level [Krallinger et al., 2017a]. The best performing
team implemented an ensemble of LSTM, CNN and SVMs, using majority voting and
stacking [Peng et al., 2018]. The second highest score was achieved using a Support-Vector
Machines algorithm with a rich set of features, while other approaches using solely Deep
Neural Networks demonstrated overfitting problems [Mehryary et al., 2018].

Those results highlight the importance of the lack of training data in this particular
domain and demonstrate the suitability of ensemble methods for improving generalization,
especially when Deep Neural Networks are used. To that end, our work aims to combine the
advantages of those techniques with semi-supervised learning, a subject which to the best
of our knowledge has not been investigated for this task. Further, we provide a framework
where all of the aforementioned work can be used as an input.

2.3 Semi-supervised and ensemble learning methods

Both semi-supervised and ensemble learning techniques aim to improve the performance of
Machine Learning models. Ensemble learning typically reduces high variance by combining
multiple learners, while semi-supervised learning tries to take advantage of unlabeled data to
improve generalization. Although ensembles have been studied thoroughly and used in many
applications, their combination with semi-supervised learning has not. Their combination
has not been thoroughly studied, despite indications that they can be beneficial to each
other [Zhou, 2011]. Ensembles can enhance semi-supervised learning by providing multiple
views and therefore allow the system to perform better, earlier (using less data). On the



other hand, expanding the dataset with unlabeled data is likely to increase diversity between
the learners. The first system of this kind proposed was co-training [Blum and Mitchell,
1998], a paradigm where two distinct (independent) learning algorithms take advantage of
unlabeled data. Following research indicated that complete independence was too luxurious
for a real-world setting and the method can even succeed without it, given an expansion on
the underlying data distribution [Nigam and Ghani, 2000, Balcan et al., 2005].

Recent work uses expert-defined lexicons and an auxiliary natural language processing
system to create noisy annotations, and incorporate co-training to reduce noise and augment
signal in distant supervision. Without using any manually labeled data, their system learned
to accurately annotate data samples in functional genomics and outperform state-of-the-art
supervised methods trained on tens of thousands of annotated examples [Grechkin et al.,
2017).

Tri-training [Zhou and Li, 2005] is an extension of co-training to three learners. In this
case, when two learners agree on the label of a new data point, they teach (re-train) the
third learner using this example. Co-forest [Li and Zhou, 2007] is an extension to even
more learners, where the decision on whether an unlabeled example should be added in the
re-training stack is made by an ensemble system, using all learners.

The fundamental difference between our methodology and those earlier described, is
that the learners included in the ensemble system (base learners) are not used for the final
prediction; they are only used as a mean for generating the weak labels. For this reason,
we do not aim to re-train or improve the base learners. This allows us to use all of the
unlabeled data, whereas in the paradigms above only a few examples annotated with high
confidence were added to the stack for re-training.

Last, a different line of research has focused on learning language representations and
tuning these representations towards specific machine learning tasks using a small labeled
set [Peters et al., 2018, Clark et al., 2018, Devlin et al., 2018]. This work is complementary
to our work, and it could comprise our weak classifiers.

3. Background on Weak Supervision and Data Programming

In this section, we describe weak supervision and the data programming paradigm, which
have both heavily influenced the development of our methodology.

Weak supervision revolves around the idea of training models using labels of questionable
quality [Dehghani et al., 2017a,b, Mintz et al., 2009]. Data programming is a paradigm for
programmatic creation of such training sets, focusing on the scenario where no ground-truth
labels are available [Ratner et al., 2016, 2017b]. It can be outlined in the following steps:

(1) Provide weak supervision sources: We define K weak supervision sources and encode
them into Labeling Functions (LF). For each unlabeled data point, those sources can either
provide a label or abstain from voting. Typically, a LF might consist of a textual pattern,
a crowd-worker or a distant supervision resource. However, it is possible to incorporate any
other kind of weak source which can provide training labels. We apply the LFs over M
unlabeled data points and derive a (possibly incomplete) vote matrix A € RE*M,

(2) Denoising: Our objective is to derive M weak labels from A , which are as close
as possible to the (unknown) true labels. As a denoiser, data programming uses a prob-
abilistic graphical Generative Model (GM), relying on agreements and disagreements. It



incorporates as trainable parameters: the probability (a) that a LF will label a data point
and (b) that this label is correct (accuracy). The structure of the GM is a hyperparame-
ter, representing correlations of the Labeling Functions and can be estimated automatically
[Ratner et al., 2016, 2017a, Bach et al., 2018, 2017]. To train the GM without access to the
ground truth, data programming maximizes the marginal log-likelihood that the observed
votes occur under the Generative Model (for all possible ground-truth labels):

W = argmazylog Z P,(AY)

Further, we use the predicted label distributions Y; = P;(Y;|A) as probabilistic weak labels.

(8) Train a noise-aware discriminative model: We use the generated labels for training
and use this model as the final predictor. During training, we minimize a noise-aware
variant of the loss function [ with respect to the probabilistic weak labels Y:

M

0 = argming Z EY/ [1(ho(Xi), )]
i=1 YT

4. Methodology

Based on the concepts of weak supervision and data programming, we propose a method-
ology for semi-supervised learning, with the intent to capitalize the advantages of multiple
learners. In contrast to the scenario where no ground-truth labels are available, we assume
that a gold-labeled training set (Dp) is available, but its size is insufficient for training a
complex (and therefore more data-hungry) model. We advocate that it would be benefi-
cial to augment additional, lower quality training data to scale the dataset size. Instead
of relying on heuristics or crowd-sourced labels, we use machine learning models of lower
complexity as weak supervision sources. This comes with the major advantage of adapting
an already implemented pipeline with little or no additional effort to similar tasks.

4.1 Data collection

In terms of data, we assume the existence of a labeled training set Dp of size m, relevant
to our task 7. Additionally to that, we require an unlabeled, arbitrarily large dataset Dy
of size M > m, with the requirement of being drawn from the same distribution as Dp.
Other requirements are a validation set Dy for hyperparameter tuning and a held-out test
set D for evaluation purposes.

4.2 Constructing diverse base learners

We use Dp to train K base learners on solving T. As in a typical ensemble learning sce-
nario, we try to maximize their individual performance while making them capture different
”’views”’ of the data. To produce multiple learners we rely on varying hyperparameters and
design choices throughout the relation extraction pipeline, which results in the creation of
162 base learners. The most important design choices are:

(1) Sentence pruning: It is often the case, that words appearing within a sentence might
be irrelevant to the entities of interest. For this reason, one can keep only the words between



the two entities of interest or additionally include words appearing within a certain sized
window before/after them. More complex approaches incorporating syntactic information
can also be considered. One way to do so is to construct the dependency-based parse
tree and include only words contained within the Shortest Path connecting the entities of
interest. In this work we investigate (a) Whole sentences, (b) window of 0, (¢) window of
5, and (d) Shortest Dependency Path (SDP).

(2) Sequential features: Additionally to the simple bag-of-words approach, it is also
possible to include contiguous sets of tokens as features. In our approach, we use up to
tri-grams.

(3) Text representation: To convert our corpus to a numerical representation, we use
token occurrences (binary counts) or TF-IDF weights.

(4) Machine learning algorithms: When the feature matrix is ready, we employ differ-
ent machine learning algorithms, including Logistic Regression, Support Vector Machines
(using Gaussian and linear kernels), Random Forest Classifiers, Long-Short Term Memory
Networks and Convolutional Neural Networks. It is important to note, that when the last
two models (LSTMs & CNNs) were used, some of the aforementioned feature engineering
steps, were not applicable.

4.3 Base learner selection

After producing the base learners, we select only a subset of them. This is necessary due
to computational cost and the fact that we should avoid including many similar classifiers
in a disagreement-based method. Hence, our objective is to maximize both the individual
performance of the base learners and their diversity. Since this is complex and still an open
issue [Zhou, 2011], we resort to a simple method, where we discard all classifiers having a
lower performance than a certain threshold (evaluated on Dy ), while maximizing diversity.
Setting a performance threshold is also desirable, due to the fact that the base learners
where automatically created with limited hyperparameter tuning. We set this threshold
above the random guess baseline, but low enough to allow less accurate and more diverse
classifiers to be part of the ensemble.

To select the most diverse classifiers, we employ a similarity-based clustering method.
Using the predictions of the K base learners on Dy, we construct a Kx K similarity matrix.
In this matrix, each row and column refers to a base learner, while each cell consists of
the corresponding pairwise inter-annotator agreement rates (Cohen Kappa coefficient). We
perform K-means clustering [MacQueen et al., 1967] on this matrix and pick the base
learners closest to the cluster centroids as most representative of their cluster. To pick an
appropriate number of clusters (and therefore base learners), we refer to the silhouette score
coefficient [Rousseeuw, 1987].

4.4 Producing weak labels

We predict the labels of Dy using the selected base learners and obtain a KaxM (binary)
prediction matrix, containing the ”"knowledge” our base learners have distilled from Dp.
Consequently, we use a denoiser to reduce the vote matrix into M weak labels. We use
the probabilistic Generative Model of data programming (described in Section 3) and select
the hyperparameters using the validation dataset. Additionally, we consider two simpler



denoisers to unify the label matrix: (a) a Majority Vote denoiser producing binary weak
labels and (b) an Average Vote denoiser calculating an unweighted average of all base learner
votes, therefore producing marginal weak labels.

4.5 Training a meta-learner

In the last step, we use a discriminative model (as described in Section 3) as a meta-learner.
In practice, when training the meta-learner with weak supervision, we trade label quality
for quantity. This can be proven to be beneficial in cases where the performance of the
meta-learner is upper-bounded by the training set size. By using high-capacity models such
as Deep Neural Networks as meta-learners, we allow them to learn their own features and
hopefully build a more accurate representation by relying on a much larger, even though
noisy, training dataset.

5. Experimental Setup

To perform our experiments we use part of the functionality of Snorkel [Ratner et al.,
2017b,a], a framework build for relation extraction with data programming and weak su-
pervision.

5.1 Datasets

In our experiments, we use the official BioCreative CHEMPROT and CDR datasets [Krallinger
et al., 2017a, Li et al., 2016], which consist of annotated PubMed 2 abstracts (split in a
training, development and test set — Table 2).

Dataset ‘ # docs # candidates
CHEMPROT (training) 1020 9917
CHEMPROT (development) | 612 6227
CHEMPROT (test) 800 8285

CDR (training) 900 8272

CDR (development) 100 888

CDR (test) 500 4620

Table 2: Basic dataset statistics

As described in Subsection 4.1, our methodology requires three gold-labeled datasets,
along with a held-out test set. In both cases, we use the original test sets as the held-out
test set (D) and report the final scores there. We merge and shuffle the original training
and development sets to create the remaining three datasets: We use one part to train the
base learners (Dp) and another part for validation and hyperparameter selection (Dy).
We use the remaining documents as if they were unlabelled, Dy. The restructured dataset
statistics are available in Table 3.

Using this setup, we can make sure that two important requirements are satisfied: (a)
there is no bias during the document selection process, i.e. we ensure that the training,

2. https://www.ncbi.nlm.nih.gov/pubmed/



validation, test and unlabeled dataset are drawn from the same distribution, and (b) all
documents have gone through the same pre-processing steps., i.e. labeled datasets have
manually annotated entities, while a randomly drawn unlabeled dataset would require ap-
plying some Named Entity Recognition algorithm. We do so to better control the effect
of such choices on the results of our algorithm. Another advantage with this controlled
approach is that we are able to compare the performance of the meta-learner trained with
weak supervision to the optimal performance, which would be achieved if the ground-truth
labels were available.

5.2 Text pre-processing and named entity recognition

Most of the steps in our text pre-processing pipeline are performed by SpaCy (v1.0), an
open-source library for Natural Language Processing. More specifically, SpaCy performs the
following tasks in our pipeline: Sentence splitting, Tokenization, and Dependency parsing.
Both datasets contain manually annotated Named Entity Tags, which are required for the
Candidate Extraction step (Subsection 5.3).

5.3 Candidate extraction

Given all entities of interest within the text, we look for relationship candidates. We do not
consider cross-sentence relations and proceed only with candidates found within the same
sentence. We use Snorkel [Ratner et al., 2017b] for candidate extraction and mapping the
candidates to their ground-truth labels.

5.4 Entity replacement

A relationship clasifier is important to understand the Natural Language, rather than mem-
orize the pairs which interact with each other. For this reason, we replace all entities of
interest using the tokens "ENTITY1" and '"ENTITY?2’ for the entities we want to predict.
We also replace additional entities of the same type within the same sentence with the
tokens "CHEMICAL’, ’‘GENE’ or 'DISEASE’ accordingly.

5.5 Meta-learner selection & training

In our experiments, we use a simple bi-directional Long-Short Term Memory network, which
is one of the most commonly used and better performing Deep Neural Networks, on tasks
related to Natural Language. We use randomly initialized word embeddings and perform
random under-sampling to keep an equal class balance. We also try different hyperparameter
settings, including different dropout values (0, 0.25 and 0.5) and training epochs (1-30). We
make the selection based the validation dataset Dy/.

6. Research Questions and Experimental Design

In this section, we form the research questions that we aim to answer, accompanied by our
motivation to explore them. We discuss more details regarding RQ1 and RQ2 in Subsections
6.1 and 6.2, respectively.



RQ1 Can we enhance biomedical relation extraction when using Machine Learning classi-
fiers as sources of weak supervision?

RQ2 Which is the optimal setting for using weak supervision on this task?

6.1 Machine learning classifiers as weak supervision sources

Related literature provides theoretical warranties, that in this setting and given specific re-
quirements, adding weakly labeled data will improve the performance of the meta-learner [Rat-
ner et al., 2016]. Additionally, as the amount of weakly labeled data increases, the perfor-
mance of the meta-learner is expected to improve quasi-linearly (almost as good) compared
to the scenario where the ground-truth labels were provided [Ratner et al., 2017a]. Those
requirements include that the weak supervision sources should have accuracy better than
random guess, overlap and disagree with each other enough (so that their accuracy can be
estimated) while capturing different 'views’ of the problem (diversity). In other words, when
combined they should be able to model the problem space sufficiently, so that meaningful
weak labels can be produced.

However, to the best of our knowledge, Machine Learning classifiers have not been used
so far as weak supervision sources in such a setting, nor in this specific task. Therefore, it is
unclear whether there is a diverse and sufficiently big set of base learners, that satisfies those
conditions after being trained on the same dataset. This is a critical question, which actively
affects the usability of the described methodology. To evaluate whether weak supervision
helps, we conduct several experiments under different setups and compare the performance
of the meta-learner when trained on three different modes: (a) full-supervision on Dp, (b)
weak-supervision on Dy, (c¢) weak-supervision on Dy combined with full-supervision on
Dp. Additionally, we evaluate whether weak-supervision can achieve results comparable to
full-supervision, after training the meta-learner using all ground-truth labels (Dy + Dp).

6.2 Optimal setting for applying this methodology

Number of base learners: Selecting the optimal number of classifiers to be used as base
learners is not a straightforward task. Naturally, we can construct only a few top-performing
learners and as we add more of them, we start to sacrifice performance in favor of diversity
[Zhou, 2011]. To examine this, we gradually increase the number of Base Learners while
benchmarking the performance of the weak labels and the meta-learner.

Comparison of various denoising methods: The denoising component is fundamental
to this method, as it dictates the quality of the weak labels the final learner will be trained
on. We use the three denosing methods described in Subsection 4.4 and assess the quality
of the results.

Meta-learner performance under different weak label distributions: The denoiser
can produce either binary or marginal (non-binary) weak labels. Additionally, marginal
weak labels might be following different distributions, ranging from extremely U-shaped
(almost binary) to more uniformly distributed. We perform an error analysis to investigate
their effect on the training and the final performance of the meta-learner.



7. Results and Analysis

In Subsection 7.1 we answer RQ1, that is whether supervised machine learning classifiers
can be used as weak classifiers, while in Subsection 7.2 we answer RQ2, that is what is the
optimal setting for applying weak supervision.

7.1 Weak classifiers

To select the base learners, we use the strategy described on Subsection 4.3. We experiment
with different number of base learners and benchmark results in intervals of 5 and where
the silhouette scores are maximized (Table 4). Specifically, we report performance of (a)
the Base Learners (in detail in Appendix A), (b) the weak labels/marginals produced by
the denoisers and (c) the meta-learner when trained on those weak labels.

=~ || training training training datapoints
n
Z || subset #docs datapoints (undersampled) Il score
- Dp 400 3840 2060 44.7%
~ | Du 926 8221 4516 54.0%
© Dp+ Dy 1326 12061 6576 55.3%
Dp 300 2860 2156 49.5%
% Dy 600 5576 4166 55.1%
Dp+ Dy 900 8436 6322 57.4%
Table 3: LSTM performance with gold labels
4
< Base Learners F1 score of weak labels F1 score of meta-learner (LSTM)
# | min mean max H Majority &  Generative | using M.V. using AVG  using GM
performance (F1) AVG Vote Model labels marginals ~ marginals
5 | 53.33 54.15 55.73 58.91 61.07 50.11 53.56 52.40
o 10 | 44.43 53.94 60.8 63.04 62.22 52.66 56.45 52.93
o || 13| 44.43 5348 60.8 63.09 61.28 54.16 58.03 52.65
© 15| 4443 53.16 61.3 63.11 61.48 51.01 56.32 53.40
20 | 4443 53.39 61.3 63.57 61.91 50.05 55.60 54.73
5 | 49.70 51.85 56.21 53.36 56.31 54.29 53.68 52.27
6 | 49.70 51.60 56.21 55.95 54.15 52.14 53.48 54.23
A 10 | 49.85 51.44 56.21 56.90 54.09 53.28 54.80 54.61
O | 134985 51.21 56.21 56.71 55.37 53.41 54.75 53.84
15 | 49.84 51.17 56.21 57.21 56.18 53.91 55.23 54.69
20 | 49.70 51.60 56.95 57.30 56.71 54.86 55.44 55.68

Table 4: Performance achieved with weak supervision

We compare the results achieved with weak supervision on Dy (Table 4), versus full-
supervision (Table 3). It is evident that training the meta-learner with weak labels (Dy)



and a 2 — 2.5x increase in the training set size always performs better compared to training
with the fewer, gold labels (Dp). Performance is further improved, when we also include
the available ground-truth labels (Dp+ D). This proves that we can successfully augment
additional training data using weak supervision, as long as they are drawn from the same
distribution.

Additionally, weak supervision can often achieve a performance comparable to full-
supervision; in other words almost as good as if we were using the ground-truth labels.
Interestingly enough, there are even cases where weak supervision achieves slightly better
results. However, those differences are minor and not statistically significant, due to high
variance on the meta-learners’ performance. We also recognize that whenever this happened,
the under-sampled training set size of the final learner in weak supervision was bigger, due
to the fact that undersampling was based on the weak labels instead of the real ones.

Another noteworthy observation, is that a simple Majority Vote often outperforms the
meta-learner. However, this is an expected result and does not undermine the importance
of our results, as we can verify from Table 3 that this model (LSTM) cannot outperform
Majority Voting with such a small training dataset, even when gold quality labels are used.

At last, we visualize the learning curves of the meta-learner (starting from the ground-
truth labels) to ensure that the weak labels are meaningful and do actually improve per-
formance. Figures 1b, 1c and 1d indicate an upward trend, while the outlined confidence
intervals indicate that the results are statistically significant. Moreover, we observe that the
F1 score on the training set is always much higher than the test score. This is a sign that
our meta-learner suffers from high variance (overfitting), as the model capacity is far from
being fulfilled. Therefore, additional training data are expected to improve the performance
of the meta-learner.

7.2 Optimal setting

The complexity of the problem and the methodology, along with the small dataset size do
not allow us to draw definite answers in some of the following questions. However, we will
perform an analysis based on our experimental results and discuss our findings.

Number of base learners: We can see from Table 4 that the F'1 score of the weak
Majority Vote labels for 5 learners is the lowest in both experiments. When it comes to
the Generative model weak marginals, we cannot observe any significant pattern, as the
F1 score always deviates within 1.5 & 2.5 points respectively. The performance of the
meta-learner when trained with Average Vote marginals deviates to a certain extent when
more than 10 base learners are used, but always performs better compared to when only 5
base learners are used. Using Generative model marginals, performance seems to slightly
improve as the number of base learners increases, with two exceptions.

Comparison of various denoising methods: In the vast majority of cases, the meta-
learner achieves the best performance when trained with Average Marginals. Generative
Model marginals also seem to improve its performance compared to Majority Vote weak
labels, with one exception. However, it is worth highlighting that GM marginals depend on
hyperparameters, which are chosen based on the F'1 score on a validation dataset. Later on
this section, we argue and demonstrate why this particular measure cannot fully reflect the
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Figure 1: LSTM learning curves

quality of marginal weak labels. Therefore, it is not certain whether we have achieved the
optimal performance in cases where the Generative Model was used as the denoiser.

Performance under different weak label distributions: The denoisers can produce
weak labels which are either binary or marginal (non-binary). We can conclude that
marginal weak labels improve the performance of the meta-learner compared to binary
labels. This is a straightforward comparison, as Majority Vote weak labels always perform
worse than Average marginals while none of them is subject to hyperparameter tuning.

Moreover, we observe that the Generative Model tends to create marginals following
a U-shaped distribution (close to 0 or 1) in contrast to the average marginals, which are
spread more uniformly. This is evident from the error analysis we perform on the validation
set, using a classification boundary of 0.5 (Figures 2a and 2b). In both cases, the amount of
misclassified weak labels and therefore their F1 score is the same. However, it is evident that
Average Vote labels are of higher quality, as most of their misclassified labels are relatively
closer to 0.5. This is inevitable, as the vast majority of the GM marginals are very close to
0 and 1. Furthermore, these figures demonstrate the unsuitability of the F'1 score for the
evaluation of marginal weak labels.

Figure 3 shows how the training loss and validation scores change as we train the LSTM
for more epochs. We can see that when marginal labels are used, the training error remains
relatively high. This is especially true with the Average weak marginals, which are spread
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Figure 3: LSTM training loss and validation score per training epoch

more uniformly. On the contrary, it only takes a few epochs for the LSTM to start predicting
the binary training labels accurately, despite a small delay on the noisy-labeled MV weak
labels. Ultimately, training a classifier using marginal labels can be thought of as a regression
problem. In practice, we ask the model to predict an exact number (the output of the
denoiser) and penalize it every time it fails to do so.

Lastly, we can see that the distributions of predicted logits (on unseen examples) be-
come more spread as the training marginals distributions become more uniform (Figures 4a
and 4b). This is something we would also expect to see when doing regression instead of
classification.

8. Unlabeled dataset expansion

In this section we discuss our efforts to apply our methodology on the CPR task, while
expanding the labeled and unlabeled datasets. We use all of the CHEMPROT documents
(excluding validation and test sets) to train the base learners. To construct Dy, we use



3000 4

2500 4

2000

1500

1000

500 4

0 |
00 0z 04 0e 08 10 0o 02 04 0e 08 10

(a) Generative Model training marginals (b) Average training marginals

Figure 4: Histogram of predicted logits of LSTM

the PubMed API ? and download two different collections: (a) the outgoing citations of
CHEMPROT documents (b) the 25 most similar documents of each CHEMPROT document
(using the PMRA similarity metric [Lin and Wilbur, 2007]). In both cases, the performance
of the meta-learner decreases as we add weakly labeled data, indicating a problem with the
quality of Dy or the generated weak labels. We also observe a predicted class imbalance of
1:14 on the outgoing citations dataset compared to 1:4 on the original, indicating inherently
different dataset distributions. To validate this, we use the t-SNE algorithm [Maaten and
Hinton, 2008] along with features extracted from our best-performing base-learner and
visualize candidate samples drawn only from the original set (Figure 5a) versus samples
drawn from both sets (Figure 5b). It becomes evident that most candidates of the new
dataset lie in specific regions of the 2D space, confirming that it is unsuitable for our use
case. To that end, the best practices of constructing appropriate unlabeled datasets, must
be further investigated.
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Figure 5: tSNE visualization of data

3. https://www.ncbi.nlm.nih.gov/pmc/tools/developers/



9. Conclusions & future work

We have shown that weak supervision is a tool which can be used for enhancing the perfor-
mance of complex models, such as deep neural networks, while utilizing both unlabeled data
and multiple base learners. Additionally, we have shown that the proposed methodology is
practically feasible for the task at hand, as we have succeeded on defining a combination of
base learners, which model the problem space sufficiently and allow us to take advantage
of additional, unlabeled data. This comes under the requirement that the unlabeled data
are drawn from the same domain/distribution as our labeled data, so that our base learners
can generalize and perform adequately on Dy .

In practice, our methodology shifts the human effort from hand-labeling examples to
feature engineering and construction of diverse learners. More importantly, once a satisfac-
tory set of diverse learners is available, we can use this method to scale the training datasets
in arbitrarily high levels while consistently improving the performance over the supervised
learning paradigm. Moreover, the same pipeline can be re-used on similar tasks with the
only requirement of providing the appropriate datasets. On the contrary, in the typical
supervised learning paradigm, we would have to repeatedly hand-label large datasets.

Despite demonstrating the usability of our method using a controlled, small-scale dataset,
it is crucial to further explore the requirements of constructing a large enough unlabelled
dataset and perform the same experiments there. That would likely improve the meta-
learner performance further (which is currently upper-bounded by the small dataset size)
and allow us to draw stronger conclusions on the research questions of Subsection 6.2. Ad-
ditionally it would allow us to inspect how performance improves with the increase of Dy
in a different scale of magnitude and if there seems to be a certain performance threshold,
which we cannot surpass using weak supervision. Our preliminary experiments demonstrate
that collecting an appropriate unlabeled dataset given a labeled one is a challenging task
itself, along with the definition of “appropriate”, and semi-supervised algorithms should
not take the existence of an appropriate unlabeled dataset for granted.

Further, it would be very important to conclude on a more appropriate metric than the
F1 score for the evaluation of marginal weak labels. Currently, the absence of an appropriate
metric prevents us from drawing conclusions directly from the weak labels, without having
to introduce an additional step (train the meta-learner). This would also allow us to select
the optimal hyperparameters of the Generative Model and could have a significant impact
upon the final performance.

Other areas for further investigation include experimenting with the meta-learner (eg.
using pre-trained word embeddings or other model architectures) and defining a more ap-
propriate selection method for the Base Learners. Last, it would be interesting to examine
how this system would behave if the Base Learners abstained from voting on the examples
they are less certain about. One could simply delete a percentage of the votes which are
closer to the classification boundary, or perform a probability calibration on the output of
the Base Learners and set a minimum confidence threshold below which they would abstain
voting. This could also provide the Generative Model with a modeling advantage, compared
to unweighted methods (such as Majority Voting), as described in an analysis related to
the trade-offs of weak supervision [Ratner et al., 2017a).
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