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ABSTRACT

Achieving faster execution with shorter compilation time can foster further diver-
sity and innovation in neural networks. However, the current paradigm of exe-
cuting neural networks either relies on hand-optimized libraries, traditional com-
pilation heuristics, or very recently genetic algorithms and other stochastic meth-
ods. These methods suffer from frequent costly hardware measurements rendering
them not only too time consuming but also suboptimal. As such, we devise a so-
lution that can learn to quickly adapt to a previously unseen design space for code
optimization, both accelerating the search and improving the output performance.
This solution dubbed CHAMELEON leverages reinforcement learning whose solu-
tion takes fewer steps to converge, and develops an adaptive sampling algorithm
that not only focuses on the costly samples (real hardware measurements) on rep-
resentative points but also uses a domain-knowledge inspired logic to improve the
samples itself. Experimentation with real hardware shows that CHAMELEON pro-
vides 4.45×speed up in optimization time over AutoTVM, while also improving
inference time of the modern deep networks by 5.6%.

1 INTRODUCTION

The enormous computational intensity of Deep Neural Networks (DNNs) have resulted in develop-
ing either hand-optimized kernels, such as NVIDIA cuDNN or Intel MKL that serve as backend for
a variety of programming environment such as TensorFlow (Abadi et al., 2016) and PyTorch (Paszke
et al., 2019). However, the complexity of the tensor operations in DNNs and the volatility of algo-
rithms, which has led to unprecedented rate of innovation (LeCun, 2019), calls for developing auto-
mated compilation frameworks. To imitate or even surpass the success of hand-optimized libraries,
recent research has developed stochastic optimization passes: for general code, STOKE (Schkufza
et al., 2013), and neural network code, TVM (Chen et al., 2018a) and TensorComprehensions (Vasi-
lache et al., 2018). TVM and TensorComprehensions are based on random or genetic algorithms to
search the space of optimized code for neural networks. AutoTVM (Chen et al., 2018b) builds on
top of TVM and leverage boosted trees (Chen & Guestrin, 2016) as part of the search cost model to
avoid measuring the fitness of each solution (optimized candidate neural network code), and instead
predict its fitness. However, even with these innovations the optimizing compilation time can be
around 10 hours for ResNet-18 (He et al., 2016), and even more for deeper or wider networks.

Since the general objective is to unleash new possibilities by developing automatic optimization
passes, long compilation time hinders innovation and could put the current solutions in a position of
questionable utility. To solve this problem, we first question the very statistical guarantees which the
aforementioned optimization passes rely on. The current approaches are oblivious to the patterns in
the design space of schedules that are available for exploitation, and causes inefficient search or even
converges to solutions that may even be suboptimal. Also, we notice that current approaches rely
on greedy sampling that neglects the distribution of the candidate solutions (configurations). While
greedy sampling that passively filter samples based on the fitness estimations from the cost models
work, many of their hardware measurements (required for optimization) tend to be redundant and
wasteful. Moreover, we found that current solutions that rely on greedy sampling lead to significant
fractions of the candidate configurations being redundant over iterations, and that any optimizing
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compiler are prone to invalid configurations which significantly prolongs the optimization time.
As such, this work sets out to present an Adaptive approach dubbed CHAMELEON to significantly
reduce the compilation time and offer automation while avoiding dependence to hand-optimization,
enabling far more diverse tensor operations in the next generation DNNs. We tackle this challenge
from two fronts with the following contributions:

(1) Devising an Adaptive Exploration module that utilizes reinforcement learning to adapt to unseen
design space of new networks to reduce search time yet achieve better performance.

(2) Proposing an Adaptive Sampling algorithm that utilizes clustering to adaptively reduce the num-
ber of costly hardware measurements, and devising a domain-knowledge inspired Sample Syn-
thesis to find configurations that would potentially yield better performance.

Real hardware experimentation with modern DNNs (AlexNet, VGG-16, and ResNet-18) on a high-
end GPU (Titan Xp), shows that the combination of these two innovations, dubbed CHAMELEON,
yields 4.45×speedup over the leading framework, AutoTVM. CHAMELEON is publicly available in
the project page: https://bitbucket.org/act-lab/chameleon.

2 CHALLENGES IN DEEP NEURAL NETWORK COMPILATION

The general life-cycle of deep learning models from its birth to deployment comprises of two major
stages. First stage is the designing and the training of a deep learning model by a research scientist,
with the primary goal of achieving the highest feasible accuracy. Then, with a general demand to
enable the intelligence on a wide range of devices (from mobile CPUs in the edge to cloud-scale
GPUs), the second stage has emerged for the deployment of the pre-trained deep learning model
to a target hardware by a deployment engineer. These stages are each iterative processes: research
scientists iterate until it reaches the target performance in terms of accuracy whereas the deploy-
ment engineers iterate until the performance in terms of inference speed with a given hardware
satisfies the given constraints. Importantly, these two stages are most often separate processes, and
this paper mainly focuses on the second stage (deployment) of the cycle with an overarching goal
of accelerating the overall deployment cycle by reducing the optimizing compilation time without
compromising the performance of the output code.

2.1 COMPILATION WORKFLOW FOR DEEP NEURAL NETWORKS
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Figure 1: Overview of our model compilation workflow, and highlighted is the scope of this work.

Figure 1 illustrates how a compiler for DNNs takes an input modelM and emits an optimized code
τ(Θ∗) that runs the model efficiently on a given hardware. This flow is commensurate with Tensor-
Comprehensions (Vasilache et al., 2018) and TVM (Chen et al., 2018a), using which we implement
CHAMELEON that is available as a separate package for adoption in even other frameworks. The first
phase of the workflow is the frontend compiler which performs the translation from the compiler
and applies target-independent and white-box target-dependent optimizations that do not incorpo-
rate a measure of runtime. Target-independent passes transform the input DNN model without
specificity to the target hardware. Operator fusion and data layout transformation in TVM are some
examples of these passes, which lie in the same category as dead-code elimination or loop-invariant
code motion in GCC (Stallman & DeveloperCommunity, 2009) or LLVM (Lattner & Adve, 2004).
Target-dependent passes, on the other hand, the compiler takes the hardware architecture (target)
into account while optimizing the program; however, this also does not actively leverage runtime
measures. The last stage is a black-box optimization pass, called optimizing compiler, that given a
measure of performance at runtime from the hardware can further optimize the code. CHAMELEON

falls in this class by offering an optimizing compiler that adapts to different design space to be more
swift in optimizing deep neural networks compared to conventional approaches.
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KNOBS DEFINITION

tile f, tile y, tile x Factors for tiling and binding # of filters
height, and width of feature maps.

tile rc, tile ry, tile rx Factors for tiling reduction axis such as #
of channels, height, and width of filters.

auto unroll max step Threshold of number of steps in the loop
to be automatically unrolled.

unroll explicit Explicitly unroll loop, this may let code
generator to generate pragma unroll hint.

Table 1: Knobs in the design space to optimize convolution.
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Figure 2: AutoTVM optimization
time for ResNet-18 on Titan Xp.

2.2 OPTIMIZING COMPILER FOR DEEP NEURAL NETWORKS

Optimizing compilers (Kennedy & Allen, 2001) usually take a black-box approach and use hardware
measurements to configure the optimization based on a measure of fitness f of each solution. In
order to make the problem tractable, the optimizing compilers for deep neural networks reduce the
problem down to tuning the knobs θ for the output code template τ , and can be formulated as:

Θ∗ = argmax
Θ

f(τ(Θ)), for Θ ∈ DΘ. (1)

A combination of assignment to the knobs is said to be a configuration Θ = (θ1, θ2, ..., θn) while the
dimensions of the design space DΘ is defined by the knobs. As such, in Equation 1, an optimizing
compiler starts from a code template τ for each layer, and makes use of a search algorithm and real
hardware measurements to efficiently find the best configuration Θ∗ ∈ DΘ. In this context, there are
three variables that determine the effectiveness of the optimizing compiler: (1) a large and diverse
enough design space that covers a variety of transformations, (2) an effective search algorithm to
adequately navigate this space, and (3) a mechanism to cut down the number of costly hardware
measurements that check the fitness of a solution. Table 1 lists the knobs for performing convolution
on a GPU, where it is crucial that the code (1) maximizes data reuse, (2) uses the shared memory
wisely, and (3) minimizes bank conflicts. The knobs optimize various aspects of the execution,
including tiling (e.g., tile x, tile y, . . . ), unrolling (e.g., auto unroll max step and unroll explicit), and these
knobs define a design space with 1010 possibilities. Given the vastness of the design space, the
remaining challenges are designing an effective search algorithm and designing a mechanism that
reduces the cost of each step in the search (i.e. reducing the need to measure the hardware).

2.3 CHALLENGES IN DEEP NEURAL NETWORK COMPILATION

As shown in Figure 2, optimizing compilation for DNNs may still take an eon even with the advances
from prior works (Chen et al., 2018a;b; Vasilache et al., 2018) With active research (You et al., 2017;
Goyal et al., 2017; Codreanu et al., 2017; Akiba et al., 2017; You et al., 2018; Mattson et al., 2019)
that has been able to cut down the training time to only few hours (You et al., 2017; Goyal et al.,
2017) and even minutes (You et al., 2018; Akiba et al., 2017) on big models (e.g., ResNet-50 (He
et al., 2016)) for ImageNet, it renders the optimizing compilation time of the current solutions seem
even more prominent. Especially, since the above-mentioned compilers have been integrated to
the deep learning pipelines of major players in the industry (Liu et al., 2019; Rotem et al., 2018;
Vasilache et al., 2018), many users of these pipelines including the deployment engineers must
go through the compilation workflow depicted in Figure 1 numerous times. Therefore, current
long compilation time can be a hindrance to deploying DNN in various hardware, hence a major
bottleneck in enabling intelligence on wider range of target platforms.

Furthermore, as we explore various neural topologies (Xie et al., 2019; Wortsman et al., 2019) for
better performance as illustrated in Ahn et al. (2020), even deeper or wider networks (Szegedy
et al., 2015; Zagoruyko & Komodakis, 2016), and new operations (Howard et al., 2017) to achieve
higher performance (LeCun, 2019), we are forced to optimize the networks more frequently. The
long optimization times are multiplied with such trend, leaving the practical utility of the current
compiler solutions to question. As such, the primary goal of this work is reducing the optimizing
compilation time to meet the immediate needs of the industry for expedited DNN compilation to
foster further diversity and innovation in designing DNNs.
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Figure 3: Overall design and compilation overview of the CHAMELEON.

Such long optimization time results from the inefficiency of simulated annealing which (while it
stochastically guarantees a reasonable solution after huge number of iterations) fails to capture the
patterns in the design space that can be exploited during the search. On the other hand, we can see
in the figure that majority of the optimization time is spent on reaching for measurements on real
hardware that is used as a feedback for the aforementioned search. Also, current approach even suf-
fers from numerous invalid configurations that not only wastes the limited hardware measurement
budget that the compiler starts with, but also incurs serious overhead to reset the target hardware for
subsequent hardware measurements. As such, it is important that a sampling mechanism that selects
potential configurations for hardware measurements to be smarter to ensure that each measurement
is maximizing the chances of achieving a good solution and that it evades the invalid configurations.
However, the current approaches rely on greedy sampling that passively sample based on the esti-
mations from the cost models. This not only has a tendency to overfit but also neglect that solutions
are distributed non-uniformly and that there are numerous invalid configurations.

3 CHAMELEON: ADAPTIVE CODE OPTIMIZATION FOR
EXPEDITED DEEP NEURAL NETWORK COMPILATION

As discussed in Section 2, current solutions fall short of providing a swift optimization framework
for optimizing emergent deep neural networks, because of the futility of the search in adapting to
the design space from a random walk based search algorithm and the inefficiency of the physical
hardware measurements from the greedy sampling. Therefore, developing a new framework that can
overcome current challenges to unfetter neural network innovation from a prolonged optimization
times can be boiled down to two problems: 1 improving the the search algorithm to better adapt to
the design space, and 2 improving the sampling algorithm to both better adapt to the distribution
of the solutions and decrease the possibility of running into invalid configurations. As such we
make two innovations in the optimizing compiler for deep neural networks to develop CHAMELEON

by applying reinforcement learning to the search that can adapt to new design spaces (Adaptive
Exploration) and devising an Adaptive Sampling that replaces the current greedy sampling.

3.1 OVERALL DESIGN OF CHAMELEON

Figure 3 outlines the overall design of our optimizing compiler, dubbed CHAMELEON1, and gives an
overview of the optimizing compilation process. CHAMELEON takes code template τ for each layer
in the network and the corresponding design space DΘ as its input, and iteratively optimizes the
code for configuration Θ to finally output τ(Θ∗). The proposed Adaptive Exploration maneuvers
the design space while using a cost model as a proxy for hardware measurements to the output set
of candidate configurations SΘ. These configurations are then sampled with Adaptive Sampling so
that the sampled configurations S′Θ subsume the initial candidate configurations while reducing its
number significantly. The sampled configurations S′Θ are then passed to the code generator which
combines the input template τ and the configurations S′Θ to create a set of τ(Θ) that are sent to real
hardware for runtime measurements. Runtimes from the hardware are used as the measure of fitness

1Chameleon is an animal that is capable of Adapting to their environments which helps them survive. In
our work, CHAMELEON is an entity that Adapts to the variations in the design space and the distribution of the
candidate configurations, enabling expedited deep neural network compilation.
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f and update the cost model to enhance the exploration of the subsequent iterations. After multiple
iterations, τ(Θ∗) with the best fitness f (shortest runtime) is selected as an output for the layer.

3.2 ADAPTIVE EXPLORATION: LEARNING ABOUT THE UNSEEN DESIGN SPACE TO
EXPEDITE CONVERGENCE OF OPTIMIZATION

As stated in Section 2, the current state-of-the-art approach (Chen et al., 2018b) that leverages sim-
ulated annealing relies on the stochastic guarantees of its random walks. Therefore, the current
approach requires numerous iterations of exploration to converge to a reasonable solution causing
long compilation hours, thus insufficient to enable disruptive innovations in neural networks. We
take an inspiring approach that avoids naive dependence on the stochastic guarantee of simulated
annealing and leverage a technique that can learn to adapt to unseen design space to not only ac-
celerate convergence but also bring some performance gains. As such, we develop Adaptive Explo-
ration by leveraging Reinforcement Learning (RL), which is concerned with learning to maximize
reward given an environment by making good exploration and exploitation tradeoffs, in our case
maximizing fitness f of the explored configurations SΘ.

Reinforcement learning formulation. Our RL-based Adaptive Exploration module uses an
actor-critic style RL, where policy network learns to emit a set of directions (vector of incre-
ment/decrement/stay) for each knob in the design space that will increase f of the next configuration
and the value network learns the design space DΘ to estimate the value of the action. The first layer
of these networks that takes the current configuration Θ as input is shared to foster information shar-
ing among the two networks, and its output is fed into the subsequent layers the networks. These
networks not only learn the dependencies among the different knobs of the design space (which
are interrelated) that helps our module navigate through the design space but also lean the potential
gains of the modifications to the configurations.
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Figure 4: Adaptive Exploration Module of CHAMELEON in action.

Learning procedure. Having formulated the RL-based Adaptive Exploration Module, an itera-
tion of our optimization begins with a set of initial configurations and takes multiple search steps
(episode) for each of the configurations. As shown in Figure 4, the agent makes an action and ap-
plies it to the configuration using configuration updater to get another configuration that potentially
has better f . After finishing multiple search steps in the episode, all configurations SΘ are evaluated
using a cost model, which its return values are used as a surrogate reward to update our agent, to
reduce the number of costly hardware measurements. By taking this approach, f of SΘ improves
as our module progresses through the episodes. In other words, by repeating multiple episodes and
iterations, our Adaptive Exploration Module gradually learns to locate good configurations.

3.3 ADAPTIVE SAMPLING: ADAPTING TO THE DISTRIBUTION TO
REDUCE COSTLY HARDWARE MEASUREMENTS

Reducing number of costly hardware measurements. After the exploration step (regardless of
the exploration method), we observe that the candidate configurations are clustered in subregions of
the design space and these clusters are non-uniformly distributed (Figure 5). We also find that, while
the design space’s surface is discrete and un-smooth, a large fraction of configurations within each
cluster achieve similar runtime (Figure 6). Utilizing these characteristics of the design space, we
devise Adaptive Sampling that can sample a new set of candidates, by adapting to the shape of the
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Figure 6: Cumulative Distribution Function
(CDF) of the difference in runtime among the
configurations in the cluster.

design space and the non-uniformity of the distribution while leaving the performance of optimiza-
tion intact. We first leverage clustering algorithm to find configurations that are representative of
each cluster; the sampling module uses centroids as the representative configurations. Our Adaptive
Sampling iterates over a different number of clusters for their respective centroids and the L2 loss.

In the context of optimizing compiler, selecting the number of centroids for clustering entails making
the important tradeoff between selecting more centroids for better performance or fewer centroids
for a reduced number of hardware measurements. As such, we must devise a method that would
automatically make the tradeoff in a reasonable manner. We take advantage of the decreasing trend
in the aforementioned L2 loss as we increase the number of centroids, and devise a Threshold-based
Swift Meta-Search to determine the number of clusters. By setting the threshold (hyperparameter)
it allows the compiler to determine the point of diminishing return (knee of the curve), inflection
point beyond which fewer centroids may lead to performance degradation and more clusters would
prolong the optimization substantially. Overall, our sampling curtails the number of hardware mea-
surements so that it is just enough to subsume the entire subspace of the candidate configurations.

Improving candidate configurations using sample synthesis. While the above sampling algo-
rithm significantly reduces the number of hardware measurements compared to the conventional
greedy sampling, without impacting the performance of the output code, we are still left with a
critical issue of redundancy among the candidate configurations. We find that the exploration al-
gorithm (regardless of the type) combined with the greedy sampling frequently leads to redundancy
among the candidate configurations over different iterations of optimization due to the overfitting
of the cost model from the greediness of the sampling. Even though the exploration algorithm tries
to explore unvisited regions of the design space, these explored (not exploited) configurations are
discarded due to the greedy sampling which entirely depends on the cost model for its selections of
the configurations. Therefore, the current greedy sampling algorithm has its limitation in focusing
the hardware measurements to the same region over and over.

On the other hand, we find that from a code optimization point of view, we know that many of the
automated approaches for black-box optimization are prone to invalid configurations, which results
from too large a tile that goes over the input feature map boundary or errors during memory accesses
(cannot be solved analytically). These invalid configurations not only blow the chances for better
exploration but also leads to an extra optimization time overhead to reset the physical hardware for
the subsequent hardware measurement. We try to overcome both of these limitations by devising
Sample Synthesis. When our compiler runs into redundant samples, the proposed synthesis method
analyzes the candidate samples to determine the most probable (most frequent = mode function)
non-invalid choice for each knob to come up with a new configuration. This statistical combina-
tion of the most frequent knob settings yield configurations that combine the strengths of different
knobs to converge to a better overall solution. In spirit, the recombination (crossover) operator in
genetic algorithms also tries to combine the best features of the solutions with high fitness values.
Algorithm 1 presents the integration of our Adaptive Sampling and the Sample Synthesis.

3.4 IMPLEMENTATION DETAILS

Architecture exploration for the adaptive exploration. We use Proximal Policy Optimization
(PPO) (Schulman et al., 2017), a policy gradient that has been shown to adapt to various problems
and have good sample complexity, as our reinforcement learning algorithm. Since reinforcement
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Algorithm 1 Adaptive Sampling and Sample Synthesis
1: procedure ADAPTIVESAMPLING(sΘ, vΘ) . sΘ: candidate configs, vΘ: visited configs
2: new candidates← ∅, previous loss←∞
3: for k in range(8, 64) do
4: new candidates, clusters, L2 loss← K-means.run(sΘ, k)
5: if Threshold × L2 loss ≥ previous loss then break . Exit loop at knee of loss curve
6: previous loss← L2 loss
7: end for
8: for candidate in new candidates do . Replace visited config with new config
9: if candidate in vΘ then new candidates.replace(candidate, mode(sΘ))

10: end for
11: return new candidates . Feed to Code Generator to make measurements on hardware
12: end procedure

learning could incur computational overhead that could prolong the optimization time, we optimize
the actor-critic networks through architecture exploration to find good tradeoff for size of these
networks (that determines the computational overhead) and the optimization performance.

Design choices for the adaptive sampling. We use a K-means Clustering to determine centroids
of the configurations, because K-means has been shown effective in practice and it only requires K,
over error ε or radius in other algorithms which are much more challenging to tune. For example,
DBSCAN (Ester et al., 1996) or mean-shift clustering (Comaniciu & Meer, 2002) are very sensitive
to the above hyperparameters. On the other hand, K can be framed as a lever to balance the perfor-
mance and speed of optimizing compilation which abstracts away the aforementioned challenges,
enabling the Threshold-based Swift Meta-Search that identifies the optimal number of clusters.

Hyperparameter tuning. Hyperparameter tuning is a very important task in machine learning-
based tools and models. As such, we present the hyperparameters we used for the evaluation in
Table 7 (in appendix), which its tuning took several days. For the hyperparameters in Table 8 (in ap-
pendix), we used the same set of values that were used in the AutoTVM paper (Chen et al., 2018b) in
order to conduct a fair comparison or CHAMELEON. Additionally, for parameters used in the Adap-
tive Exploration module, which is not present in AutoTVM, we have tuned the hyperparameters
using the set of layers presented in Table 5 (in appendix). We emphasize, however, that the hyper-
parameters have been tuned offline before the deployment of CHAMELEON, and the hyperparameters
are not changed during the use of the framework or the experimentation. So the tuning overhead is
not part of the compilation after the Adaptive Exploration module is tuned once before releasing the
compiler to the deployment practitioners.

4 EVALUATION

We integrate CHAMELEON into TVM (Chen et al., 2018a) to perform component evaluation and
compare with AutoTVM (Chen et al., 2018b). We first evaluate components of CHAMELEON in
Section 4.1 and Section 4.2 on set of convolution layers sampled from AlexNet (Krizhevsky et al.,
2012), VGG-16 (Simonyan & Zisserman, 2015), and ResNet-18 (He et al., 2016). Then we pro-
vide end-to-end evaluation of CHAMELEON on both set of layers and end-to-end deep models, in
Section 4.3. Due to space limitations, we present only the representative plots in the paper, and the
complete set of results and the details of the parameters are provided in the appendix.

4.1 ADAPTIVE EXPLORATION: IMPROVING EFFICACY OF SEARCH ALGORITHM

In the previous approach (Chen et al., 2018b), authors have built a cost model to estimate fitness
instead of performing costly measurements on real hardware, then used simulated annealing to find
potentially optimal configurations. Figure 7(a) compares the number of search steps taken per iter-
ation to reach or converge to the solution in simulated annealing and Adaptive Exploration, respec-
tively. Overall, observation is that CHAMELEON’s Adaptive Exploration requires 2.88×less search
steps compared to simulated annealing to find good solution. This comes from the ability of the re-
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Figure 7: Component evaluation of CHAMELEON.

inforcement learning algorithm in Adaptive Exploration Module to (1) learn the correlation between
different dimensions, and (2) reuse information across different iterations, instead of starting from
scratch while naively relying on the stochastic guarantees of simulated annealing process.

4.2 ADAPTIVE SAMPLING: REDUCING NUMBER OF COSTLY HARDWARE MEASUREMENTS

Figure 7(b) summarizes the effect of applying CHAMELEON’s Adaptive Sampling module on sim-
ulated annealing and reinforcement learning based search. First, the results show that using
Adaptive Sampling helps the framework to make less hardware measurements regardless of the
search algorithm used. The Adaptive Sampling algorithm reduces the number of measurements by
1.98×when used with simulated annealing and 2.33×with reinforcement learning One observation
is that the Adaptive Sampling is more effective with reinforcement learning search. This comes
from the reinforcement learning agent’s capacity to better localize the search to meaningful sam-
ples (exploitation) while still aiming to find good solution by making diverse search (exploration).
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Figure 8: Comparison to AutoTVM’s diversity exploration.

Diversity exploration of AutoTVM
aims to spread out the candidate con-
figurations with a regularizing effect
that fosters uniform sampling. In
contrast, our Adaptive Sampling uses
a clustering algorithm to perform
more measurements on the regions
with higher likelihood of achieving
better output performance, leading to
a non-uniform sampling. While Au-
toTVM states that diversity-aware se-
lection had no meaningful impact on
most of the evaluated workloads, our Adaptive Sampling brings significant improvement as depicted
in Figure 8. As shown, Adaptive Sampling brings an average of 13.5% and 19.0% improvement on
simulated annealing and reinforcement learning, respectively.

4.3 INTEGRATION: REDUCING OPTIMIZATION TIME AND OUTPUT INFERENCE TIME

CHAMELEON integrates two components into the workflow: RL-based Adaptive Exploration (AE)
and Adaptive Sampling (AS). This section compares the performance of CHAMELEON with Au-
toTVM (Chen et al., 2018b) that leverages Simulated Annealing (SA) for its exploration.

Layer evaluation. Figure 9 shows the trend of output code performance of ResNet-18’s 11th layer
over number of hardware measurements during optimization. The figure illustrates that our Adaptive
Exploration finds better configurations than simulated annealing which results in better output code
performance, and the Adaptive Sampling reduces number of hardware measurements significantly
during optimization. Also, CHAMELEON’s Adaptive Exploration and Adaptive Sampling working in
tandem emits better code with shorter optimization time than others. As such, Figure 10(a) compares
optimization time and the performance of the output code in CHAMELEON and AutoTVM to confirm
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CHAMELEON significantly reduces number of hardware measurements (from 800 to 392)
while even improving the output code performance (from 4.71 to 5.26)

Figure 9: Layer evaluation of output performance for ResNet-18’s 11th layer.

the observation. CHAMELEON achieved 1.17×better performance with 4.82×shorter optimization
time compared to AutoTVM. Overall, the results suggest that our Adaptive Exploration effectively
maneuvers the design space, and Adaptive Sampling reduces hardware measurements and the overall
optimization time while even improving output performance.

End-to-end evaluation. Up until now, we have focused on evaluation with subset of layers. Now
we continue our discussion to the applicability of CHAMELEON to optimization of end-to-end deep
neural networks. Figure 10(b) shows that CHAMELEON spends 3.59×, 5.73×, and 4.28×less time than
AutoTVM to optimize AlexNet, VGG-16, and ResNet-18, respectively. On average, our work shows
4.45×optimization time speedup while achieving up to 6.4% improvement in terms of performance
of output code. Inference time in Figure 10(b) illustrates the speedup for optimized code. Raw
numbers are available in Table 2 and Table 3. All in all, such improvements result from efficient
Adaptive Exploration and the reduced number of hardware measurements from Adaptive Sampling.
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Figure 10: Layer and end-to-end evaluation. Dashed lines denote AutoTVM’s performance.

NETWORK SA AE SA + AS AE + AS
(AutoTVM) (CHAMELEON)

AlexNet 4.31 Hours 4.06 Hours 1.25 Hours 1.20 Hours
VGG-16 11.18 Hours 8.82 Hours 2.57 Hours 1.95 Hours
ResNet-18 9.13 Hours 7.39 Hours 2.14 Hours 2.13 Hours

Table 2: End-to-end evaluation of the optimization time for deep networks.

NETWORK SA AE SA + AS AE + AS
(AutoTVM) (CHAMELEON)

AlexNet 1.0277 ms 1.0207 ms 0.9762 ms 0.9673 ms
VGG-16 3.9829 ms 3.9710 ms 3.8733 ms 3.8458 ms
ResNet-18 1.0258 ms 0.9897 ms 0.9897 ms 0.9831 ms

Table 3: End-to-end evaluation of the output performance for deep networks.

5 RELATED WORKS

CHAMELEON uniquely offers a solution that exclusively enables (i) Reinforcement Learning and (ii)
Sampling in the context of (iii) Optimizing Compilers for neural networks. As such, we discuss the
related work from each of the three independent research directions.
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Optimizing compilers. TensorComprehensions (Vasilache et al., 2018) and TVM (Chen et al.,
2018a) use genetic algorithm and simulated annealing to choose parameters of polyhedral optimiza-
tion for neural networks. In a more general context, some computing libraries (Whaley & Dongarra,
1998; Frigo & Johnson, 1998) make use of black box optimization and also profiling-based compi-
lation passes (Chang et al., 1991; Novillo, 2014) utilize runtime information to generate optimized
code. Later, AutoTVM (Chen et al., 2018b) incorporates learning with boosted trees within the cost
model for TVM to reduce the number of real hardware measurements. While CHAMELEON is inspired
and builds on these prior works, unlike them, it is based on reinforcement learning for Adaptive Ex-
ploration, and Adaptive Sampling that leverages clustering to reduce the number of measurements.

Reinforcement learning for hyper-parameter optimization. There are a growing body of stud-
ies on using reinforcement learning to perform various optimizations (Gao et al., 2018; Mirhoseini
et al., 2017; Nareyek, 2003; Mao et al., 2016; Xu et al., 2018; Mao et al., 2019) for a variety of
objectives including hyper-parameter optimization for neural networks. For instance, DeepArchi-
tect (Negrinho & Gordon, 2017) and NAS (Zoph & Le, 2017) use reinforcement learning to automate
the process of designing deep neural network models and their associated parameters. HAQ (Wang
et al., 2019) and ReLeQ (Elthakeb et al., 2018) use reinforcement learning to chose levels of quan-
tization for the layers of a given deep neural network. AMC (He et al., 2018) formulates neural
network compression as a RL problem. A most recent effort (Paliwal et al., 2020)–which will be
published concurrent to ours in ICLR 2020–combined RL with graph neural networks and genetic
algorithms to optimize DNN execution. Our work exclusively explores a different problem, that is
optimizing compilers using reinforcement learning.

Sampling algorithms for learning. Active learning is a broad field (Settles, 2009; Cohn et al.,
1996; Sugiyama, 2006; Cai et al., 2013; Goetz et al., 2018; Wu et al., 2019) that uses a measure of
the change in the model to decide which training data elements should be used to update the model.
Passive learning (Yu & Kim, 2010; O’Neill et al., 2017) is an alternative view that independent of the
model, analyze the distribution of the training data set and selects a subset. The Adaptive Sampling
algorithm for CHAMELEON shares similarities with Passive learning but it differs in its context. The
sampling is designed to reduce the number of samples (configuration) for hardware measurement
from the exploration of the design space whilst performing an optimization to accelerate the process.

6 CONCLUSION

We present CHAMELEON to allow optimizing compilers to adapt to unseen design spaces of code
schedules to reduce the optimization time. This paper is also an initial effort to bring reinforcement
learning to the realm of optimizing compilers for neural networks, and we also develop an Adap-
tive Sampling with domain-knowledge inspired Sample Synthesis to not only reduce the number
of samples required to navigate the design space but also augment its quality in terms of fitness.
Experimentation with real-world deep models shows that CHAMELEON not only reduces the time for
compilation significantly, but also improves the quality of the code. This encouraging result suggests
a significant potential for various learning techniques to optimizing deep learning models.
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APPENDIX

A EXPERIMENTAL SETUP

A.1 DNN MODELS AND LAYERS

Table 4: Details of the DNN models used in evaluating CHAMELEON.

NETWORK DATASET NUMBER OF TASKS

AlexNet ImageNet 5
VGG-16 ImageNet 9

ResNet-18 ImageNet 12

Table 5: Details of the layers used in evaluating CHAMELEON.

NAME MODEL LAYER TYPE TASK INDEX

L1 AlexNet convolution 1
L2 AlexNet convolution 4
L3 VGG-16 convolution 1
L4 VGG-16 convolution 2
L5 VGG-16 convolution 4
L6 ResNet-18 convolution 6
L7 ResNet-18 convolution 9
L8 ResNet-18 convolution 11

A.2 HARDWARE SPECIFICATION

Table 6: Details of the hardware used for evaluation of CHAMELEON.

SPECIFICATIONS DETAILS

GPU Titan Xp
Host CPU 3.4G Hz Intel Core i7

Main Memory 32GB 2400 MHz DDR3
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A.3 HYPER-PARAMETERS

Table 7: Hyper-parameters uses in CHAMELEON.

HYPERPARAMETER VALUE DESCRIPTION

iterationopt 16 number of iterations for optimization process
(equivalent to 1000 hardware measurements)

modeGBT xgb-reg type of loss used for cost model
bGBT 64 maximum batch size of planning in GBT (Chen & Guestrin, 2016)

cost model per iteration of optimization process
episoderl 128 number of episodes for reinforcement learning
steprl 500 maximum steps of one reinforcement learning episode

thresholdmeta 2.5 threshold used for meta-search in sampling

Table 8: Hyper-parameters uses in AutoTVM (Chen et al., 2018b).

HYPERPARAMETER VALUE DESCRIPTION

Σ(bGBT ) 1000 total number of hardware measurements
modeGBT xgb-reg type of loss used for cost model
bGBT 64 batch size of planning in GBT (Chen & Guestrin, 2016)
nsa 128 number of Markov chains in parallel simulated annealing

stepsa 500 maximum steps of one simulated annealing run

Table 9: Hyper-parameters used in CHAMELEON’s PPO (Schulman et al., 2017) search agent.

HYPERPARAMETER VALUE

Adam Step Size 1 × 10−3

Discount Factor 0.9
GAE Parameter 0.99

Number of Epochs 3
Clipping Parameter 0.3
Value Coefficient 1.0

Entropy Coefficient 0.1
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B ADDITIONAL EXPERIMENTAL RESULTS

B.1 OPTIMIZATION TIME BREAKDOWN FOR DNN MODELS
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(b) VGG-16.
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Figure 11: AutoTVM optimization time for AlexNet (Krizhevsky et al., 2012) and VGG-16 (Si-
monyan & Zisserman, 2015), and ResNet-18 (He et al., 2016) on Titan Xp. Numbers in bars denote
fraction of time for measurements.

B.2 PERFORMANCE VS. NUMBER OF MEASUREMENTS FOR DNN MODELS
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Figure 12: Layer evaluations for AlexNet (Krizhevsky et al., 2012).
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Figure 13: Layer evaluations for VGG-16 (Simonyan & Zisserman, 2015).
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Figure 14: Layer evaluations for ResNet-18 (He et al., 2016).
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