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ABSTRACT

Data augmentation by mixing samples, such as Mixup, has widely been used typ-
ically for classification tasks. However, this strategy is not always effective due
to the gap between augmented samples during training and clean samples. This
gap may prevent a classifier from learning the optimal decision boundary and
increases the generalization error. To overcome this problem, we propose an alter-
native framework called Data Interpolating Prediction (DIP). Unlike common data
augmentations, we encapsulate the sample-mixing process in the hypothesis class
of a classifier so that train and test samples are treated equally. We derive the gen-
eralization bound and show that DIP reduces the original Rademacher complexity.
Also, we empirically demonstrate that DIP can outperform existing Mixup.

1 INTRODUCTION

Data augmentation (Simard et al., 1998) has played an important role in training deep neural net-
works for the purpose of preventing overfitting and improving the generalization performance. Re-
cently, sample-mixed data augmentation (Zhang et al., 2018; Tokozume et al., 2018a;b; Verma et al.,
2018; Guo et al., 2019; Inoue, 2018) has attracted attention, where we combine two samples linearly
to generate augmented samples. The effectiveness of this approach is shown especially for image
classification and sound recognition tasks.

Many traditional data augmentations (e.g., slight deformations for image data (Taylor & Nitschke,
2017)) rely on the specific properties of the target domain such as invariances to some transfor-
mations. On the other hand, sample-mixed augmentation can be applied to any dataset due to its
simplicity. However, its effectiveness depends on the specified data structure. There is basically a
difference between original clean samples and augmented samples in that augmented samples are
not drawn from an underlying distribution directly. Thus a classifier trained with sample-mix aug-
mentation may learn the biased decision boundary. In fact, we can easily create a distribution where
sample-mix deteriorates the classification performance (See Fig. 1).

(a) w/o sample-mix (b) Mixup (α = 1) (c) DIP (α = 1, S = 16)

Figure 1: Test accuracy and visualization of decision area on 2d spirals data. The neural networks
are trained either (Left) without sample-mix, (Center) with the existing sample-mix method, or
(Right) with the proposed sample-mix training + output approximation with monte carlo sampling.
Although the standard sample-mix training deteriorates classification performance due to the biased
decision boundary caused by sample-mix training, our method mitigates this problem. See section 2
for the details of a hyper-parameter of beta distribution α and the number of sampling S.
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To overcome this problem, we propose a novel framework called Data Interpolating Prediction
(DIP), where the sample-mixing process is encapsulated in a classifier. More specifically, we con-
sider sample-mix as a stochastic perturbation in a function and obtain the prediction by computing
the expected value over the random variable. Note that we apply sample-mix to both train and test
samples in our framework. This procedure is similar to existing work such as monte carlo dropout
(Gal & Ghahramani, 2016) and Augmented PAttern Classification (Sato et al., 2015). Furthermore,
we establish the generalization error bound for our algorithm via Rademacher complexity and find
that sample-mix helps to reduce the Rademacher complexity of a hypothesis class. Through experi-
ments on benchmark image datasets, we confirm the generalization gap can be reduced by sample-
mix and demonstrate the effectiveness of the proposed method.

2 PROPOSED METHOD

In this section, we propose a novel framework called Data Interpolating Prediction (DIP), where
the sample-mixing process is encapsulated in the hypothesis class of a classifier. Furthermore, we
theoretically establish the generalization bound for proposed method via Rademacher complexity
and show that sample-mix is effective to reduce Rademacher complexity.

2.1 DATA INTERPOLATING PREDICTION

Let X ⊂ Rd and Y ⊂ {0, 1}K be a d-dimensional input space and a K-dimensional one-hot label
space. Denote a classifier by f : Rd → RK . The standard goal of classification problems is to
obtain a classifier which minimizes the classification risk defined as follows:

L(f) := E(x,y)∼p(x,y)[ℓ(f(x),y)], (1)

where p(x,y) is the joint density of an underlying distribution and ℓ is a loss function. Here, we
consider a function where the sample-mixing process is encapsulated as a random variable. We
describe sample-mix between x and x′ with a function ψ : Rd × Rd × R → Rd as follows.

ψ(x,x′, λ) := λx+ (1− λ)x′, (2)

where λ ∈ [0, 1] is a parameter that controls mixing ratio between two samples.

Let (x1,y1), ..., (xn,yn) be i.i.d. samples drawn from p(x,y) , p̂(x) := 1
n

∑n
i=1 δ(x = xi) be

the density of the empirical distribution of {(xi,yi)}ni=1, and h be a specified classifier. Using the
function ψ, we define the deterministic function f : Rd → RK by

f(x) := Eλ∼p(λ),x′∼p̂(x) [h(ψ(x,x
′, λ))] , (3)

where p(λ) is some density function over [0, 1]. Note that the function f corresponds to the base
function h when we set p(λ) = δ(λ = 1).

2.2 PRACTICAL OPTIMIZATION

Since the expected value Eλ∼p(λ),x′∼p(x′)[·] is usually intractable, we train the classifier by mini-
mizing upper the bound of an empirical version of L(f),

L̂(f) :=
1

n

n∑
i=1

ℓ(f(xi),yi) =
1

n

n∑
i=1

ℓ(Eλ∼p(λ),x′∼p̂(x) [h(ψ(xi,x
′, λ))] ,yi). (4)

By applying Jensen’s inequality, we have

L̂(f) ≤ E{λj}S
j=1∼p(λ),{x′

j}S
j=1∼p̂(x)

 1

n

n∑
i=1

ℓ

 1

S

S∑
j=1

h(ψ(xi,x
′
j , λj)),yi

 , (5)

where S is a positive integer which represents the number of sampling to estimate the expectation.
We denote the RHS in equation 5 by L̂upper,S(f). The tightness of the above bound is related to the
value of S as

L̂(f) ≤ L̂upper,S+1(f) ≤ L̂upper,S(f). (6)

We can prove this in a similar manner to Burda et al. (2016). Since limS→∞ L̂upper,S(f) = L̂(f),
larger S helps a precise risk estimation.
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2.3 LABEL-MIXING OR LABEL-PRESERVING

There are two types of sample-mix data augmentation, namely, label-mixing approach and label-
preserving approach. We can show that the objective functions of both approaches are consistent
under some conditions.
Proposition 1. Suppose that ℓ is a linear function with respect to the second argument and p(λ) =
Beta(α, α) for some constant α > 0. Then we have the following equation.

E{(x,y),(x′,y′)}∼p(x,y),λ∼Beta(α,α) [ℓ(h(ψ(x,x
′, λ)), λy + (1− λ)y′)]

= E(x,y)∼p(x,y),x′∼p(x),λ∼Beta(α+1,α) [ℓ(h(ψ(x,x
′, λ)),y)] .

(7)

The proof of this theorem can be found in the blog post1. For many label-mixing ap-
proaches (Zhang et al., 2018; Verma et al., 2018), they use beta distribution for a prior of λ. Thus,
the optimization of such approaches can be considered as a special case of our framework because an
empirical version of RHS in equation 7 corresponds to L̂upper,1 where p(λ) is set to Beta(α+1, α).
We experimentally investigate behaviors of both label-mixing and label-preserving training in Sec. 3.

2.4 GENERALIZATION BOUND VIA RADEMACHER COMPLEXITY

In this section, we present a generalization bound for a function equipped with sample-mix. Let F
be a function class of the specified model and R̂n(F) be the empirical Rademacher complexity of
F . Then we have the following inequality.
Proposition 2. Let {(xi,yi)}ni=1 be i.i.d. random variables drawn from an underlying distribution
with the density p(x,y) and ℓ ◦ F := {ℓ ◦ f | f ∈ F}. Suppose that ℓ is bounded by some constant
B > 0. For any δ > 0, with the probability at least 1− δ, the following holds for all f ∈ F .

E(x,y)∼p(x,y)[ℓ(f(x),y)] ≤
1

n

n∑
i=1

ℓ(f(xi), yi) + 2R̂n(ℓ ◦ F) + 3B

√
log 2

δ

2n
. (8)

The proof of this theorem can be found in the textbook such as Mohri et al. (2012). Now we analyze
a Rademacher complexity of a proposed function class. Let H be a specified function class and
F := {f(x) = Eλ∼p(λ),x′∼p̂(x) [h(ψ(x,x

′, λ))] | h ∈ H} as defined in equation 3. Suppose that
the empirical Rademacher complexity of H can be bounded with some constant CH as follows.

R̂n(H) ≤ CH

n

√√√√ n∑
i=1

∥xi∥22. (9)

We can prove this assumption holds for neural network models in a similar manner to Gao & Zhou
(2016). Then we have the following theorem.
Theorem 1. Suppose that ℓ is a ρ-Lipschitz function with respect to the first argument (0 < ρ <∞)
and H satisfies the assumption in equation 9. Let F = {f : X → R} be a function class of f
defined in equation 3. Then we have the following inequality.

R̂n(ℓ ◦ F) ≤ ρCH√
n

√√√√Cλ
1

n

n∑
i=1

∥xi∥22 + (1− Cλ)

∥∥∥∥∥ 1n
n∑

i=1

xi

∥∥∥∥∥
2

2

, (10)

where Cλ = Eλ

[
λ2 + (1− λ)2

]
.

Note that 1
n

∑n
i=1 ∥xi∥22 ≥ ∥ 1

n

∑n
i=1 xi∥22 always holds from Jensen’s inequality and Cλ ∈ [0, 1].

Thus, sample-mix can reduce the empirical Rademacher complexity of the function class, which
reduces the generalization gap (i.e., L(f) − L̂(f)). For example, when p(λ) = Beta(α + 1, α) in
equation 3, we have Cλ = α+1

2α+1 , which is a monotonically decreasing function with respect to α.
Hence, we claim that larger α can be effective for the smaller generalization gap. We experimentally
analyze the behavior with respect to α in Sec. 3.

1inFERENCe, https://www.inference.vc/mixup-data-dependent-data-augmentation
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3 EXPERIMENTS ON CIFAR DATASETS

In this section, we analyze the behavior of our proposed framework through experiments on CI-
FAR10/100 datasets (Krizhevsky & Hinton, 2009). We evaluated the classification performances
with two neural network architectures, VGG16 (Simonyan & Zisserman, 2015) and PreActRes-
Net18 (He et al., 2016). The details of the experimental setting are described in Appendix B. For our
proposed DIP, output after final fully-connected layer is used as h(x) in equation 3 and the expected
output is approximated by 500 times monte carlo sampling in test stage. As we discussed in Sec. 2.3,
there are two types of optimization process when S = 1. We evaluated both label-preserving and
label-mixing style training. We set p(λ) = Beta(α + 1, α) for label-preserving sample-mix train-
ing and p(λ) = Beta(α, α) for label-mixing sample-mix training. Note that the prediction was
computed with p(λ) = Beta(α+1, α) in test stage even when label-mix style was used for training.

For two baseline methods, we trained a classifier with (i) standard training (without sample-mix)
and (ii) Mixup (Zhang et al., 2018) training (label-mixing style). To evaluate the performances of
these methods, we computed the prediction only from clean samples. We used p(λ) = Beta(α, α)
for Mixup training.

We show the classification performances in Table 1 and generalization gap (i.e., the gap between
train and test performances) in Fig. 2. Due to limited space, the magnified versions of experimental
results are shown in Appendix C. As can be seen in Table 1, our proposed method is likely to
outperform existing Mixup approach.

Remarks: For all approaches including existing Mixup, the larger α leads to the smaller generaliza-
tion gap, which is consistent with the discussion in Sec. 2.4. In addition, we found that the larger S
is likely to enlarge the gap and deteriorate the performance on test samples. It might be because the
variance of the empirical loss function computed by S times sampling plays a role of regularization.

Table 1: Mean misclassification rate and standard error over three trials on CIFAR10/100 datasets.

Model Method CIFAR10 CIFAR100

VGG16

without sample-mix 6.78 (0.057) 28.68 (0.169)
Mixup (α = 1) (Zhang et al., 2018) 5.81 (0.031) 26.58 (0.044)
DIP (α = 1, S = 1, label-mixing) 5.74 (0.100) 25.48 (0.034)
DIP (α = 1, S = 1, label-preserving) 6.05 (0.015) 26.57 (0.155)
DIP (α = 2, S = 4) 5.52 (0.041) 26.73 (0.054)

PreActResNet18

without sample-mix 5.68 (0.015) 25.25 (0.272)
Mixup (α = 1) 4.46 (0.082) 22.58 (0.074)
DIP (α = 1, S = 1, label-mixing) 4.36 (0.079) 21.97 (0.052)
DIP (α = 1, S = 1, label-preserving) 4.83 (0.125) 23.33 (0.052)
DIP (α = 2, S = 4) 4.40 (0.036) 22.04 (0.067)
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(a) VGG16 / CIFAR10
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(b) PreActResNet18 / CIFAR10

Figure 2: Mean generalization gap and standard error over three trials on CIFAR10 dataset. α = 0
indicates standard training without sample-mix.

4 CONCLUSION

In this paper, we proposed a novel framework called Data Interpolating Prediction (DIP), where
sample-mix is encapsulated in the hypothesis class of a classifier. We theoretically established the
generalization error bound via Rademacher complexity and showed that sample-mix is effective to
reduce the generalization gap. Through experiments on CIFAR datasets, we demonstrated that our
approach can outperform existing Mixup data augmentation.
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A PROOFS OF THEOREM 1

In this section, we give a complete proof of theorem 1. The empirical Rademacher complexity is
defined as follows.
Definition 1. Let n be a positive integer, x1, ...,xn be i.i.d. random variables drawn from p(x),
F = {f : X → R} be a class of measurable functions, and ϵ = (ϵ1, ..., ϵn) be Rademacher
random variables, namely, random variables taking +1 and −1 with the equal probabilities. Then
the empirical Rademacher complexity of F is defined as

R̂n(F) = Eϵ

[
1

n
sup
f∈F

n∑
i=1

ϵif(xi)

]
. (11)

We assume that ℓ is a ρ-lipschitz function with respect to first argument. Here we have the following
useful lemma. The proof of this lemma can be found in (Mohri et al., 2012).
Lemma 1 (Talagrand’s lemma). Let Φ : R → R be an ρ-lipschitz function. Then for any hypothesis
set H of real valued function functions, the following inequality holds:

R̂n(Φ ◦ H) ≤ ρR̂n(H). (12)

From this lemma, we have
R̂n(ℓ ◦ F) ≤ ρR̂n(F). (13)

Let F := {f(x) = Eλ∼p(λ),x′∼p̂(x) [h(ψ(x,x
′, λ))] | h ∈ H}. In equation 9, we assume that

R̂n(H) = Eϵ

[
1

n
sup
h∈H

n∑
i=1

ϵih(xi)

]
≤ CH

n

√√√√ n∑
i=1

∥xi∥22.

Now we can bound R̂n(F) as follows.

R̂n(F) = Eϵ

[
1

n
sup
f∈F

n∑
i=1

ϵif(xi)

]

= Eϵ

[
1

n
sup
h∈H

n∑
i=1

ϵiEλ∼p(λ),x′∼p̂(x) [h(ψ(xi,x
′, λ))]

]

≤ Eϵ,λ∼p(λ),x′∼p̂(x)

[
1

n
sup
h∈H

n∑
i=1

ϵih(ψ(xi,x
′, λ))

]
(∵ convexity of sup)

≤ CH

n
Eλ∼p(λ),x′∼p̂(x)

√√√√ n∑
i=1

∥ψ(xi,x′, λ)∥22

 (∵ assumption in Eq. 9)

≤ CH

n

√√√√Eλ∼p(λ),x′∼p̂(x)

[
n∑

i=1

∥ψ(xi,x′, λ)∥22

]
(∵ concavity of square root)

=
CH

n

√√√√Eλ∼p(λ),x′∼p̂(x)

[
n∑

i=1

∥λxi + (1− λ)x′∥22

]

=
CH

n

√√√√Eλ∼p(λ),x′∼p̂(x)

[
n∑

i=1

{λ2∥xi∥22 + 2λ(1− λ)⟨xi,x′⟩+ (1− λ)2∥x′∥22}

]

=
CH

n

√√√√√Eλ∼p(λ)

 1

n

n∑
i=1

n∑
j=1

{λ2∥xi∥22 + 2λ(1− λ)⟨xi,xj⟩+ (1− λ)2∥xj∥22}

 (∵ p̂(x) =
1

n

n∑
i=1

δ(x = xi))
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=
CH√
n

√√√√√Eλ∼p(λ)

λ2
n

n∑
i=1

∥xi∥22 + 2λ(1− λ)⟨ 1
n

n∑
i=1

xi,
1

n

n∑
j=1

xj⟩+
(1− λ)2

n

n∑
j=1

∥xj∥22


=
CH√
n

√√√√Eλ∼p(λ) [λ2 + (1− λ)2]
1

n

n∑
i=1

∥xi∥22 + Eλ∼p(λ) [2λ(1− λ)] ⟨ 1
n

n∑
i=1

xi,
1

n

n∑
j=1

xj⟩

≤ CH√
n

√√√√Cλ
1

n

n∑
i=1

∥xi∥22 + (1− Cλ)

∥∥∥∥∥ 1n
n∑

i=1

xi

∥∥∥∥∥
2

2

.

By combining the above result and equation 13, we complete the proof of this theorem.

B DETAILS OF EXPERIMENTAL SETTING

In this section, we describe the details of training for experiments in Section 3.

B.1 TRAINING

VGG16 (Simonyan & Zisserman, 2015) and PreActResNet18 (He et al., 2016) was used for exper-
iments. We did not apply Dropout similarly to Mixup (Zhang et al., 2018). For all experiments, we
trained a neural network for 200 epoch. Learning rate was set to 0.1 in the beginning and multiplied
by 0.1 at 100 and 150 epoch. We applied standard augmentation such as cropping and flipping. The
size of mini-batch was set to 128. We set p(λ) = Beta(α + 1, α) for label-preserving sample-mix
training and p(λ) = Beta(α, α) for label-mixing sample-mix training. λ was generated for each
sample in mini-batch, and x′ was obtained by permutation of samples in mini-batch.

B.2 PREDICTION

For standard without sample-mix method and Mixup method, we predicted labels of test samples
from clean samples. For proposed method, we predicted labels from the expectation over mixed
samples computed by monte carlo approximation. In the same manner to the training process, we
sampled λ and x′ 500 times and calculated the average to obtain the final output. In evaluation stage,
data augmentation except for sample-mix was turned off.
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C MAGNIFIED VERSIONS OF EXPERIMENTAL RESULTS

In this section, we present the magnfied version of experimental results in Section 3.

Table 2: Mean misclassification rate and standard error over 3 trials on CIFAR10/100 datasets.

CIFAR10 CIFAR100
Model Method Train Acc. Test Acc. Train Acc. Test Acc.

VGG16

without mix 0.00 (0.000) 6.78 (0.057) 0.03 (0.003) 28.68 (0.169)
Mixup (α = 1.0) 0.05 (0.007) 5.81 (0.031) 0.27 (0.006) 26.58 (0.044)
Mixup (α = 2.0) 0.26 (0.029) 5.73 (0.042) 1.77 (0.108) 26.34 (0.225)
DIP (α = 1.0, S = 1, label-mixing) 0.13 (0.000) 5.74 (0.100) 0.48 (0.012) 25.48 (0.034)
DIP (α = 2.0, S = 1, label-mixing) 0.72 (0.035) 5.85 (0.015) 3.08 (0.147) 25.45 (0.179)
DIP (α = 1.0, S = 1, label-preserving) 0.47 (0.012) 6.05 (0.015) 1.26 (0.072) 26.57 (0.155)
DIP (α = 2.0, S = 1, label-preserving) 2.08 (0.026) 6.81 (0.046) 7.38 (0.152) 27.73 (0.140)
DIP (α = 1.0, S = 2) 0.02 (0.003) 5.57 (0.093) 0.12 (0.006) 25.87 (0.200)
DIP (α = 2.0, S = 2) 0.30 (0.015) 5.63 (0.032) 1.15 (0.038) 25.72 (0.042)
DIP (α = 1.0, S = 4) 0.00 (0.000) 5.85 (0.041) 0.04 (0.003) 27.20 (0.067)
DIP (α = 2.0, S = 4) 0.01 (0.006) 5.52 (0.041) 0.10 (0.009) 26.73 (0.054)

PreActResNet18

without mix 0.00 (0.000) 5.68 (0.015) 0.02 (0.000) 25.25 (0.272)
Mixup (α = 1.0) 0.02 (0.004) 4.46 (0.082) 0.09 (0.006) 22.58 (0.074)
Mixup (α = 2.0) 0.18 (0.013) 4.32 (0.098) 0.50 (0.027) 22.87 (0.100)
DIP (α = 1.0, S = 1, label-mixing) 0.09 (0.006) 4.36 (0.079) 0.26 (0.009) 21.97 (0.052)
DIP (α = 2.0, S = 1, label-mixing) 0.51 (0.013) 4.66 (0.125) 1.43 (0.029) 22.31 (0.127)
DIP (α = 1.0, S = 1, label-preserving) 0.40 (0.032) 4.83 (0.125) 0.78 (0.003) 23.33 (0.052)
DIP (α = 2.0, S = 1, label-preserving) 1.74 (0.022) 5.84 (0.059) 3.87 (0.023) 23.75 (0.156)
DIP (α = 1.0, S = 2) 0.02 (0.000) 4.50 (0.116) 0.09 (0.003) 21.85 (0.231)
DIP (α = 2.0, S = 2) 0.27 (0.010) 4.75 (0.110) 0.57 (0.003) 21.94 (0.197)
DIP (α = 1.0, S = 4) 0.00 (0.000) 4.75 (0.046) 0.03 (0.000) 22.37 (0.136)
DIP (α = 2.0, S = 4) 0.01 (0.003) 4.40 (0.036) 0.08 (0.007) 22.04 (0.067)
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Figure 3: Mean generalization gap and standard error over three trials on CIFAR10/100 dataset.
α = 0 indicates standard training without sample-mix.
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