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ABSTRACT

Variational autoencoders (VAEs) have been successful at learning a low-
dimensional manifold from high-dimensional data with complex dependencies.
At their core, they consist of a powerful Bayesian probabilistic inference model, to
capture the salient features of the data. In training, they exploit the power of vari-
ational inference, by optimizing a lower bound on the model evidence. The latent
representation and the performance of VAEs are heavily influenced by the type of
bound used as a cost function. Significant research work has been carried out into
the development of tighter bounds than the original ELBO, to more accurately
approximate the true log-likelihood. By leveraging the q-deformed logarithm in
the traditional lower bounds, ELBO and IWAE, and the upper bound CUBO, we
bring contributions to this direction of research. In this proof-of-concept study, we
explore different ways of creating these q-deformed bounds that are tighter than
the classical ones and we show improvements in the performance of such VAEs
on the binarized MNIST dataset.

1 INTRODUCTION

Variational autoencoders (VAEs) ((Rezende et al., 2014), (Kingma & Welling, 2014)) are powerful
Bayesian probabilistic models, which combine the advantages of neural networks with those of
Bayesian inference. They consist of an encoder created with a neural network architecture, which
maps the high-dimensional input data, x, to a low-dimensional latent representation, z, through the
posterior probability distribution, p(z|x). Then, samples from this latent distribution are decoded
back to a high-dimensional signal, through another neural network architecture and the probability
distribution p(x|z). Integration performed with these probability distributions from the Bayesian
framework of VAEs is intractable. As a solution, variational inference is employed to perform
learning in these models, whereby a tractable bound on the model evidence is optimized instead
of the intractable model evidence itself (Jordan et al., 1999). By design, the output model is set
as p(x|z), usually a Bernoulli or a Gaussian probability distribution, depending on whether the
target is discrete or continuous, and the prior distribution of the latent space as p(z). However,
the true posterior distribution, p(z|x), remains unknown and is intractable. To solve this issue,
an approximate posterior distribution, q(z|x), is learnt by means of a lower bound on the model
evidence, termed the ELBO. For one data point, x(i), writing out the Kullback-Leibler divergence
between the true and approximate posterior distributions and using its positivity property yields this
bound:

log p(x(i)) ≥ ELBO = Eq(z|x(i))

[
log

p(x(i)|z) · p(z)
q(z|x(i))

]
= Eq(z|x(i))

[
log p(x(i)|z)

]
−DKL(q(z|x(i))||p(z)). (1)

The lower bound on the model evidence, the ELBO, now becomes the cost function used during the
training phase of the VAEs. Over time, the first term shows how the reconstruction loss changes and
the second term how far the approximate posterior is to the prior distribution. The result of inference
and the performance of VAEs on reconstructing and generating images heavily depend on the type
of bound employed in training. A significant body of work has been carried out to replace the ELBO
with tighter bounds on the model evidence. On the one hand, starting from an unbiased estimator of
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the true log-likelihood, the authors of (Burda et al., 2016) derive an importance sampling estimate
of the model evidence, the IWAE. This represents one of the tightest bounds of VAEs and has only
recently been improved on in (Rainforth et al., 2018), (Tao et al., 2018). Increasing the number
of importance samples in the IWAE objective, decreases the signal-to-noise-ratio of the gradients,
which makes the learning more difficult, as the gradients suffer from a larger level of noise (Rainforth
et al., 2018). Several strategies are able to correct this issue. In the first algorithm, MIWAE, the outer
expectation of the IWAE objective is approximated with more than one sample, as is the case in the
IWAE. The second algorithm, CIWAE, represents a convex combination of the ELBO and the IWAE
bounds and the third algorithm, PIWAE, separately trains the encoder and the decoder networks with
different IWAE objectives.

On the other hand, leveraging different divergences between the true and the approximate poste-
rior distributions has lead to diverse bounds on the model evidence. Starting from the Rényi α-
divergence (Rényi, 1961) between such distributions, a family of lower and upper bounds are ob-
tained, parameterized by α (Li & Turner, 2016). However, these lower bounds become competitive
with the IWAE, only in the limit α→ −∞. In addition, the upper bounds suffer from approximation
errors and bias and the means to select the best value of the hyperparameter α is unknown. Through
an importance sampling scheme similar to the one found in the IWAE, these Rényi α bounds are
tightened in (Webb & Teh, 2016). If the Rényi α-divergence is replaced with the χ2 divergence, the
bound on the model evidence becomes the upper bound CUBO (Dieng et al., 2017). The Rényi α-
family of bounds and others lose their interpretability as a reconstruction loss and a Kullback-Leibler
divergence term that measures how close the approximate posterior is to the prior distribution. They
remain just a cost function optimized during training.

With different compositions of convex and concave functions, the approaches described above are
unified in the K-sample generalized evidence lower bound, GLBO (Tao et al., 2018). This study
generalizes the concept of maximizing the logarithm of the model evidence to maximizing the φ-
evidence score, where φ(u) is a concave function that replaces the logarithm. It allows for great
flexibility in the choice of training objectives in VAEs. One particular setting provides a lower
bound, the CLBO, which surpasses the IWAE objective.

1.1 OUR CONTRIBUTIONS

The aim of this work is to leverage the theory of q-deformed functions introduced in (Tsallis, 1988),
(Tsallis, 1994), (Tsallis, 1998), to derive tighter lower bounds on the model evidence in VAEs. To
this end, our contributions are three-fold: firstly, we derive two novel lower bounds, by replacing
the logarithm function in the classical ELBO, (Rezende et al., 2014), (Kingma & Welling, 2014),
and IWAE bounds, (Burda et al., 2016), (Mnih & Rezende, 2016), respectively, with the q-deformed
logarithm function. Values of q < 1.0 yield upper bounds of varying tightness on the classical
logarithm function, as illustrated in Figure 1.

Secondly, we combine the information given by the upper bound CUBO, (Dieng et al., 2017), with
the information given by the ELBO and the IWAE, respectively, to obtain a lower bound that is
placed between the two. By the means of their construction, we hypothesize these q-deformed
bounds to be closer to the true log-likelihood. We are able to confirm it in our experiments. We term
our novel lower bounds the qELBO and the qIWAE.

Thirdly, the tighteness of the gap between the classical logarithm function and the q-deformed one
depends on the value of q, as seen in Figure 1. Thus, q becomes a hyperparameter of our algorithm.
Since q is a number, we can optimize it efficiently and accurately, using standard optimization
algorithms. By solving for the best q for each data batch, we make q a data-driven hyperparameter,
tuned in an adaptive way during training.

2 METHODS

With the q-entropy, introduced in Tsallis (1988), the author developed the field of nonextensive
statistical mechanics, as a generalization of traditional statistical mechanics, centered around the
Boltzmann-Gibbs distribution. The Sq entropy provides a generalization of this distribution, which
can more accurately explain the phenomena of anomalous physical systems, characterized by rare
events. In the following definitions, the original quantities can be recovered in the limit q → 1. If
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k > 0 is a constant, W ∈ N is the total number of possible states of a system and pi the correspond-
ing probabilities, ∀i = 1 :W , then:

Sq = k ·
1−

∑W
i=1 p

q
i

q − 1
, q ∈ R. (2)

The generalized logarithmic function, termed the q-logarithm, is introduced in Tsallis (1994) as:

logq(x) =
x1−q − 1

1− q
,∀x, q ∈ R. (3)

The Kullback-Leibler divergence is generalized in Tsallis (1998) to the form

KLq(p||p0) = −
∫
x

p(x) ·

[
p0(x)
p(x)

]1−q
− 1

1− q
dx =

∫
x

p(x) ·

[
p(x)
p0(x)

]q−1
− 1

q − 1
dx. (4)

In order to derive our q-deformed bounds, we replace the logarithm function from the ELBO and

Figure 1: The q-deformed logarithm plotted for different values of the parameter q. Lower and upper
bounds on the classical logarithm (q = 1.0) can be obtained depending on q, as well as the tightness
of this gap.

IWAE bounds, with its q-deformed version. By appropriately optimizing the hyperparameter q, we
will obtain an upper bound on the ELBO and IWAE, respectively:

ELBO = Eq(z|x)

[
log

p(x|z) · p(z)
q(z|x)

]
,

qELBO = Eq(z|x)

[
logq

p(x|z) · p(z)
q(z|x)

]
= Eq(z|x)


[
p(x|z)·p(z)

q(z|x)

]1−q
− 1

1− q

 , (5)

IWAE = Ez1,...,zK∼q(z|x)

[
log

1

K

K∑
i=1

p(x|zi) · p(zi)
q(zi|x)

]

qIWAE = Ez1,...,zK∼q(z|x)

[
logq

1

K

K∑
i=1

p(x|zi) · p(zi)
q(zi|x)

]

= Ez1,...,zK∼q(z|x)



[
1

K

K∑
i=1

p(x|zi) · p(zi)
q(zi|x)

]1−q
− 1

1− q


. (6)
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Optimization algorithm for q. We train a variational autoencoder with our novel qELBO and
qIWAE bounds. The training procedure and the optimization method for q are identical for both
types of q-deformed bounds. We will describe them in the case of the qELBO.

We start the training procedure with an initial value of q = 1.0 − 10−6. For one batch of images,
we compute the qELBO lower bound and the CUBO upper bound (Dieng et al., 2017), averaged
over the batch. In order to obtain a tighter lower bound, qELBO*, we set a desired value of the cost
function at

qELBO* = qELBO+τ · (CUBO− qELBO), where, in our experiments, τ ∈ {0.5, 0.75}.
By means of the L-BFGS-B optimization method, we find the optimal value q∗, such that

qELBO* = Eq(z|x)


[
p(x|z)·p(z)

q(z|x)

]1−q∗
− 1

1− q∗

 . (7)

For this task, we employ the scipy optimization package in python. We apply the gradient descent
step on our new, improved, cost function, qELBO*, computed with this optimal value, q∗. We save
this value of q for the next batch of images and we repeat the optimization steps described above,
for all training batches.

3 EXPERIMENTAL RESULTS

3.1 NEURAL NETWORK ARCHITECTURE

For the experiments conducted on the MNIST dataset (LeCun et al., 1998), we use the one-stochastic
layer architecture employed in (Burda et al., 2016) and in (Li & Turner, 2016). The encoder and the
decoder are composed of two deterministic layers, each with 200 nodes, and of a stochastic layer
with 50 nodes. The dimension of the latent space is equal to 50 and the activation functions are the
softplus function. The approximate posterior is modeled as a Gaussian distribution, with a diagonal
covariance matrix. The output model is a Bernoulli distribution for each pixel. We use the binarized
MNIST dataset provided by tensorflow, with 55000 training images and 10000 test images. The
learning rate is fixed at 0.005 and there is no updating schedule. To implement and test our new
algorithms, we modify publicly available code 1 (Li & Turner, 2016).

Figure 2: Method: VAE with K=50 samples. From left to right: original binary MNIST test images,
reconstructed and randomly generated ones.

3.2 RESULTS

On the benchmark binary MNIST dataset (LeCun et al., 1998), we compare our newly derived
q-deformed bounds with the ELBO and the IWAE and we show several improvements that we
obtained. On the test set, we report the bounds computed with K number of samples and the true
log-likelihood estimated with 5000 importance samples, log p̂x. The expectations involved in all

1https://github.com/YingzhenLi/vae renyi divergence
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Table 1: Log-likelihood results on the binarized MNIST dataset, after 3000 epochs of training: the
bound estimated with K number of samples used in training and the true log-likelihood estimated
with 5000 importance samples (log p̂x). The results are reported on the test set.

METHOD Bound with K samples log p̂x(5000 samples) K No. of epochs

VAE -96.01 -91.32 50 3000
qVAE (τ =0.5) -91.02 -91.10 50 3000
qVAE (τ =0.75) -91.4 -91.51 50 3000

IWAE -91.53 -89.72 50 3000
qIWAE (τ =0.5) -89.12 -89.68 50 3000
qIWAE (τ =0.75) -88.90 -89.77 50 3000

VAE -96.09 -91.34 5 3000
qVAE(τ =0.5) -93.22 -91.23 5 3000
qVAE(τ =0.75) -92.91 -91.07 5 3000

IWAE -93.56 -90.30 5 3000
qIWAE (τ =0.5) -91.6 -90.28 5 3000
qIWAE (τ =0.75) -91.22 -90.21 5 3000

of the bounds are estimated with Monte Carlo sampling. For the ELBO and the qELBO bounds,
the expectation is approximated with K number of samples. The expectation in the standard IWAE
is approximated with one sample. Thus, we will compute the expectation in the qIWAE with one
sample, as well. Here, K refers to the number of importance samples used in the computation of the
bound. In addition, we illustrate the performance of our algorithms on reconstructed binary MNIST
test images and on randomly generated ones. After 3000 epochs of training, the qIWAE(τ =0.5)

Figure 3: Method: qVAE(τ = 0.5) with K=50 samples. From left to right: original binary MNIST
test images, reconstructed and randomly generated ones.

algorithm, with the bound estimated with K=50 samples, gives the best result on the importance
sampling estimate of the true log-likelihood, very close to the one given by the standard IWAE.
Moreover, the q-deformed bound is much closer to the estimated true value, than is the IWAE
bound. We observe this behaviour for all the q-deformed bounds. This implies that, during training,
optimizing the q-deformed bounds provides a cost function that is a more accurate approximation of
the model evidence. Although the q-deformed ELBO does not outperform the standard IWAE, we
can see significant improvements over the traditional ELBO, in all the test cases. A large decrease
in the value of the bound is present for all the qELBO variants, more pronounced in the large sample
regime.
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4 CONCLUSION AND FUTURE WORK

We addressed the challenging task of deriving tighter bounds on the model evidence of VAEs. Sig-
nificant research effort has gone in this direction, with several major contributions having been
developed so far, which we reviewed in the introduction. We leveraged the q-deformed logarithm
function, to explore other ways of tightening the lower bounds. As well as improvements in the es-
timated true log-likelihood, we found that the q-deformed bounds are much closer to the estimated
true log-likelihood, than the classical bounds are. Thus, training with our novel bounds as the cost
function may increase the learning ability of VAEs. Through the preliminary experiments we have
conducted so far, we have achieved our goal. They show that our approach has merit and that this
direction of research is worth pursuing in more depth, to produce more accurate bounds and to study
their impact on the performance of VAEs.

As future work, similarly to (Rainforth et al., 2018), we plan to investigate how the tightening the
ELBO and the IWAE influences the learning process and affects the gradients and the structure of the
latent space, compared with the classical case. In addition, we plan to explore different optimization
strategies for q and to study its role in achieving tighter bounds. We will also apply our q-deformed
bounds, to investigate the disentanglement problem in VAEs, see for example (Higgins et al., 2017).
The research question addressed here is how different bounds change the structure of the latent
space, to provide better or worse disentanglement scores. Finally, we would also like to test our
novel bounds on all the major benchmark datasets used for assessing the performance of VAEs and
compare them with other state-of-the-art bounds on the model evidence.

Figure 4: Method: IWAE with K=50 samples. From left to right: original binary MNIST test
images, reconstructed and randomly generated ones.

Figure 5: Method: qIWAE(τ = 0.5) with K=50 samples. From left to right: original binary MNIST
test images, reconstructed and randomly generated ones.

6



Under review as a workshop paper at ICLR 2019

REFERENCES

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. In Inter-
national Conference on Learning Representations (ICLR 2016), 2016.

Adji B. Dieng, Dustin Tran, Rajesh Ranganath, John Paisley, and David M. Blei. The χ-divergence
for approximate inference, published in NIPS 2017 under the title ”Variational inference via χ
upper bound minimization”. In Neural Information Processing Systems (NIPS 2017), 2017.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. β-VAE: Learning basic visual concepts with a con-
strained variational framework. In Proceedings of the 5th International Conference on Learning
Representations (ICLR 2017), 2017.

Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. An introduction
to variational methods for graphical models. Mach. Learn., 37(2):183–233, November 1999.
ISSN 0885-6125.

D.P. Kingma and M. Welling. Auto-encoding variational Bayes. In International Conference on
Learning Representations (ICLR 2014), 2014.

Yann LeCun, L{′eon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. 86, issue 11(11), November 1998.
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