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ABSTRACT

We propose Zeno++, a new robust asynchronous Stochastic Gradient De-
scent (SGD) procedure which tolerates Byzantine failures of the workers. In
contrast to previous work, Zeno++ removes some unrealistic restrictions on worker-
server communications, allowing for fully asynchronous updates from anonymous
workers, arbitrarily stale worker updates, and the possibility of an unbounded
number of Byzantine workers. The key idea is to estimate the descent of the loss
value after the candidate gradient is applied, where large descent values indicate
that the update results in optimization progress. We prove the convergence of
Zeno++ for non-convex problems under Byzantine failures. Experimental results
show that Zeno++ outperforms existing approaches.

1 INTRODUCTION

Synchronous training and asynchronous training are the two most common paradigms of distributed
machine learning. On the one hand, synchronous training requires, periodically, the global updates
at the server to be blocked until all the workers respond. In contrast, for asynchronous training, the
server updates the global model immediately after a worker responds. Theoretical and experimental
analysis (Dutta et al., 2018) suggests that synchronous training is more stable with less noise, but can
also be slowed down by the global barrier across all the workers. Asynchronous training is generally
faster, but needs to address instability and noisiness due to staleness. In this paper, we focus on
asynchronous training.

We study the security of distributed asynchronous Stochastic Gradient Descent (SGD) in a centralized
worker-server architecture, also known as the Parameter Server (or PS) architecture. In the PS
architecture, there are server nodes and worker nodes. When combined with an asynchronous SGD
approach, each worker pulls the global model from the servers, estimates the gradients using the local
portion of the training data, then sends the gradient estimates to the servers. The servers update the
model as soon as a new gradient is received from any worker.

The security of machine learning has gained increasing attention in recent years. In particular,
tolerance to Byzantine failures (Blanchard et al., 2017; Chen et al., 2017; Yin et al., 2018; Feng
et al., 2014; Su and Vaidya, 2016a;b; Xie et al., 2018b; Alistarh et al., 2018; Cao and Lai, 2018)
has become an important topic in the distributed machine learning literature. Byzantine failures are
well-studied for the distributed systems (Lamport et al., 1982a). However, in distributed machine
learning, Byzantine failures have unique properties. In brief, the goal of Byzantine workers is to
prevent convergence of the model training. By construction, Byzantine failures (Lamport et al.,
1982b) assume the worst case, i.e., the Byzantine workers can behave arbitrarily. Such failures may
be caused by a variety of reasons including but not limited to: hardware/software bugs, vulnerable
communication channels, poisoned datasets, or malicious attackers. To make things worse, groups of
Byzantine workers can collude, potentially resulting in more harmful attacks. It is also clear that as
the worst case, Byzantine failures generalize benign failures such as hardware or software errors.

Unlike previous work (Damaskinos et al., 2018), we tackle Byzantine tolerance in a more general
scenario. The Byzantine tolerance of asynchronous SGD is challenging in this case because of:

• Asynchrony. The lack of synchrony incurs additional noise for the stochastic gradients. Such
noise makes it more difficult to distinguish the Byzantine gradients from the benign ones, especially
as Byzantine behavior may exacerbate staleness.

• Unpredictable successive updates. The lack of synchronous scheduling makes it possible for the
server to receive updates from Byzantine workers successively. Thus, even in the standard scenario,
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where less than half of the workers are Byzantine, the server can be suffocated by successive
Byzantine gradients.

• Unbounded number of Byzantine workers. For the Byzantine tolerance in fully asynchronous
training, the assumption of a bounded number of Byzantine workers is meaningless. In Byzantine-
tolerant synchronous training (Blanchard et al., 2017; Chen et al., 2017; Yin et al., 2018; Xie
et al., 2018b;a), the servers can compare the candidate gradients with each other, and utilize the
majority assumption to filter out the harmful gradients, or use robust aggregation to bound the error.
However, such strategies are infeasible in asynchronous training, since there is nothing to compare
to or aggregate. Aggregating the successive gradients is also meaningless since the successive
gradients could all be pushed by the same Byzantine worker. Furthermore, although most of the
previous work (Blanchard et al., 2017; Chen et al., 2017; Yin et al., 2018; Feng et al., 2014; Su and
Vaidya, 2016a;b; Alistarh et al., 2018; Cao and Lai, 2018) assumes a majority of honest workers,
this requirement is not guaranteed to be satisfied in practice.

The key idea of our approach is to estimate the descent of the loss value after the candidate gradient
is applied to the model parameters, based on the Byzantine-tolerant synchronous SGD algorithm,
Zeno (Xie et al., 2018b). Intuitively, if the loss value decreases, the candidate gradient is likely to
result in optimization progress. For computational efficiency, we also propose a lazy update.

To the best of our knowledge, this paper is the first to theoretically and empirically study Byzantine-
tolerant fully asynchronous SGD with anonymous workers, and potentially an unbounded number of
Byzantine workers. In summary, our contributions are:

• We propose Zeno++, a new approach for Byzantine-tolerant fully asynchronous SGD with anony-
mous workers.

• We show that Zeno++ tolerates Byzantine workers without any limit on either the staleness or the
number of Byzantine workers.

• We prove the convergence of Zeno++ for non-convex problems.

• Experimental results validate that 1) existing algorithms may fail in practical scenarios, and 2)
Zeno++ gracefully handles such cases.

2 RELATED WORK

Most of the existing Byzantine-tolerant SGD algorithms focus on synchronous training. Chen et al.
(2017); Su and Vaidya (2016a;b); Yin et al. (2018); Xie et al. (2018a) use robust statistics (Huber,
2011) including the geometric median, coordinate-wise median, and trimmed mean as Byzantine-
tolerant aggregation rules. Blanchard et al. (2017); Mhamdi et al. (2018) propose Krum and its
variants, which select the candidates with minimal local sum of Euclidean distances. Alistarh et al.
(2018) utilize historical information to identify harmful gradients. Chen et al. (2018) use coding
theory and majority voting to recover correct gradients. Most of these synchronous algorithms assume
that most of the workers are non-Byzantine. However, in practice, there are no guarantees that the
number of Byzantine workers can be controlled. Xie et al. (2018b); Cao and Lai (2018) propose
synchronous SGD algorithms for an unbounded number of Byzantine workers.

Recent years have witnessed an increasing number of large-scale machine learning algorithms,
including asynchronous SGD (Zinkevich et al., 2009; Lian et al., 2018; Zheng et al., 2017; Zhou
et al., 2018). Damaskinos et al. (2018) proposed Kardam, which to our knowledge is the only prior
work to address Byzantine-tolerant asynchronous training. Kardam utilizes the Lipschitzness of the
gradients to filter out outliers. However, Kardam assumes a threat model much weaker than ours. The
major differences in the threat model are listed as follows:

• Verification of worker identity. Unlike Kardam, we do not require verifying the identities of
the workers when the server receives gradients. Kardam uses the so-called empirical Lipschitz
coefficient, to test the benignity of the gradient sent by a specific worker. Such a mechanism keeps
the record of the empirical Lipschitz coefficient of each worker. Thus, whenever a gradient is
received, the Kardam server must be able to identify the identity/index of the worker. However,
since Byzantine workers can behave arbitrarily, they can fake their identities/indices when sending
gradients to the servers. Thus, Kardam assumes a threat model much weaker than the traditional
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Byzantine failure/threat model. Note that for synchronous training, the server can partially counter
the index spoofing attack by simply filtering out all the gradients with duplicated indices. However,
such an approach is infeasible for asynchronous training.

• Bounded staleness of workers/limit of successive gradients. Unlike Kardam, we do not require
bounded staleness of the workers. Kardam requires that the number of gradients successively
received from a single worker is bounded above. To be more specific, on the server, any sequence
of successively received gradients of length 2q + 1 must contain at least q + 1 gradients from
honest workers. However, in real-world asynchronous training, such an assumption is very difficult
to satisfy.

• A majority of honest workers. Unlike Kardam, we do not require a majority of honest workers.
Kardam requires that the number of Byzantine workers is less than one-third of the total number
of workers – much stronger restriction than the standard setting that allows for the number of
Byzantine workers to be up to 50% of the total number of workers. Zeno++ further extends this
guarantee to allow for not only 50%, but also a majority of Byzantine workers.

3 MODEL

We consider the following optimization problem: minx∈Rd F (x), where F (x) =
1
m

∑
i∈[m] Ezi∼Di

f(x; zi), for ∀i ∈ [m], zi is sampled from the local data Di on the ith device.

We solve this problem in a distributed manner with m workers. Each worker trains the model on local
data. In each iteration, the ith worker will sample n independent data points from the dataset Di,
and compute the gradient of the local empirical loss Fi(x) = 1

n

∑n
j=1 f(x; zi,j),∀i ∈ [m], where

zi,j ∼ Di is the jth sampled data on the ith worker. When there are no Byzantine failures, the servers
update the model whenever a new gradient is received:

xt+1 = xt − γtgτ , gτ =
1

n

∑
j∈[n]

∇f(xτ ; zi,j), τ ≤ t, i ∈ [m].

When there are Byzantine failures, gτ can be replaced by arbitrary value (Damaskinos et al., 2018).
Formally, we define the threat model as follows.
Definition 1. (Threat Model). When the server receives a gradient estimator g̃τ , it is either correct
or Byzantine. If sent by a Byzantine worker, g̃τ is assigned arbitrary value. If sent by an honest
worker, the correct gradient is 1

n

∑n
j=1∇f(xτ ; zi,j), τ ≤ t, i ∈ [m]. Thus, we have

g̃τ =

{
arbitrary value, if sent by a Byzantine worker,
1
n

∑n
j=1∇f(xτ ; zi,j), τ ≤ t, i ∈ [m], otherwise.

We assume that q out of m workers are Byzantine, where q ≤ m. Furthermore, the indices of
Byzantine workers can change across different iterations.

Table 1: Notation
Notation Description
m, [m], q Number of workers, set of integers {1, . . . ,m}, number of Byzantine workers
Di, S Di is the training dataset on the ith worker, S is the validation dataset on Zeno++ server
n, ns Mini-batch size of workers, mini-batch size of Zeno++ server
T , t, γ Number of global iterations, index of global iteration, learning rate
ρ, ε, k Hyperparameter of Zeno++, k is the maximum delay of gr , also called “server delay”
kw Maximum delay of workers, also called “worker delay”, different from the “server delay” k
‖ · ‖ All the norms in this paper are l2-norms

4 METHODOLOGY

In this section, we introduce Zeno++, a Byzantine-tolerant asynchronous SGD algorithm based on
inner-product validation. Zeno++ is a computationally efficient version of its prototype: Zeno+.

4.1 ZENO+

Like Zeno (Xie et al., 2018b), we compute a score for each candidate gradient estimator by using the
stochastic zero-order oracle. However, in contrast to the existing synchronous SGD with majority-
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based aggregation methods, we need a hard threshold to decide whether a gradient is accepted, as
sorting is not meaningful in asynchronous settings. This descent score is described next.

Definition 2. (Stochastic Descent Score (Xie et al., 2018b)) Denote fs(x) = 1
ns

∑ns

j=1 f(x; zj),
where zj’s are i.i.d. samples drawn from S, where S 6= Di,∀i ∈ [m], and ns is the batch size of
fs(·). For any gradient estimator (correct or Byzantine) g, model parameter x, learning rate γ, and
a constant weight ρ > 0, we define its stochastic descent score as follows:

Scoreγ,ρ(g, x) = fs(x)− fs(x− γg)− ρ‖g‖2.
Remark 1. Note that we assume that the dataset S for computing fs(·) is different from the training
dataset, e.g., can be a separated validation dataset. In other words, S 6= D1 6= · · · 6= Dm 6= ∪mi=1Di.

The score defined in Definition 2 is composed of two parts: the estimated descent of the loss function,
and the magnitude of the update. The score increases when the estimated descent of the loss function,
fs(x)− fs(x− γg), gets larger. We penalize the score by −ρ‖g‖2, so that the change of the model
parameter will not be too large. A large descent suggests faster convergence. Observe that even when
a gradient is Byzantine, a small magnitude indicates that it will be less harmful to the model.

Using the stochastic descent score, we can set a hard threshold parameterized by ε to filter out
candidate gradients with relatively small scores. The detailed algorithm is outlined in Algorithm 1.

Algorithm 1 Zeno+
Server:
1: x0 ← rand(), t← 1 . Initialization
2: repeat
3: Randomly sample zj ∼ S, ∀j ∈ [ns] to compute fs (Note: S 6= D1 6= · · · 6= Dm)
4: Receive g̃ from an arbitrary worker
5: Normalize g = cg̃ such that ‖g‖2 = ‖∇fs(xt−1)‖2, c > 0
6: if Scoreγ,ρ(g, xt−1) ≥ −γε then
7: xt ← xt−1 − γg, t← t+ 1
8: end if
9: until Convergence
Worker i = 1, . . . ,m:
1: function WORKER (HONEST)
2: repeat
3: Pull xτ from the server
4: Draw random samples zi,j ∼ Di, ∀j ∈ [n], compute g̃ ← 1

n

∑
j∈[n]∇f(xτ ; zi,j)

5: Push g̃ to the server
6: until Convergence
7: end function

4.2 ZENO++

Calculating the stochastic descent score for every candidate gradient can be computationally expen-
sive. To reduce the computation overhead, we approximate it by its first-order Taylor’s expansion.

Definition 3. (Approximated Stochastic Descent Score) Denote fs(x) = 1
ns

∑ns

j=1 f(x; zj), where
zj’s are i.i.d. samples drawn from S , where S 6= Di,∀i ∈ [m], and ns is the batch size of fs(·). For
any gradient estimator (correct or Byzantine) g, model parameter x, learning rate γ, and a constant
weight ρ > 0, we approximate its stochastic descent score as follows:

Scoreγ,ρ(g, x) ≈ γ 〈∇fs(x), g〉 − ρ‖g‖2.

In brief, Zeno++ is a computationally efficient version of Zeno+ which uses this approximated
stochastic descent score, combined with lazy updates. The detailed algorithm is shown in Algorithm 2.
Compared to Zeno, we highlight several new techniques in Zeno++ (Algorithm 2), specially
designed for asynchronous training: 1) re-scaling the candidate gradient (Line 6); 2) first-order
Taylor’s expansion (Line 7); 3) hard threshold instead of comparison with the others (Line 7); 4) lazy
update for reducing the computation overhead (Line 9).

Before moving forward, we wish to highlight several practical remarks for Zeno++:
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• Preparing the validation dataset for Zeno++: The dataset S used for calculating v (the validation
gradient of Zeno++) can be collected in many ways. It can be a separate validation dataset
provided by a trusted third party. Another reasonable choice is that, a group of trusted workers can
upload local data perturbed by additional noise (to help protect the users’ privacy). Typically, the
validation dataset is small and different from the training dataset, thus can only be used to validate
the gradients, and cannot be directly used for training, as shown in Section 6.

• Scheduling ZenoUpdater(x): ZenoUpdater(x) updates v in the background. It will only be
triggered when the global model xt is updated and the server is idle. Another scheduling strategy
is to trigger ZenoUpdater(x) after every k iterations. Thus, k is the upper bound of the delay of
v. A reasonable choice is k = m, so that ideally v is updated after all the m workers respond.

• Computational efficiency: We can reduce the computation overhead of the Zeno++ server
by decreasing the mini-batch size ns, or the frequency of the activation of ZenoUpdater(x).
However, doing so will potentially incur larger noise for v, which makes a trade-off.

Algorithm 2 Zeno++
Server:
1: x0 ← rand(), t← 1 . Initialization
2: repeat
3: repeat
4: Receive g̃ from an arbitrary worker
5: Read v with lock (v may be from an old version of x: v = ∇fs(xτ ), τ ≤ t− 1)
6: Normalize g = cg̃ such that ‖g‖2 = ‖v‖2, c > 0
7: until γ 〈v, g〉 − ρ‖g‖2 ≥ −γε
8: xt ← xt−1 − γg, t← t+ 1
9: Lazy update of v: Run non-blocking ZenoUpdater(xt), if idle, or after every k iterations

10: until Convergence
11: function ZENOUPDATER(x)
12: Randomly sample zj ∼ S, ∀j ∈ [ns] to compute fs (Note: S 6= D1 6= · · · 6= Dm)
13: Write with lock: v ← ∇fs(x) = 1

ns

∑ns

j=1∇f(x; zj)
14: end function
Worker i = 1, . . . ,m:
1: function WORKER (HONEST)
2: repeat
3: Pull xτ from the server
4: Draw random samples zi,j ∼ Di, ∀j ∈ [n], compute g̃ ← 1

n

∑
j∈[n]∇f(xτ ; zi,j)

5: Push g̃ to the server
6: until Convergence
7: end function

5 THEORETICAL GUARANTEES

In this section, we prove the convergence of Zeno++ (Algorithm 2) under Byzantine failures. We
start with definitions used in the convergence analysis.

Definition 4. (Smoothness) Differentiable f(x) satisfies L-smoothness if there exists L > 0 such
that ∀x, y, f(y)− f(x) ≤ 〈∇f(x; z), y − x〉+ L

2 ‖y − x‖
2.

Definition 5. (Polyak-Łojasiewicz (PL) inequality) Differentiable f(x) satisfies the PL inequal-
ity (Polyak, 1963) if there exists µ > 0, such that ∀x: f(x)− f(x∗) ≤ 1

2µ‖∇f(x)‖
2.

5.1 CONVERGENCE GUARANTEES

We prove the convergence of Algorithm 2 for non-convex problems with the following assumption.

Assumption 1. (Bounded server delay) For Zeno++, we assume that the delay of the validation
gradient v is upper-bounded. Without loss of generality, suppose the current model is xt, and
v = ∇fs(xτ ), where τ ≤ t. We assume that for ∀t, t− τ ≤ k.
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Remark 2. Zeno++ does not require bounded delay for the workers. The bounded delay requirement
in Assumption 1 is only for the validation gradient v on the server, not for the workers.

We first analyze the convergence of functions that satisfy the PL inequality.

Theorem 1. Assume that F (x) and fs(x) are L-smooth and satisfy the PL inequality. Assume
that for ∀x, the correct gradients and validation gradients are upper-bounded: ‖∇F (x)‖2 ≤
V1, ‖∇fs(x)‖2 ≤ V1, and the validation gradients are always non-zero and lower-bounded:
‖∇fs(x)‖2 ≥ V2, where 0 < V2 ≤ V1. Furthermore, we assume that the validation set is close
to the training set, which implies bounded variance: E

[
‖∇fs(x)−∇F (x)‖2

]
≤ V3,∀x. Taking

γ < min(1, 1
L ) and ρ ≥ α

√
γV1

2µV2
, after T global updates, Algorithm 2 converges to a global optimum:

E [F (xT )− F (x∗)] ≤ (1− α√γ)T [F (x0)− F (x∗)] +
√
γ

α
O(k2V1 + V3 + ε).

Remark 3. The assumption of the lower bounded gradient ‖∇fs(x)‖2 ≥ V2 is necessary. We need
∇fs(x) 6= 0, so that the normalization in Line 6 and inner product in Line 7 of Algorithm 2 are
feasible. In practice, if we have a mini-batch with zero gradient∇fs(x) = 0 on server, we can simply
draw additional samples and add them to the mini-batch, until such gradient is non-zero.

For general smooth but non-convex functions, we have the following convergence guarantee.

Theorem 2. Assume that F (x) and fs(x) are L-smooth and potentially non-convex. Assume that for
∀x, the true gradients and validation gradients are upper-bounded: ‖∇F (x)‖2 ≤ V1, ‖∇fs(x)‖2 ≤
V1, and the validation gradients are always non-zero and lower-bounded: ‖∇fs(x)‖2 ≥ V2, where
0 < V2 ≤ V1. Furthermore, we assume that the validation set is close to the training set, which implies
bounded variance: E

[
‖∇fs(x)−∇F (x)‖2

]
≤ V3,∀x. Taking γ < min(1, 1

L ) and ρ ≥ α
√
γV1

V2
,

after T global updates, Algorithm 2 converges to a critical point:
E
[∑

t∈[T ] ‖∇F (xt−1)‖2
]

T
≤ E [F (x0)− F (x∗)]

α
√
γT

+

√
γ

α
O(k2V1 + V3 + ε).

Furthermore, if we take γ = 1
LT , then we have

E[
∑

t∈[T ] ‖∇F (xt−1)‖2]
T ≤ O

(
1

α
√
T

)
.

Remark 4. ρ controls the trade-off between the acceptance ratio and the convergence rate. Large
positive ρmakes the convergence faster, but fewer candidate gradients pass the test of Zeno++. Small
positive ρ increases the acceptance ratio, but may also potentially slow down the convergence or
incur larger variance. We use α > 0 to bridge ρ to the convergence rate and the variance. Larger α
makes ρ larger, which improves the convergence rate, but also enlarges the variance. Using non-zero
ε potentially results in negative thresholds, which enlarges the acceptance ratio, but also increases
the false negative ratio (the ratio of Byzantine gradients that are not filtered out by Zeno++).

6 EXPERIMENTS

In this section, we evaluate the proposed algorithm, Zeno++. Note that we do not evaluate the
prototype algorithm Zeno+, since its computation overhead is too large for practical settings. Due to
the space limitation, zoomed figures and additional experiments (including evaluation on an additional
label-flipping attack, and testing the sensitivity to hyperparameters) are presented in the appendix.

6.1 DATASETS AND EVALUATION METRICS

We conduct experiments on the benchmark CIFAR-10 image classification dataset (Krizhevsky and
Hinton, 2009), which is composed of 50k images for training and 10k images for testing. We use a
convolutional neural network (CNN) with 4 convolutional layers followed by 2 fully connected layers.
The detailed network architecture can be found in our submitted source code (will be released upon
publication). In the 50k images for training, we randomly extracted 2.5k of them as the validation
set for Zeno++, the remaining are randomly partitioned onto all the workers. In each experiment,
we launch 10 worker processes. We repeat each experiment 10 times and take the average. Each
experiment is composed of 200 epochs, where each epoch is a full pass of the training dataset. We
simulate asynchrony by drawing random delay from a uniform distribution in the range of [0, kw],
where kw is the maximum worker delay (different from the maximum server delay k of Zeno++).
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We use top-1 accuracy on the testing set and the cross-entropy loss function on the training set as the
evaluation metrics. We also report the false positive rate (FP), which is the ratio of correct gradients
that are recognized as Byzantine and filtered out by Zeno++ or the Kardam baseline.

6.1.1 BASELINES

We use the asynchronous SGD without failures/attacks as the gold standard, which is referred to as
AsyncSGD without attack. Since Kardam is the only previous work on Byzantine-tolerant
asynchronous SGD, we use it as the baseline.

One may conjecture that Zeno++ is analogous to training on the validation data. To explore this,
we consider training only on S – assumed to be clean data on the server, i.e., update the model only
using v = ∇fs(x) on the server, without using any workers. We call this baseline Server-only.
We fine-tune the learning rate and show the best results of Server-only.

6.2 NO ATTACK

We first test the convergence when there are no attacks. In all the experiments, we take the learning
rate γ = 0.1, mini-batch size n = ns = 128, ρ = 0.002, ε = 0.1, k = 10. For Kardam, we
take q = 2 (i.e. here Kardam assumes that there are 2 Byzantine workers). The result is shown in
Figure 1. Zeno++ converges a little bit slower than AsyncSGD, but faster than Kardam, especially
when the worker delay is large. When kw = 10, Zeno++ converges much faster than Kardam.
Server-only performs badly on both training and testing data.
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Figure 1: Convergence without attacks, with different maximum worker delays kw. ρ = 0.002, ε =
0.1, k = 10 for Zeno++. FP refers to the fraction of false positive detect ions i.e. incorrect prediction
that a message is Byzantine.

6.3 SIGN-FLIPPING ATTACK

We test the Byzantine-tolerance to the “sign-flipping” attack, which was proposed in Damaskinos et al.
(2018). In such attacks, the Byzantine workers send−10∇f(x) instead of the correct gradient∇f(x)
to the server. In all the experiments, we take the learning rate γ = 0.1, mini-batch size n = ns = 128,
ρ = 0.002, ε = 0.1, k = 10. The result is shown in Figure 2, with different number of Byzantine
workers q. It is shown that when q = 4, Zeno++ converges slightly slower than AsyncSGD without
attacks, and much faster than Kardam. Actually, we observe that Kardam fails to make progress
when the worker delay is large. When the number of Byzantine workers gets larger (q = 8), the
convergence of Zeno++ gets slower, but it still makes reasonable progress, while AsyncSGD and
Kardam fail. Note that Kardam performs even worse than Server-only, which means that
Kardam is not even as good as training on a single honest worker. Thus, when there are Byzantine
workers, distributed training with Kardam is meaningless.

6.4 DISCUSSION

Kardam performs surprisingly badly in our experiments. The experiments in Damaskinos et al.
(2018) focus on dampening staleness when there are no Byzantine failures. For Byzantine tolerance,
Damaskinos et al. (2018) only reports that Kardam filters out 100% of the Byzantine gradients, which
matches the results in our experiments. However, we observe that in addition to filtering out 100% of
the Byzantine gradients, Kardam also filters nearly 100% of the correct gradients. In Figure 2, we
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(c) Top-1 accuracy on test-
ing set, kw = 15, q = 4.
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(d) Cross entropy on train-
ing set, kw = 15, q = 4.
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(e) Top-1 accuracy on test-
ing set, kw = 5, q = 8.
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(f) Cross entropy on train-
ing set, kw = 5, q = 8.
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(g) Top-1 accuracy on test-
ing set, kw = 15, q = 8.
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Figure 2: Convergence with sign-flipping attacks with different maximum worker delays kw. For any
correct gradient g, if selected to be Byzantine, g will be replaced by −10g. q ∈ {4, 8} out of the 10
workers are Byzantine. ρ = 0.002, ε = 0.1, k = 10 for Zeno++. FP refers to the fraction of false
positive detect ions i.e. incorrect prediction that a message is Byzantine.

report that the false positive rate of Kardam is nearly 99%, which makes the convergence extremely
slow. To make things worse, Kardam does not even perform as good as Server-only, which
makes the distributed training with Kardam totally meaningless. One reason why Kardam performs
badly is that we use a more general threat model in this paper, which does not guarantee an important
assumption of Kardam, namely “any sequence of successively received gradients of length 2q + 1
must contain at least q + 1 gradients from honest workers”. It is clear that this assumption is quite
strong, as in an asynchronous setting, Byzantine workers can easily send long sequences of erroneous
responses. Our approach does not depend on such a strong assumption.

In all the experiments, Zeno++ converges faster than the baselines when there are Byzantine failures.
Although the convergence of Zeno++ is slower than AsyncSGD when there are no attacks, we find
that it provides a reasonable trade-off between security and convergence speed. In general, larger
worker delay kw and more Byzantine workers q add more error and noise to the gradients, which
slows down the convergence, because there are fewer valid gradients for the server to use. Zeno++
can filter out most of the harmful gradients at the cost of FP ≈ 50%.

Note that Server-only is an extreme case that only uses the server and the validation dataset
to train the model in a non-distributed manner, which will not be affected by Byzantine workers.
However, only using the validation data is not enough for training, as shown in Figure 1. Similarly in
practice, we can use a small dataset separated from the training data for cross-validation, but will
never directly train the model only on such validation dataset. Furthermore, as shown in Figure 2,
Zeno++ performs much better than Server-only. Thus, we can draw to the conclusion that
Zeno++ is efficiently training the model on the honest workers in a distributed manner, which is not
equivalent to training on the validation dataset only.

On average, the server computes ns

k = 12.8 gradients in each iteration, since the validation gradient
v of Zeno++ is updated after every k = 10 iterations. Thus, the workload on the server is much
smaller than a worker. Furthermore, since we can parallelize the workload on the server and workers,
the computation overhead of v can be hidden, so that Zeno++ can benefit from distributed training.

7 CONCLUSION

We propose a novel Byzantine-tolerant fully asynchronous SGD algorithm: Zeno++. The algorithm
provably converges. Our empirical results show good performance compared to previous work. In
future work, we will explore variations of our approach for other settings such as federated learning.
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Appendix

A PROOFS

A.1 ZENO++

We first analyze the convergence of the functions whose gradients grow as a quadratic function of
sub-optimality.

Theorem 1. Assume that F (x) and fs(x) have L-smoothness and PL inequality (potentially non-
convex). Assume that for ∀x, the true gradients and stochastic gradients are upper-bounded:
‖∇F (x)‖2 ≤ V1, ‖∇fs(x)‖2 ≤ V1, and the stochastic gradients for Zeno testing are al-
ways non-zero and lower-bounded: ‖∇fs(x)‖2 ≥ V2, where 0 < V2 ≤ V1. Furthermore,
we assume that the validation set is close to the training set, which implies bounded variance:
E
[
‖∇fs(x)−∇F (x)‖2

]
≤ V3,∀x. Taking γ < min(1, 1

L ) and ρ ≥ α
√
γV1

2µV2
, after T global updates,

Algorithm 2 converges to a global optimum:

E [F (xT )− F (x∗)] ≤ (1− α√γ)T [F (x0)− F (x∗)] +
√
γ

α
O(k2V1 + V3 + ε).

Proof. If any gradient estimator g passes the test of Zeno++, then we have
〈∇fs(xτ ),−γg〉 ≤ −ρ‖g‖2 + γε,

where τ ≤ t− 1.

Thus, we have
〈∇F (xt−1),−γg〉
≤ 〈∇F (xt−1)−∇fs(xτ ),−γg〉 − ρ‖∇fs(xτ )‖2 + γε

≤ −ρV2
V1
‖∇F (xt−1)‖2 +

γ

2
‖∇F (xt−1)−∇fs(xτ )‖2 +

γ

2
‖∇fs(xτ )‖2 + γε

≤ −ρV2
V1
‖∇F (xt−1)‖2 + γ‖∇F (xτ )−∇fs(xτ )‖2 + γ‖∇F (xt−1)−∇F (xτ )‖2 +

γ

2
V1 + γε

≤ −ρV2
V1
‖∇F (xt−1)‖2 + γV3 + γ‖∇F (xt−1)−∇F (xτ )‖2 +

γ

2
V1 + γε.

‖∇F (xt−1)−∇F (xτ )‖2 can be upper-bounded using L-smoothness and the bounded delay:
‖∇F (xt−1)−∇F (xτ )‖2 ≤ L2‖xt−1 − xτ‖2 ≤ L2k2γ2V1.

Again, using smoothness, taking ρ ≥ α
√
γV1

2µV2
, we have

E [F (xt)− F (x∗)]

≤ F (xt−1)− F (x∗) + 〈∇F (xt−1),−γE[g]〉+
Lγ2

2
E‖g‖2

≤ F (xt−1)− F (x∗)− ρ
V2
V1
‖∇F (xt−1)‖2 + γV3 + L2k2γ3V1 +

γ

2
V1 +

Lγ

2
V1 + γε

≤ F (xt−1)− F (x∗)− ρ
V2
V1
‖∇F (xt−1)‖2 + γO(k2V1 + V3 + ε)

≤
[
1− 2µρ

V2
V1

]
[F (xt−1)− F (x∗)] + γO(k2V1 + V3 + ε)

≤ (1− α√γ) [F (xt−1)− F (x∗)] + γO(k2V1 + V3 + ε).

By telescoping and taking total expectation, after T global updates, we have

E [F (xT )− F (x∗)] ≤ (1− α√γ)T [F (x0)− F (x∗)] +
√
γ

α
O(k2V1 + V3 + ε).
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For general smooth but non-convex functions, we have the following convergence guarantee.

Theorem 2. Assume that F (x) and fs(x) are L-smooth and potentially non-convex. Assume
that for ∀x, the true gradients and stochastic gradients are upper-bounded: ‖∇F (x)‖2 ≤ V1,
‖∇fs(x)‖2 ≤ V1, and the stochastic gradients for Zeno testing are always non-zero and lower-
bounded: ‖∇fs(x)‖2 ≥ V2, where 0 < V2 ≤ V1. Furthermore, we assume that the validation set
is close to the training set, which implies bounded variance: E

[
‖∇fs(x)−∇F (x)‖2

]
≤ V3,∀x.

Taking γ < min(1, 1
L ) and ρ ≥ α

√
γV1

V2
, after T global updates, Algorithm 2 converges to a critical

point:
E
[∑

t∈[T ] ‖∇F (xt−1)‖2
]

T
≤ E [F (x0)− F (x∗)]

α
√
γT

+

√
γ

α
O(k2V1 + V3 + ε).

Furthermore, if we take γ = 1
LT , then we have

E
[∑

t∈[T ] ‖∇F (xt−1)‖2
]

T
≤ O

(
1

α
√
T

)
.

Proof. Similar to Theorem 1, we have

〈∇F (xt−1),−γg〉 ≤ −ρ
V2
V1
‖∇F (xt−1)‖2 + γO(k2V1 + V3 + ε).

Using smoothness, taking ρ ≥ α
√
γV1

V2
, we have

E [F (xt)]

≤ F (xt−1) + 〈∇F (xt−1),−γE[g]〉+
Lγ2

2
E‖g‖2

≤ F (xt−1)− ρ
V2
V1
‖∇F (xt−1)‖2 + γO(k2V1 + V3 + ε)

≤ F (xt−1)− α
√
γ‖∇F (xt−1)‖2 + γO(k2V1 + V3 + ε).

Thus, we have

‖∇F (xt−1)‖2 ≤
E [F (xt−1)− F (xt)]

α
√
γ

+

√
γ

α
O(k2V1 + V3 + ε).

By telescoping and taking total expectation, after T global updates, we have
E
[∑

t∈[T ] ‖∇F (xt−1)‖2
]

T
≤ E [F (x0)− F (x∗)]

α
√
γT

+

√
γ

α
O(k2V1 + V3 + ε).

Furthermore, if we take γ = 1
LT , then we have

E
[∑

t∈[T ] ‖∇F (xt−1)‖2
]

T
≤ O

(
1

α
√
T

)
.

A.2 ZENO+

Theorem 3. Assume that F (x) and fs(x) have L-smoothness has µ-strong convexity. Assume
that for ∀x, the true gradients and stochastic gradients are upper-bounded: ‖∇F (x)‖2 ≤ V1,
‖∇fs(x)‖2 ≤ V1, and the stochastic gradients for Zeno testing are always non-zero and lower-
bounded: ‖∇fs(x)‖2 ≥ V2, where 0 < V2 ≤ V1. Furthermore, we assume that the validation set
is close to the training set, which implies bounded variance: E

[
‖∇fs(x)−∇F (x)‖2

]
≤ V3,∀x.

Taking γ < min(1, 1
L ) and ρ ≥ α

√
γV1

2µV2
− µγ2

2 , after T global updates, Algorithm 1 converges to a
global optimum:

E [F (xT )− f(x∗)] ≤ (1− α√γ)T [F (x0)− f(x∗)] +
√
γ

α
O(V1 + V3 + ε).

12
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Proof. Using µ-strong convexity, we have

〈∇fs(x),−γg〉+
µγ2

2
‖g‖2 ≤ fs(x− γg)− fs(x) ≤ −ρ‖g‖2 + γε.

Note that ‖∇fs(x)‖
2

‖∇F (x)‖2 ≥
V2

V1
. Thus, we have

〈∇fs(x),−γg〉 ≤ −
(
ρ+

µγ2

2

)
‖∇fs(x)‖2 + γε ≤ −

(
ρ+

µγ2

2

)
V2
V1
‖∇F (x)‖2 + γε.

Then, we have
〈∇F (x),−γg〉
= 〈∇fs(x),−γg〉+ 〈∇F (x)−∇fs(x),−γg〉
= 〈∇fs(x),−γg〉+ γ 〈(∇F (x)−∇fs(x) ),−g〉

≤ 〈∇fs(x),−γg〉+
γ

2
‖∇F (x)−∇fs(x)‖2 +

γ

2
‖g‖2.

Taking the expectation on both sides, we have

〈∇F (x),−γE[g]〉 ≤ −
(
ρ+

µγ2

2

)
V2
V1
‖∇F (x)‖2 + γ

2
(V1 + V3) + γε.

Using L-smoothness, conditional on x, we have
E [F (x− γg)− F (x)]

≤ 〈∇F (x),−γE[g]〉+ Lγ2

2
E‖g‖2

≤ −
(
ρ+

µγ2

2

)
V2
V1
‖∇F (x)‖2 + γ

2
(V1 + V3) +

Lγ2

2
V1 + γε

≤ −
(
ρ+

µγ2

2

)
V2
V1
‖∇F (x)‖2 + γO(V1 + V3 + ε).

Again, using µ-strong convexity, we have

F (x)− F (x∗) ≤
1

2µ
‖∇F (x)‖2.

Thus, we have

E [F (x− γg)− f(x∗)] ≤
[
1− 2µ

(
ρ+

µγ2

2

)
V2
V1

]
[F (x)− f(x∗)] + γO(V1 + V3 + ε).

Taking xt−1 = x, and xt = x− γg, we have

E [F (xt)− f(x∗)] ≤
[
1− 2µ

(
ρ+

µγ2

2

)
V2
V1

]
[F (xt−1)− f(x∗)] + γO(V1 + V3) + ε.

Take ρ ≥ α
√
γV1

2µV2
− µγ2

2 , we have
E [F (xt)− f(x∗)] ≤ (1− α√γ) [F (xt−1)− f(x∗)] + γO(V1 + V3 + ε).

By telescoping and taking total expectation, after T global updates, we have
E [F (xT )− f(x∗)]

≤ (1− α√γ)T [F (x0)− f(x∗)] +
1− (1− α√γ)T

1− (1− α√γ)
γO(V1 + V3 + ε)

≤ (1− α√γ)T [F (x0)− f(x∗)] +
√
γ

α
O(V1 + V3 + ε).

B ADDITIONAL EXPERIMENTS

B.1 NO ATTACK

We first test the convergence when there are no attacks. In all the experiments, we take the learning
rate γ = 0.1, mini-batch size n = ns = 128, ρ = 0.002, ε = 0.1, k = 10. For Kardam, we take

13
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q = 2 (Kardam pretends that there are 2 Byzantine workers). The result is shown in Figure 3.
We can see that Zeno++ converges a little bit slower than AsyncSGD, but faster than Kardam,
especially when the worker delay is large. When kw = 10, Zeno++ converges much faster than
Kardam.
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(a) Top-1 Accuracy on Testing Set, max delay is 5
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(b) Cross Entropy on Training Set, max delay is 5
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(c) Top-1 Accuracy on Testing Set, max delay is 10
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(d) Cross Entropy on Training Set, max delay is 10

Figure 3: Convergence without attacks, with different maximum delays of workers. ρ = 0.002, ε =
0.1 for Zeno++.

B.2 SIGN-FLIPPING ATTACK

We test the Byzantine-tolerance to “sign-flipping” attack, which is proposed in Damaskinos et al.
(2018). In such attacks, the Byzantine workers send−10∇f(x) instead of the correct gradient∇f(x)
to the server. In all the experiments, we take the learning rate γ = 0.1, mini-batch size n = ns = 128,
ρ = 0.002, ε = 0.1, k = 10. The result is shown in Figure 4 and 5, with different number of
Byzantine workers q.

B.3 LABEL-FLIPPING ATTACK

We test the Byzantine tolerance to the label-flipping attacks. When such kind of attacks happen,
the workers compute the gradients based on the training data with “flipped" labels, i.e., any label ∈
{0, . . . , 9}, is replaced by 9− label. Such kind of attacks can be caused by data poisoning or software
failures. In all the experiments, we take the learning rate γ = 0.1, mini-batch size n = ns = 128,
ρ = 0.002, ε = 0.1, k = 10. The result is shown in Figure 6 and 7, with different number of
Byzantine workers q.

B.4 SENSITIVITY TO HYPERPARAMETERS

In Figure 8 and 9, we show how the hyperparameters ρ, ε, and k affect the convergence. In general,
Zeno++ is insensitive to ε. Larger ρ and k slow down the convergence.
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(a) Top-1 Accuracy on Testing Set, kw = 5.
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(b) Cross Entropy on Training Set, kw = 5.
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(c) Top-1 Accuracy on Testing Set, kw = 15.
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(d) Cross Entropy on Training Set, kw = 15.

Figure 4: Convergence with sign-flipping attacks, with different maximum worker delays kw. For
any correct gradient g, if selected to be Byzantine, g will be replaced by −10g. q = 4 out of the 10
workers are Byzantine. ρ = 0.002, ε = 0.1, k = 10 for Zeno++.
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(a) Top-1 Accuracy on Testing Set, kw = 5.
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(b) Cross Entropy on Training Set, kw = 5.
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(c) Top-1 Accuracy on Testing Set, kw = 15.
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(d) Cross Entropy on Training Set, kw = 15.

Figure 5: Convergence with sign-flipping attacks, with different maximum worker delays kw. For
any correct gradient g, if selected to be Byzantine, g will be replaced by −10g. q = 8 out of the 10
workers are Byzantine. ρ = 0.002, ε = 0.1, k = 10 for Zeno++.
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(a) Top-1 Accuracy on Testing Set, kw = 5.
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(b) Cross Entropy on Training Set, kw = 5.
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(c) Top-1 Accuracy on Testing Set, kw = 15.
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(d) Cross Entropy on Training Set, kw = 15.

Figure 6: Convergence with label-flipping attacks, with different maximum worker delays kw. q = 4
out of the 10 workers are Byzantine. ρ = 0.002, ε = 0.1, k = 10 for Zeno++.
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(a) Top-1 Accuracy on Testing Set, kw = 5.
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(b) Cross Entropy on Training Set, kw = 5.
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(c) Top-1 Accuracy on Testing Set, kw = 15.
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(d) Cross Entropy on Training Set, kw = 15.

Figure 7: Convergence with label-flipping attacks, with different maximum worker delays kw. q = 6
out of the 10 workers are Byzantine. ρ = 0.002, ε = 0.1, k = 10 for Zeno++.
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Figure 8: Number of global epochs to reach training loss value 0.2, with sign-flipping attacks and
q = 4 Byzantine workers. k = 10 for Zeno++. ρ and ε varies.
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Figure 9: Number of global epochs to reach training loss value 0.2, with sign-flipping attacks and
q = 6 Byzantine workers. ε = 0 for Zeno++. ρ and k varies.
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Figure 10: Number of global epochs to reach training loss value 0.7, with sign-flipping attacks and
q ∈ {4, 8} Byzantine workers. ρ = 0.001, ε = 0, k = 15 for Zeno++. The batch size of Zeno++,
ns, varies.
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B.5 RESNET20 ON CIFAR-10

We test the Byzantine-tolerance on ResNet20 v1 (https://keras.io/examples/cifar10_resnet/) and
CIFAR-10 dataset. We show the top-1 accuracy on the testing set.

In Figure 11, we show the convergence when there are no attacks. Zeno++ converges as good as
AsyncSGD. In Figure 12, we show the convergence when there are sign-flipping attacks.

In Figure 13 and 14, we test Zeno++ with 2 different types of random attacks. In Figure 13, for any
correct gradient g, if selected to be Byzantine, any element of g will be replaced by a IID random
value drawn from a Gaussian distribution with 0 mean and 5 variance, while in Figure 14, any element
of Byzantine g will be added by a IID random value drawn from a Gaussian distribution with 0 mean
and 5 variance.
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Figure 11: Convergence (top-1 accuracy on the testing set) without attacks, with 20 workers and
maximum worker delays kw = 15. ρ = 0.00005, ε = 0, k = 15 for Zeno++.
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Figure 12: Convergence (top-1 accuracy on the testing set) with sign-flipping attacks, with 20 workers
and maximum worker delays kw = 15. For any correct gradient g, if selected to be Byzantine, g will
be replaced by −10g. q = 12 out of the 20 workers are Byzantine. ρ = 0.00005, ε = 0, k = 15 for
Zeno++.

B.6 LSTM ON WIKITEXT-2

We test the Byzantine-tolerance on LSTM-based language model. The model is from
https://github.com/salesforce/awd-lstm-lm (Merity et al., 2017; 2018), trained on WikiText-2 dataset.
We use 600 hidden units per layer. We show the perplexity (the smaller the better) on the testing set.
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Figure 13: Convergence (top-1 accuracy on the testing set) with random attacks (type I), with 20
workers and maximum worker delays kw = 15. For any correct gradient g, if selected to be Byzantine,
any element of g will be replaced by a IID random value drawn from a Gaussian distribution with 0
mean and 5 variance. q = 12 out of the 20 workers are Byzantine. ρ = 0.00005, ε = 0, k = 15 for
Zeno++.
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Figure 14: Convergence (top-1 accuracy on the testing set) with random attacks (type II), with 20
workers and maximum worker delays kw = 15. For any correct gradient g, if selected to be Byzantine,
any element of g will be added by a IID random value drawn from a Gaussian distribution with 0
mean and 5 variance. q = 12 out of the 20 workers are Byzantine. ρ = 0.00005, ε = 0, k = 15 for
Zeno++.

In Figure 15, we show the convergence when there are no attacks. Zeno++ converges as good as
AsyncSGD. In Figure 16 and 17, we show the convergence when there are sign-flipping attacks, with
different number of Byzantine workers.

20



Under review as a conference paper at ICLR 2020

50 100 150

Global Epoch

80

100

120

140

160

P
e

rp
le

x
it
y

 AsyncSGD without attack

 Kardam, FP=89.9

 Zeno++, FP=11.8

Figure 15: Convergence (perplexity on the testing set) without attacks, with 10 workers and maximum
worker delays kw = 5. ρ = 0.005, ε = 0.001, k = 10 for Zeno++.
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Figure 16: Convergence (perplexity on the testing set) with sign-flipping attacks, with 10 workers
and maximum worker delays kw = 5. For any correct gradient g, if selected to be Byzantine, g will
be replaced by −10g. q = 4 out of the 10 workers are Byzantine. ρ = 0.005, ε = 0.001, k = 10 for
Zeno++.
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Figure 17: Convergence (perplexity on the testing set) with sign-flipping attacks, with 10 workers
and maximum worker delays kw = 5. For any correct gradient g, if selected to be Byzantine, g will
be replaced by −10g. q = 6 out of the 10 workers are Byzantine. ρ = 0.005, ε = 0.0004, k = 10 for
Zeno++.
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