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ABSTRACT

In this paper, we study deep diagonal circulant neural networks, that is deep
neural networks in which weight matrices are the product of diagonal and circulant
ones. Besides making a theoretical analysis of their expressivity, we introduced
principled techniques for training these models: we devise an initialization scheme
and proposed a smart use of non-linearity functions in order to train deep diagonal
circulant networks. Furthermore, we show that these networks outperform recently
introduced deep networks with other types of structured layers. We conduct a
thorough experimental study to compare the performance of deep diagonal circulant
networks with state of the art models based on structured matrices and with dense
models. We show that our models achieve better accuracy than other structured
approaches while required 2x fewer weights as the next best approach. Finally we
train deep diagonal circulant networks to build a compact and accurate models on
a real world video classification dataset with over 3.8 million training examples.

1 INTRODUCTION

The deep learning revolution has yielded models of increasingly large size. In recent years, designing
compact and accurate neural networks with a small number of trainable parameters has been an active
research topic, motivated by practical applications in embedded systems (to reduce memory footprint
(Sainath & Parada, 2015)), federated and distributed learning (to reduce communication (Konečný
et al., 2016)), derivative-free optimization in reinforcement learning (to simplify the computation of
the approximated gradient (Choromanski et al., 2018)). Besides a number of practical applications, it
is also an important research question whether or not models really need to be this big or if smaller
results can achieve similar accuracy (Ba & Caruana, 2014) .

Structured matrices are at the very core of most of the work on compact networks. In these models,
dense weight matrices are replaced by matrices with a prescribed structure (e.g. low rank matrices,
Toeplitz matrices, circulant matrices, LDR, etc.). Despite substantial efforts (e.g. Cheng et al.
(2015); Moczulski et al. (2015)), the performance of compact models is still far from achieving an
acceptable accuracy motivating their use in real-world scenarios. This raises several questions about
the effectiveness of such models and about our ability to train them. In particular two main questions
call for investigation:

Q1 How to efficiently train deep neural networks with a large number of structured layers?
Q2 What is the expressive power of structured layers compared to dense layers?

In this paper, we provide principled answers to these questions for the particular case of deep neural
networks based on diagonal and circulant matrices (a.k.a. Diagonal-circulant networks or DCNNs).

The idea of using diagonal and circulant matrices together comes from a series of results in linear
algebra by Müller-Quade et al. (1998) and Huhtanen & Perämäki (2015). The most recent result from
Huhtanen & Perämäki demonstrates that any matrix A in Cn⇥n can be decomposed into the product
of 2n� 1 alternating diagonal and circulant matrices. The diagonal-circulant decomposition inspired
Moczulski et al. (2015) to design the AFDF structured layer, which is the building block of DCNNs.
However, Moczulski et al. (2015) were not able to train deep neural networks based on AFDF.

To answer Q1, we first describe a theoretically sound initialization procedure for DCNN which allows
the signal to propagate through the network without vanishing or exploding. Furthermore, we provide
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a number of empirical insights to explain the behaviour of DCNNs, and show the impact of the
number of the non-linearities in the network on the convergence rate and the accuracy of the network.
By combining all these insights, we are able (for the first time) to train large and deep DCNNs. We
demonstrate the good performance of DCNNs on a large scale application (the YouTube-8M video
classification problem) and obtain very competitive accuracy.

To answer Q2, we propose an analysis of the expressivity of DCNNs by extending the results
by Huhtanen & Perämäki (2015). We introduce a new bound on the number of diagonal-circulant
required to approximate a matrix that depends on its rank. Building on this result, we demonstrate
that a DCNN with bounded width and small depth can approximate any dense networks with ReLU
activations.

Outline of the paper: We present in Section 2 the related work on structured neural networks and
several compression techniques. Section 3 introduces circulant matrices, our new result extending the
one from Huhtanen & Perämäki (2015). Section 4 proposes an theoretical analysis on the expressivity
on DCNNs. Section 5 describes two efficient techniques for training deep diagonal circulant neural
networks. Finally, Section 6 presents extensive experiments to compare the performance of deep
diagonal circulant neural networks in different settings w.r.t. other state of the art approaches.
Section 7 provides a discussion and concluding remarks.

2 RELATED WORK

Structured matrices exhibit a number of good properties which have been exploited by deep learn-
ing practitioners, mainly to compress large neural networks architectures into smaller ones. For
example Hinrichs & Vybı́ral (2011) have demonstrated that a single circulant matrix can be used
to approximate the Johson-Lindenstrauss transform, often used in machine learning to perform
dimensionality reduction. Building upon this result, Cheng et al. (2015) proposed to replace the
weight matrix of a fully connected layer by a circulant matrix effectively replacing the complex
transform modeled by the fully connected layer by a simple dimensionality reduction. Despite the
reduction of expressivity, the resulting network demonstrated good accuracy using only a fraction of
its original size (90% reduction).

Comparison with ACDC. Moczulski et al. (2015) have introduced two Structured Efficient Linear
Layers (SELL) called AFDF and ACDC. The AFDF structured layer benefits from the theoretical
results introduced by Huhtanen & Perämäki and can be seen the building block of DCNNs. However,
Moczulski et al. (2015) only experiment using ACDC, a different type of layer that does not involve
circulant matrices. As far as we can tell, the theoretical guarantees available for the AFDF layer
do not apply on the ACDC layer since the cosine transform does not diagonalize circulant matrices
(Sanchez et al., 1995). Another possible limit of the ACDC paper is that they only train large neural
networks involving ACDC layers combined with many other expressive layers. Although the resulting
network demonstrates good accuracy, it is difficult the characterize the true contribution of the ACDC
layers in this setting.

Comparison with Low displacement rank structures. More recently, Thomas et al. (2018) have
generalized these works by proposing neural networks with low-displacement rank matrices (LDR),
that are structured matrices encompassing a large family of structured matrices, including Toeplitz-
like, Vandermonde-like, Cauchy-like and more notably DCNNs. To obtain this result, LDR represents
a structured matrix using two displacement operators and a low-rank residual. Despite being elegant
and general, we found that the LDR framework suffers from several limits which are inherent to
its generality, and makes it difficult to use in the context of large and deep neural networks. First,
the training procedure for learning LDR matrices is highly involved and implies many complex
mathematical objects such as Krylov matrices. Then, as acknowledged by the authors, the number
of parameters required to represent a given structured matrix (e.g. a Toeplitz matrix) in practice is
unnecessarily high (higher than required in theory).

Other compression techniques. Besides structured matrices, a variety of techniques have been
proposed to build more compact deep learning models. These include model distillation (Hinton et al.,
2015), Tensor Train (Novikov et al., 2015), Low-rank decomposition (Denil et al., 2013), to mention
a few. However, Circulant networks show good performances in several contexts (the interested
reader can refer to the results reported by Moczulski et al. (2015) and Thomas et al. (2018)).
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3 A PRIMER ON CIRCULANT MATRICES AND A NEW RESULT

An n-by-n circulant matrix C is a matrix where each row is a cyclic right shift of the previous one as
illustrated below.

C = circ(c) =

2

66664

c0 cn�1 cn�2 . . . c1
c1 c0 cn�1 c2
c2 c1 c0 c3
...

. . .
...

cn�1 cn�2 cn�3 c0

3

77775

Circulant matrices exhibit several interesting properties from the perspective of numerical computa-
tions. Most importantly, any n-by-n circulant matrix C can be represented using only n coefficients
instead of the n

2 coefficients required to represent classical unstructured matrices. In addition, the
matrix-vector product is simplified from O(n2) to O(n log(n)) using the convolution theorem.

As we will show in this paper, circulant matrices also have a strong expressive power. So far, we
know that a single circulant matrix can be used to represent a variety of important linear transforms
such as random projections (Hinrichs & Vybı́ral, 2011). When they are combined with diagonal
matrices, they can also be used as building blocks to represent any linear transform (Schmid et al.,
2000; Huhtanen & Perämäki, 2015) with an arbitrary precision. Huhtanen & Perämäki were able to
bound the number of factors that is required to approximate any matrix A with arbitrary precision.

Relation between diagonal circulant matrices and low rank matrices We recall this result in
Theorem 1 as it is the starting point of our theoretical analysis (note that in the rest of the paper, k·k
denotes the `2 norm when applied to vectors, and the operator norm when applied to matrices).
Theorem 1. (Reformulation Huhtanen & Perämäki (2015)) For every matrix A 2 Cn⇥n, for any
✏ > 0 , there exists a sequence of matrices B1 . . . B2n�1 where Bi is a circulant matrix if i is odd,
and a diagonal matrix otherwise, such that kB1B2 . . . B2n�1 �Ak < ✏.

Unfortunately, this theorem is of little use to understand the expressive power of diagonal-circulant
matrices when they are used in deep neural networks. This is because: 1) the bound only depends on
the dimension of the matrix A, not on the matrix itself, 2) the theorem does not provide any insights
regarding the expressive power of m diagonal-circulant factors when m is much lower than 2n� 1
as it is the case in most practical scenarios we consider in this paper.

In the following theorem, we enhance the result by Huhtanen & Perämäki by expressing the number
of factors required to approximate A, as a function of the rank of A. This is useful when one deals
with low-rank matrices, which is common in machine learning problems.
Theorem 2. (Rank-based circulant decomposition) Let A 2 Cn⇥n be a matrix of rank at most k.
Assume that n can be divided by k. For any ✏ > 0, there exists a sequence of 4k + 1 matrices
B1, . . . , B4k+1, where Bi is a circulant matrix if i is odd, and a diagonal matrix otherwise, such that
kB1B2 . . . B4k+1 �Ak < ✏

A direct consequence of Theorem 2, is that if the number of diagonal-circulant factors is set to a value
K, we can represent all linear transform A whose rank is K�1

4 .

Compared to Huhtanen & Perämäki (2015), this result shows that structured matrices with fewer than
2n diagonal-circulant matrices (as it is the case in practice) can still represent a large class of matrices.
As we will show in the following section, this result will be useful to analyze the expressivity of
neural networks based on diagonal and circulant matrices.

4 ANALYSIS OF DIAGONAL CIRCULANT NEURAL NETWORKS (DCNNS)

Zhao et al. (2017) have shown that circulant networks with 2 layers and unbounded width are
universal approximators. However, results on unbounded networks offer weak guarantees and two
important questions have remained open until now: 1) Can we approximate any function with a
bounded-width circulant networks? 2) What function can we approximate with a circulant network
that has a bounded width and a small depth? We answer these two questions in this section.
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First, we introduce some necessary definitions regarding neural networks and we provide a theoretical
analysis of their approximation capabilities.
Definition 1 (Deep ReLU network). Given L weight matrices W = (W1, . . . ,WL) with Wi 2 Cn⇥n

and L bias vectors b = (b1, . . . , bL) with bi 2 Cn, a deep ReLU network is a function fWL,bL :
Cn ! Cn such that fW,b(x) = (fWL,bL � . . . � fW1,b1)(x) where fWi,bi(x) = �(Wix+ bi) and �(.)
is a ReLU non-linearity 1 In the rest of this paper, we call L and n respectively the depth and the
width of the network. Moreover, we call total rank k, the sum of the ranks of the matrices W1 . . .WL.
i.e. k =

PL
i=1 rank(Wi).

We also need to introduce DCNNs, similarly to Moczulski et al. (2015).
Definition 2 (Diagonal Circulant Neural Networks). Given L diagonal matrices D = (D1, . . . , DL)
with Di 2 Cn⇥n, L circulant matrices C = (C1, . . . , CL) with Ci 2 Cn⇥n and L bias vectors
b = (b1, . . . , bL) with bi 2 Cn, a Diagonal Circulant Neural Networks (DCNN) is a function
fWL,bL : Cn ! Cn such that fD,C,b(x) = (fDL,CL,bL � . . . � fD1,C1,b1)(x) where fDi,Ci,bi(x) =
�i(DiCix+ bi) and where �i(.) is a ReLU non-linearity or the identity function.

We can now show that bounded-width DCNNs can approximate any Deep ReLU Network, and as a
corollary, that they are universal approximators.
Lemma 1. Let N be a deep ReLU network of width n and depth L, and let X ⇢ Cn be a bounded
set. For any ✏ > 0, there exists a DCNN N 0 of width n and of depth (2n� 1)L such that kN (x)�
N 0(x)k < ✏ for all x 2 X .

The proof is in the supplemental material. We can now state the universal approximation corollary:
Corollary 1. Bounded width DCNNs are universal approximators in the following sense: for any
continuous function f : [0, 1]n ! R+ of bounded supremum norm, for any ✏ > 0, there exists
a DCNN N✏ of width n + 3 such that 8x 2 [0, 1]n+3, |f(x1 . . . xn)� (N✏ (x))1| < ✏, where (·)i
represents the i

th component of a vector.

This is a first result, however (2n + 5)L is not a small depth (in our experiments, n can be over
300 000), and a number of work provided empirical evidences that DCNN with small depth can
offer good performances (e.g. Araujo et al. (2018); Cheng et al. (2015)). To improve our result,
we introduce our main theorem which studies the approximation properties of these small depth
networks.
Theorem 3. (Rank-based expressive power of DCNNs) Let N be a deep ReLU network of width n,
depth L and a total rank k and assume n is a power of 2. Let X ⇢ Cn be a bounded set. Then, for
any ✏ > 0, there exists a DCNN with ReLU activation N 0 of width n such that kN (x)�N 0(x)k < ✏

for all x 2 X and the depth of N 0 is bounded by 9k.

Remark that in the theorem, we require that n is a power of 2. We conjecture that the result still holds
even without this condition.

This result refines Lemma 1, and answer our second question: a DCNN of bounded width and small
depth can approximate a Deep ReLU network of low total rank. Note that the converse is not true:
because n-by-n circulant matrix can be of rank n, approximating a DCNN of depth 1 can require a
deep ReLU network of total rank equals to n.

Expressivity of DCNNs For the sake of clarity, we highlight the significance of these results with
the two following properties.

Properties. Given an arbitrary fixed integer n, let Rk be the set of all functions f : Rn ! Rn

representable by a deep ReLU network of total rank at most k and let Cl the set of all functions
f : Rn ! Rn representable by deep diagonal-circulant networks of depth at most l, then:

8k, 9l Rk ( Cl (1)
8l, @k Cl ✓ Rk (2)

1Because our networks deal with complex numbers, we use an extension of the ReLU function to the
complex domain. The most straightforward extension defined in Trabelsi et al. (2018) is as follows: ReLU(z) =
ReLU (R(z)) + iReLU (I(z)), where R and I refer to the real and imaginary parts of z.
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We illustrate the meaning of this properties using Figure 1. As we can see, the set Rk of all the
functions representable by a deep ReLU network of total rank k is strictly included in the set C9k of
all DCNN of depth 9k (as by Theorem 3).

C1,n. .
.

C9,n. .
.

C18,n

R1,n

R2,n

Figure 1: Illustration of Properties (1) and (2).

These properties are interesting for many reasons. First, Property (2) shows that diagonal-circulant
networks are strictly more expressive than networks with low total rank. Second and most importantly,
in standard deep neural networks, it is known that the most of the singular values are close to zero (see
e.g. Sedghi et al. (2018); Arora et al. (2019)). Property (1) shows that these networks can efficiently
be approximated by diagonal-circulant networks. Finally, several publications have shown that neural
networks can be trained explicitly to have low-rank weight matrices (Li & Shi, 2018; Goyal et al.,
2019). This opens the possibility of learning compact and accurate diagonal-circulant networks.

5 HOW TO TRAIN VERY DEEP DCNNS
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Figure 2: Experiments on training DCNNs and other structured neural networks on CIFAR-10.
Figure 2(a): impact of increasing the number of ReLU activations in a DCNN. Deep DCNNs with
fewer ReLUs are easier to train. Figure 2(b): impact of increasing the slope of a Leaky-ReLU in
DCNNs. Deep DCNNs with a larger slope are easier to train.

Training DCNNs has revealed to be a challenging problem. We devise two techniques to facilitate the
training of deep DCNNs. First, we propose an initialization procedure which guarantee the signal is
propagated across the network without vanishing nor exploding. Secondly, we study the behavior
of DCNNs with different non-linearity functions and determine the best parameters for different
settings.

Initialization scheme The following initialization procedure which is a variant of Xavier initializa-
tion. First, for each circulant matrix C = circ(c1 . . . cn), each ci is randomly drawn from N

�
0,�2

�
,

with � =
q

2
n . Next, for each diagonal matrix D = diag(d1 . . . dn), each di is drawn randomly

and uniformly from {�1, 1} for all i. Finally, all biases in the network are randomly drawn from
N

�
0,�02�, for some small value of �0. The following proposition states that the covariance matrix at

the output of any layer in a DCNN, independent of the depth, is constant.
Proposition 4. Let N be a DCNN of depth L initialized according to our procedure, with �

0 = 0.
Assume that all layers 1 to L � 1 have ReLU activation functions, and that the last layer has the
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identity activation function. Then, for any x 2 Rn, the covariance matrix of N (x) is 2.Id
n kxk22.

Moreover, note that this covariance does not depend on the depth of the network.

Non-linearity function We empirically found that reducing the number of non-linearities in the
networks simplifies the training of deep neural networks. To support this claim, we conduct a series of
experiments on various DCNNs with a varying number of ReLU activations (to reduce the number of
non-linearities, we replace some ReLU activations with the identity function). In a second experiment,
we replace the ReLU activations with Leaky-ReLU activations and vary the slope of the Leaky ReLU
(a higher slope means an activation function that is closer to a linear function). The results of this
experiment are presented in Figure 2(a) and 2(b). In 2(a), “ReLU(DC)” means that we interleave on
ReLU activation functions between every diagonal-circulant matrix, whereas ReLU(DCDC) means
we interleave a ReLU activation every other block etc. In both Figure 2(a) and Figure 2(b), we observe
that reducing the non-linearity of the networks can be used to train deeper networks. This is an
interesting result, since we can use this technique to adjust the number of parameters in the network,
without facing training difficulties. We obtain a maximum accuracy of 0.56 with one ReLU every
three layers and leaky-ReLUs with a slope of 0.5. We hence rely on this setting in the experimental
section.

6 EMPIRICAL EVALUATION

This experimental section aims at answering the following questions:

Q6.1 – How do DCNNs compare to other approaches such as ACDC, LDR or other struc-
tured approaches?
Q6.2 – How do DCNNs compare to other compression based techniques?
Q6.3 – How do DCNNs perform in the context of large scale real-world machine learning
applications?

6.1 COMPARISON WITH OTHER STRUCTURED APPROACHES (Q6.1)

(a) (b)

Figure 3: Comparison of DCNNs and ACDC networks on two different tasks. Figure 3(a) shows
the evolution of the training loss on a regression task with synthetic data. Figure 3(b) shows the test
accuracy on the CIFAR-10 dataset.

Comparison with ACDC Moczulski et al. (2015). In Section 2, we have discussed the differences
between the ACDC framework and our approach from a theoretical perspective. In this section, we
conduct experiments to compare the performance of DCNNs with neural networks based on ACDC
layers. We first reproduce the experimental setting from Moczulski et al. (2015), and compare both
approaches using only linear networks (i.e. networks without any ReLU activations). The results are
presented in Figure 3(a). On this simple setting, both architectures demonstrate good performance,
however, DCNNs offer better convergence rate. In Figure 3(b), we compare neural networks with
ReLU activations on CIFAR-10. The synthetic dataset has been created in order to reproduce the
experiment on the regression linear problem proposed by Moczulski et al. (2015). We draw X , Y
and W from a uniform distribution between [-1, +1] and ✏ from a normal distribution with mean 0
and variance 0.01. The relationship between X and Y is define by Y = XW + ✏.
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We found that networks which are based only on ACDC layers are difficult to train and offer poor
accuracy on CIFAR. (We have tried different initialization schemes including the one from the
original paper, and the one we propose in this paper.) Moczulski et al. (2015) manage to train a
large VGG network however these networks are generally highly redundant, the contribution of the
structured layer is difficult to quantify. We also observe that adding a single dense layer improves the
convergence rate of ACDC in the linear case networks, which explain the good results of Moczulski
et al. (2015). However, it is difficult to characterize the true contribution of the ACDC layers when
the network involved a large number of other expressive layers.

In contrast, deep DCNNs can be trained and offer good performance without additional dense layers
(these results are in line with our experiments on the YouTube-8M dataset). We can conclude that
DCNNs are able to model complex relations at a low cost.
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Figure 4: Figure 4(a): network size vs. accuracy compared on Dense networks, DCNNs (our
approach), DTNNs (our approach), neural networks based on Toeplitz matrices and neural net-
works based on Low Rank-based matrices. DCNNs outperforms alternatives structured approaches.
Figure 4(b) shows the accuracy of different structured architecture given the number of trainable
parameters.

Comparison with Dense networks, Toeplitz networks and Low Rank networks. We now com-
pare DCNNs with other state-of-the-art structured networks by measuring the accuracy on a flattened
version of the CIFAR-10 dataset. Our baseline is a dense feed-forward network with a fixed number
of weights (9 million weights). We compare with DCNNs and with DTNNs (see below), Toeplitz
networks, and Low-Rank networks Yu et al. (2017). We first consider Toeplitz networks which
are stacked Toeplitz matrices interleaved with ReLU activations since Toeplitz matrices are closely
related to circulant matrices. Since Toeplitz networks have a different structure (they do not include
diagonal matrices), we also experiment using DTNNs, a variant of DCNNs where all the circulant
matrices have been replaced by Toeplitz matrices. Finally we conduct experiments using networks
based on low-rank matrices as they are also closely related to our work. For each approach, we
report the accuracy of several networks with a varying depth ranging from 1 to 40 (DCNNs, Toeplitz
networks) and from 1 to 30 (from DTNNs). For low-rank networks, we used a fixed depth network
and increased the rank of each matrix from 7 to 40. We also tried to increase the depth of low rank
matrices, but we found that deep low-rank networks are difficult to train so we do not report the results
here. We compare all the networks based on the number of weights from 21K (0.2% of the dense
network) to 370K weights (4% of the dense network) and we report the results in Figure 4(a). First
we can see that the size of the networks correlates positively with their accuracy which demonstrate
successful training in all cases. We can also see that the DCNNs achieves the maximum accuracy of
56% with 20 layers (⇠ 200K weights) which as as good as the dense networks with only 2% of the
number of weights. Other approaches also offer good performance but they are not able to reach the
accuracy of a dense network.

Comparison with LDR networks Thomas et al. (2018). We now compare DCNNs with the LDR
framework using the network configuration experimented in the original paper: a single LDR
structured layer followed by a dense layer. In the LDR framework, we can change the size of a
network by adjusting the rank of the residual matrix, effectively capturing matrices with a structure
that is close to a known structure but not exactly (e.g. in the LDR framework, Toeplitz matrices

2Remark: the numbers may differ from the original experiments by Thomas et al. because we use the original
dataset instead of a monochrome version)
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Table 1: LDR networks compared with DCNNs on a
flattend version of CIFAR-10. DCNNs outperform all
LDR configurations with fewer weights.2

Architectures #Params Acc.

Dense 9.4M 0.562
DCNN (5 layers) 49K 0.543

DCNN (2 layers) 21K 0.536

LDR–TD (r = 2) 64K 0.511
LDR–TD (r = 3) 70K 0.473
Toeplitz-like (r = 2) 46K 0.483
Toeplitz-like (r = 3) 52K 0.496

Table 2: Two depths scattering on CIFAR-10 followed
by LDR or DC layer. Networks with DC layers outper-
form all LDR configurations with fewer weights.

Architectures #Params Acc.

DC (1 layers) 124K 0.757

DC (3 layers) 217K 0.785

Ensemble x5 DC (3 layers) 1.08M 0.811

LDR-SD (r = 1) 140K 0.701
LDR-SD (r = 10) 420K 0.728
Toeplitz-like (r = 1) 110K 0.711
Toeplitz-like (r = 10) 388K 0.720

can be encoded with a residual matrix with rank=2, so a matrix that can be encoded with a residual
of rank=3 can be seen as Toeplitz-like.). The results are presented in Table 1 and demonstrate that
DCNNs outperforms all LDR networks both in terms in size and accuracy.

Exploiting image features. Dense layers and DCNNs are not designed to capture task-specific
features such as the translation invariance inherently useful in image classification. We can further
improve the accuracy of such general purpose architectures on image classification without dramati-
cally increasing the number of trained parameters by stacking them on top of fixed (i.e. non-trained)
transforms such as the scattering transform (Mallat, 2010). In this section we compare the accuracy
of various structured networks, enhanced with the scattering transform, on an image classification
task, and run comparative experiments on CIFAR-10.

Our test architecture consists of 2 depth scattering on the RGB images followed by a batch norm and
LDR or DC layer. To vary the number of parameters of Scattering+LDR architecture, we increase the
rank of the matrix (stacking several LDR matrices quickly exhausted the memory). The Figure 4(b)
and 2 shows the accuracy of these architectures given the number of trainable parameters.

First, we can see that the DCNN architecture very much benefits from the scattering transform and is
able to reach a competitive accuracy over 78%. We can also see that scattering followed by a DC
layer systematically outperforms scattering + LDR or scattering + Toeplitz-like with less parameters.

6.2 COMPARISON WITH OTHER COMPRESSION BASED APPROACHES (Q6.2)

Table 3: Comparison with compression based approaches
Architecture Settings #Params Error (%)

LeNet Lecun et al. (1998) - 4 257 674 0.61

DCNN
8 DC layers 25 620 1.74

10 DC layers 31 764 1.60

Fast Food (FF) Yang et al. (2015) Conv + FF 1024 Softmax layer 38 821 0.71
Conv + FF 2048 Softmax Layer 52 124 0.71

HashNet Chen et al. (2015) 3 layers, 1/64 compress. factor 46 875 2.79
5 layers, 1/64 compress. factor 78 125 1.99

Dark Knowledge Hinton et al. (2015) 3 layers, 1/64 compress.factor 46 875 6.32
5 layers, 1/64 compress. factor 78 125 2.16

We provide a comparison with other compression based approaches such as HashNet Chen et al.
(2015), Dark Knowledge Hinton et al. (2015) and Fast Food Transform (FF) Yang et al. (2015).
Table 3 shows the test error of DCNN against other know compression techniques on the MNIST
datasets. We can observe that DCNN outperform easily HashNet Chen et al. (2015) and Dark
Knowledge Hinton et al. (2015) with fewer number of parameters. The architecture with Fast Food
(FF) Yang et al. (2015) achieves better performance but with convolutional layers and only 1 Fast
Food Layer as the last Softmax layer.
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Table 4: This table shows the GAP score for the
YouTube-8M dataset with DCNNs. We can see a large
increase in the score with deeper networks.

Architecture #Weights GAP@20

original 5.7M 0.773
4 DC 25 410 (0.44) 0.599
32 DC 122 178 (2.11) 0.685
4 DC + 1 FC 4.46M (77) 0.747

Table 5: This table shows the GAP score for the
YouTube-8M dataset with different layer represented
with our DC decomposition.

Architecture #Weights GAP@20

original 45M 0.846
DBoF with DC 36M (80) 0.838
FC with DC 41M (91) 0.845

MoE with DC 12M (26) 0.805

6.3 DCNNS FOR LARGE-SCALE VIDEO CLASSIFICATION ON THE YouTube-8M DATASET (Q6.3)

To understand the performance of deep DCNNs on large scale applications, we conducted experiments
on the YouTube-8M video classification with 3.8 training examples introduced by Abu-El-Haija
et al. (2016b). Notice that we favour this experiment over ImageNet applications because modern
image classification architectures involve a large number of convolutional layers, and compressing
convolutional layers is out of our scope. Also, as mentioned earlier, testing the performance of DCNN
architectures mixed with a large number of expressive layers makes little sense.

The YouTube-8M includes two datasets describing 8 million labeled videos. Both datasets contain
audio and video features for each video. In the first dataset (aggregated) all audio and video features
have been aggregated every 300 frames. The second dataset (full) contains the descriptors for all
the frames. To compare the models we use the GAP metric (Global Average Precision) proposed
by Abu-El-Haija et al. (2016b). On the simpler aggregated dataset we compared off-the-shelf DCNNs
with a dense baseline with 5.7M weights. On the full dataset, we designed three new compact
architectures based on the state-of-the-art architecture introduced by Abu-El-Haija et al. (2016b).

Experiments on the aggregated dataset with DCNNs: We compared DCNNs with a dense base-
line with 5.7 millions weights. The goal of this experiment is to discover a good trade-off between
depth and model accuracy. To compare the models we use the GAP metric (Global Average Precision)
following the experimental protocol in Abu-El-Haija et al. (2016b), to compare our experiments.

Table 4 shows the results of our experiments on the aggrgated YouTube-8M dataset in terms of
number of weights, compression rate and GAP. We can see that the compression ratio offered by the
circulant architectures is high. This comes at the cost of a little decrease of GAP measure. The 32
layers DCNN is 46 times smaller than the original model in terms of number of parameters while
having a close performance.

Embedding Dim Reduction Classification

Video

Audio

FC

FC

concat MoE Context
Gating

Figure 5: This figure shows the state-of-the-art neural network architecture, initially proposed by
Abu-El-Haija et al. (2016b) and later improved by Miech et al. (2017), used in our experiment.

Experiments with DCNNs Deep Bag-of-Frames Architecture: The Deep Bag-of-Frames archi-
tecture can be decomposed into three blocks of layers, as illustrated in Figure 5. The first block of
layers, composed of the Deep Bag-of-Frames embedding (DBoF), is meant to model an embedding
of these frames in order to make a simple representation of each video. A second block of fully
connected layers (FC) reduces the dimensionality of the output of the embedding and merges the
resulting output with a concatenation operation. Finally, the classification block uses a combination
of Mixtures-of-Experts (MoE) Jordan & Jacobs (1993); Abu-El-Haija et al. (2016a) and Context
Gating Miech et al. (2017) to calculate the final class probabilities.
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Table 5 shows the results in terms of number of weights, size of the model (MB) and GAP on the full
dataset, replacing the DBoF block reduces the size of the network without impacting the accuracy. We
obtain the best compression ratio by replacing the MoE block with DCNNs (26%) of the size of the
original dataset with a GAP score of 0.805 (95% of the score obtained with the original architecture).
We conclude that DCNN are both theoretically sound and of practical interest in real, large scale
applications.

7 CONCLUSION

This paper deals with the training of diagonal circulant neural networks. To the best of our knowledge,
training such networks with a large number of layers had not been done before. We also endowed
this kind of models with theoretical guarantees, hence enriching and refining previous theoretical
work from the literature. More importantly, we showed that DCNNs outperform their competing
structured alternatives, including the very recent general approach based on LDR networks. Our
results suggest that stacking diagonal circulant layers with non linearities improves the convergence
rate and the final accuracy of the network. Formally proving these statements constitutes the future
directions of this work. As future work, we would like to generalize the good results of DCNNs to
convolutions neural networks. We also believe that circulant matrices deserve a particular attention in
deep learning because of their strong ties with convolutions: a circulant matrix operator is equivalent
to the convolution operator with circular paddings (as shown in [5]). This fact makes any contribution
to the area of circulant matrices particularly relevant to the field of deep learning with impacts beyond
the problem of designing compact models. As future work, we would like to generalize our results to
deep convolutional neural networks.
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TRAINING DEEP DIAGONAL CIRCULANT NEURAL
NETWORKS

Anonymous authors

Paper under double-blind review

1 NOTATIONS & DEFINITION

We note R(z) and I(z) the real and imaginary parts the complex number z. We note (·)t is the t
th

component of a vector. Let i be the imaginary number defined by i2 = �1. Define 1n as the n-vector
of ones. Also, we note [n] = {1, . . . , n}. The rectified linear unit on the complex domain is defined
by ReLU(z) = max (0,R(z)) + imax (0, I(z)). The notation |·| refers to the complex modulus.
Finally, define the cyclic shift matrix S 2 Rn⇥n as follows:

S =

2

666664

0 1
1 0

1
. . .

. . . 0
1 0

3

777775

We introduce some necessary definitions regarding neural networks.
Definition 1 (Deep ReLU network). Given L weight matrices W = (W1, . . . ,WL) with Wi 2 Cn⇥n

and L bias vectors b = (b1, . . . , bL) with bi 2 Cn
, a deep ReLU network is a function fWL,bL :

Cn ! Cn
such that fW,b(x) = (fWL,bL � . . . � fW1,b1)(x) where fWi,bi(x) = �(Wix+ bi) and �(.)

is a ReLU non-linearity
1

In the rest of this paper, we call L and n respectively the depth and the

width of the network. Moreover, we call total rank k, the sum of the ranks of the matrices W1 . . .WL.

i.e. k =
PL

i=1 rank(Wi).

In the rest of this paper, we call L and n respectively the depth and the width of the network. Moreover,
we call total rank k, the sum of the ranks of the matrices W1 . . .WL. i.e. k =

PL
i=1 rank(Wi).

2 PROOFS OF SECTION 3

Theorem 1. (Reformulation Huhtanen & Perämäki (2015)) For any given matrix A 2 Cn⇥n
, for

any ✏ > 0, there exists a sequence of matrices B1 . . . B2n�1 where Bi is a circulant matrix if i is

odd, and a diagonal matrix otherwise, such that kB1B2 . . . B2n�1 �Ak < ✏. Moreover, if A can be

decomposed as A =
Pk

i=1 DiS
i�1

where S is the cyclic-shift matrix and D1 . . . Dk are diagonal

matrices, then A can be written as a product B1B2 . . . B2k�1 where Bi is a circulant matrix if i is

odd, and a diagonal matrix otherwise.

Theorem 2. (Rank-based circulant decomposition) Let A 2 Cn⇥n
be a matrix of rank at most k.

Assume that n can be divided by k. For any ✏ > 0, there exists a sequence of 4k + 1 matrices

B1, . . . , B4k+1, where Bi is a circulant matrix if i is odd, and a diagonal matrix otherwise, such that

kB1B2 . . . B4k+1 �Ak < ✏

Proof. (Theorem 2) Let U⌃V T be the SVD decomposition of M where U, V and ⌃ are n ⇥ n

matrices. Because M is of rank k, the last n� k columns of U and V are null. In the following, we
1Because our networks deal with complex numbers, we use an extension of the ReLU function to the

complex domain. The most straightforward extension defined in Trabelsi et al. (2018) is as follows: ReLU(z) =
ReLU (R(z)) + iReLU (I(z)), where R and I refer to the real and imaginary parts of z.
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will first decompose U into a product of matrices WRO, where R and O are respectively circulant
and diagonal matrices, and W is a matrix which will be further decomposed into a product of diagonal
and circulant matrices. Then, we will apply the same decomposition technique to V . Ultimately, we
will get a product of 4k + 2 matrices alternatively diagonal and circulant.

Let R = circ(r1 . . . rn). Let O be a n⇥ n diagonal matrix where Oi,i = 1 if i  k and 0 otherwise.
The k first columns of the product RO will be equal to that of R, and the n� k last colomns of RO

will be zeros. For example, if k = 2, we have:

RO =

0

BBBBB@

r1 rn 0 · · · 0
r2 r1

r3 r2

.

.

.
.
.
.

.

.

.
.
.
.

rn rn�1 0 · · · 0

1

CCCCCA

Let us define k diagonal matrices Di = diag(di1 . . . din) for i 2 [k]. For now, the values of dij are
unknown, but we will show how to compute them. Let W =

Pk
i=1 DiS

i�1. Note that the n� k last
columns of the product WRO will be zeros. For example, with k = 2, we have:

W =

2

666664

d1,1 d2,1

d2,2 d1,2

d2,3
. . .

. . .

d2,n d1,n

3

777775

WRO =

0

BBBBB@

r1d11 + rnd21 rnd11 + rn�1d21 0 · · · 0
r2d12 + r1d22 r1d12 + rnd22

.

.

.
.
.
.

.

.

.
.
.
.

rnd1n + rn�1d2n rn�1d1n + rn�2d2n 0 · · · 0

1

CCCCCA

We want to find the values of dij such that WRO = U . We can formulate this as linear equation
system. In case k = 2, we get:

0

BBBBBBBBBBB@

rn r1

rn�1 rn

r1 r2

rn r1

r2 r3

r1 r2

. . .

. . .

1

CCCCCCCCCCCA

⇥

0

BBBBBBBBBBB@

d2,1

d1,1

d2,2

d1,2

d2,3

d1,3
.
.
.

.

.

.

1

CCCCCCCCCCCA

=

0

BBBBBBBBBB@

U1,1

U1,2

U2,1

U2,2

.

.

.

1

CCCCCCCCCCA

The ith bloc of the bloc-diagonal matrix is a Toeplitz matrix induced by a subsequence of length k of
(r1, . . . rn, r1 . . . rn). Set rj = 1 for all j 2 {k, 2k, 3k, . . . n} and set rj = 0 for all other values of
j. Then it is easy to see that each bloc is a permutation of the identity matrix. Thus, all blocs are
invertible. This entails that the block diagonal matrix above is also invertible. So by solving this
set of linear equations, we find d1,1 . . . dk,n such that WRO = U . We can apply the same idea to
factorize V = W

0
.R.O for some matrix W

0. Finally, we get

A = U⌃V T = WRO⌃OT
R

T
W

0T

Thanks to Theorem 1, W and W
0 can both be factorized in a product of 2k� 1 circulant and diagonal

matrices. Note that O⌃OT is diagonal, because all three are diagonal. Overall, A can be represented
with a product of 4k + 2 matrices, alternatively diagonal and circulant.
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3 PROOFS OF SECTION 4

Lemma 1. Let WL, . . .W1 2 Cn⇥n
, b 2 Cn

and let X ⇢ Cn
be a bounded set. There

exists �L . . .�1 2 Cn
such that for all x 2 X we have fWL,�L � . . . � fW1,�1(x) =

ReLU (WLWL�1 . . .W1x+ b).

Proof. (Lemma 1) Define S =
n⇣⇣Qj

k=1 Wk

⌘
x

⌘

t
: x 2 X , t 2 [n], j 2 [L]

o
. Let ⌦ =

max {R(v) : v 2 S} + imax {I(v) : v 2 S}. Intuitively, the real and imaginary parts of ⌦ are
the largest any activation in the network can have. Define hj(x) = Wjx + �j . Let �1 = ⌦1n.
Clearly, for all x 2 X we have h1(x) � 0, so ReLU � h1(x) = h1(x). More generally,
for all j < n � 1 define �j+1 = 1n⌦ � Wj+1�j . It is easy to see that for all j < n

we have hj � . . . � h1(x) = WjWj�1 . . .W1x + 1n⌦. This guarantees that for all j < n,
hj � . . . � h1(x) = ReLU � hj � . . . � ReLU � h1(x). Finally, define �L = b � AL�L�1. We
have, ReLU � hL � . . . �ReLU � h1(x) = ReLU (Wj . . .W1x+ b).

Lemma 2. Let N be a deep ReLU network of width n and depth L, and let X ⇢ Cn
be a bounded

set. For any ✏ > 0, there exists a DCNN N 0
of width n and of depth (2n� 1)L such that kN (x)�

N 0(x)k < ✏ for all x 2 X .

Proof. (Lemma 2) Assume N = fWL,bL � . . . � fW1,b1 . By theorem 1, for any ✏
0
> 0, any

matrix Wi, there exists a sequence of 2n � 1 matrices Ci,nDi,n�1Ci,n�1 . . . Di,1Ci,1 such that���
Qn�1

j=0 Di,n�jCi,n�j �Wi

��� < ✏
0, where Di,1 is the identity matrix. By lemma 1, we know

that there exists {�ij}i2[L],j2[n] such that for all i 2 [L], fDinCin,�in � . . . � fDi1Ci1,�i1(x) =

ReLU (DinCin . . . Ci1x+ bi).

Now if ✏0 tends to zero, kfDinCin,�in � . . . � fDi1Ci1,�i1 �ReLU (Wix+ bi)k will also tend to zero
for any x 2 X , because the ReLU function is continuous and X is bounded. Let N 0 = fD1nC1n,�1n �
. . . � fDi1Ci1,�i1 . Again, because all functions are continuous, for all x 2 X , kN (x)�N 0(x)k tends
to zero as ✏0 tends to zero.

Corollary 1. Bounded width DCNNs are universal approximators in the following sense: for any

continuous function f : [0, 1]n ! R+ of bounded supremum norm, for any ✏ > 0, there exists

a DCNN N✏ of width n + 3 such that 8x 2 [0, 1]n+3
, |f(x1 . . . xn)� (N✏ (x))1| < ✏, where (·)i

represents the i
th

component of a vector.

Proof. (Corollary 1) It has been shown recently in Hanin (2017) that for any continuous function
f : [0, 1]n ! R+ of bounded supremum norm, for any ✏ > 0, there exists a dense neural network
N with an input layer of width n, an output layer of width 1, hidden layers of width n + 3 and
ReLU activations such that 8x 2 [0, 1]n, |f(x)�N (x)| < ✏. From N , we can easily build a deep
ReLU network N 0 of width exactly n+ 3, such that 8x 2 [0, 1]n+3, |f(x1 . . . xn)� (N 0 (x))1| < ✏.
Thanks to lemma 2, this last network can be approximated arbitrarily well by a DCNN of width
n+ 3.

Theorem 3. (Rank-based expressive power of diagonal circulant neural networks)

Let N : fWL,bL � . . . � fW1,b1 be a deep ReLU network of width n, depth L and a total rank k.

Assume n is a power of 2. Let X ⇢ Cn
be a bounded set. For any ✏ > 0, there exists a DCNN N 0

of

width n such that kN (x)�N 0(x)k < ✏ for all x 2 X . In addition, the depth of N 0
is bounded by

9k. Moreover, if the rank of each matrix Ai divides n, then the depth of N 0
is bounded by L+ 4k.

Proof. (Theorem 3) Let k1 . . . kL be the ranks of matrices W1 . . .WL, which are n-by-n matrices. For
all i, there exists k0i 2 {ki . . . 2ki} such that k0i is a power of 2. Due to the fact that n is also a power
of 2, k0i divides n. By theorem 2, for all i each matrix Wi can be decomposed as an alternating product
of diagonal-circulant matrices Bi,1 . . . Bi,4k0

i+1 such that
��Wi �Bi,1 ⇥ . . .⇥Bi,4k0

i+1

�� < ✏. Using
the exact same technique as in lemma 2, we can build a DCNN N 0 using matrices B1,1 . . . BL,4k0

L+1,
such that kN (x)�N 0(x)k < ✏ for all x 2 X . The total number of layers is

P
i (4k

0
i + 1) 

L+ 8
P

i ki  L+ 8.total rank  9.total rank.
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Finally, what if we choose to use small depth networks to approximate deep ReLU networks where
matrices are not of low rank? To answer this question, we first need to show the negative impact of
replacing matrices by their low rank approximators in neural networks:
Proposition 4. Let N = fWL,bL �. . .�fW1,b1 be a Deep ReLU network, where Wi 2 Cn⇥n

, bi 2 Cn

for all i 2 [L]. Let W̃i be the matrix obtained by an SVD approximation of rank k of matrix Wi. Let

�i,j be the j
th

singular value of Wi. Define Ñ = fW̃L,bL
� . . . � fW̃1,b1

. Then, for any x 2 Cn
, we

have: ���N (x)� Ñ (x)
��� 

�
�
L
max,1 � 1

�
R�max,k

�max,1 � 1

where R is an upper bound on norm of the output of any layer in N , and �max,j = maxi �i,j .

Proof. (Proposition 4) Let x0 2 Cn and x̃0 = x0. For all i 2 [L], define xi = ReLU (Wixi�1 + b)

and x̃i = ReLU

⇣
W̃ix̃i�1 + b

⌘
. By lemma 3, we have

kxi � x̃ik  �i,k+1 kxi�1k+ �i,1 kxi�1 � x̃i�1k

Observe that for any sequence a0, a1 . . . defined recurrently by a0 = 0 and ai = rai�1 + s, the

recurrence relation can be unfold as follows: ai =
s(ri�1)

r�1 . We can apply this formula to bound our
error as follows:

kxl � x̃lk 
�
�
l
max,1 � 1

�
�max,k maxi kxik

�max,1 � 1

Lemma 3. Let W 2 Cn⇥n
with singular values �1 . . .�n, and let x, x̃ 2 Cn

. Let W̃ be the matrix

obtained by a SVD approximation of rank k of matrix W . Then we have:

���ReLU (Wx+ b)�ReLU

⇣
W̃ x̃+ b

⌘���  �k+1 kxk+ �1 kx̃� xk

Proof. (Lemma 3) Recall that kWk2 = supz
kWzk2
kzk2

= �1 =
���W̃

���
2
, because �1 is the greatest

singular value of both W and W̃ . Also, note that
���W � W̃

���
2
= �k+1. Let us bound the formula

without ReLUs:

���(Wx+ b)�
⇣
W̃ x̃+ b

⌘��� =
���(Wx+ b)�

⇣
W̃ x̃+ b

⌘���

=
���Wx� W̃x� W̃ (x̃� x)

���


���
⇣
W � W̃

⌘
x

���+
���W̃

���
2
kx̃� xk

 kxk�k+1 + �1 kx̃� xk

Finally, it is easy to see that for any pair of vectors a, b 2 Cn, we have kReLU(a)�ReLU(b)k 
ka� bk. This concludes the proof.

Corollary 2. Consider any deep ReLU network N = fWL,bL � . . . � fW1,b1 of depth L and width n.

Let �max,j = maxi �i,j where �i,j is the j
th

singular value of Wi. Let X ⇢ Cn
be a bounded set.

Let k be an integer dividing n. There exists a DCNN N 0 = fDmCm,b0m � . . . � fD1C1,b01
of width n

and of depth m = L(4k + 1), such that for any x 2 X :

kN (x)�N 0 (x)k <

�
�
L
max,1 � 1

�
R�max,k

�max,1 � 1

where R is an upper bound on the norm of the outputs of each layer in N .
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Proof. (Corollary 2) Let Ñ = fW̃L,bL
� . . . � fW̃1,b1

, where each W̃i is the matrix obtained by
an SVD approximation of rank k of matrix Wi. With Proposition 4, we have an error bound on
kN (x)�Ñ (x) k. Now each matrix W̃i can be replaced by a product of k diagonal-circulant matrices.
By theorem 3, this product yields a DCNN of depth m = L(4k + 1), strictly equivalent to Ñ on X .
The result follows.

4 PROOF OF SECTION 5

Proposition 5. Let N be a DCNN of depth L initialized according to our procedure, with �
0 = 0.

Assume that all layers 1 to L � 1 have ReLU activation functions, and that the last layer has the

identity activation function. Then, for any x 2 Rn
, the covariance matrix of N (x) is

2.Id
n kxk22.

Moreover, note that this covariance does not depend on the depth of the network.

Proof. (Proposition 5) Let N = fDL,CL �. . .�fD1,C1 be a L layer DCNN. All matrices are initialized
as described in the statement of the proposition. Let y = D1C1x. Lemma 4 shows that cov(yi, yi0) =
0 for i 6= i

0 and var(yi) = 2
n kxk22. For any j  L, define z

j = fDj ,Cj � . . . � fD1,C1(x). By a
recursive application of lemma 4, we get that then cov(zji , z

j
i0) = 0 and var(zji ) =

2
n kxk22.

Lemma 4. Let c1 . . . cn, d1 . . . dn, b1 . . . bn be random variables in R such that ci ⇠ N (0,�2),
bi ⇠ N (0,�02) and di ⇠ {�1, 1} uniformly. Define C = circ(c1 . . . cn) and D = diag(d1 . . . dn).
Define y = DCu and z = CDu for some vector u in Rn

. Also define ȳ = y + b and z̄ = z + b.

Then, for all i, the p.d.f. of yi, ȳi, zi and z̄i are symmetric. Also:

• Assume u1 . . . un is fixed. Then, we have for i 6= i
0 :

cov(yi, yi0) = cov(zi, zi0) = cov(ȳi, ȳi0) = cov(z̄i, z̄i0) = 0

var(yi) = var(zi) =
X

j

u
2
j�

2

var(ȳi) = var(z̄i) = �
02 +

X

j

u
2
j�

2

• Let x1 . . . xn be random variables in R such that the p.d.f. of xi is symmetric for all i, and

let ui = ReLU(xi). We have for i 6= i
0 :

cov(yi, yi0) = cov(zi, zi0) = cov(ȳi, ȳi0) = cov(z̄i, z̄i0) = 0

var(yi) = var(zi) =
1

2

X

j

var(xi).�
2

var(ȳi) = var(z̄i) = �
02 +

1

2

X

j

var(xi).�
2

Proof. (Lemma 4) By an abuse of notation, we write c0 = cn, c�1 = cn�1 and so on. First, note that:
yi =

Pn
j=1 cj�iujdj and zi =

Pn
j=1 cj�iujdi. Observe that each term cj�iujdj and cj�iujdi have

symmetric p.d.f. because of di and dj . Thus, yi and zi have symmetric p.d.f. Now let us compute the
covariance.

cov(yi, yi0) =
nX

j,j0=1

cov (cj�iujdj , cj0�i0uj0dj0)

=
nX

j,j0=1

E [cj�iujdjcj0�i0uj0dj0 ]� E [cj�iujdj ]E [cj0�i0uj0dj0 ]

Observe that E [cj�iujdj ] = E [cj�iuj ]E [dj ] = 0 because dj is independent from cj�iuj .
Also, observe that if j 6= j

0 then E [djdj0 ] = 0 and thus E [cj�iujdjcj0�i0uj0dj0 ] =
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E [djdj0 ]E [cj�iujcj0�i0uj0 ] = 0. Thus, the only non null terms are those for which j = j
0.

We get:

cov(yi, yi0) =
nX

j=1

E [cj�iujdjcj�i0ujdj ]

=
nX

j=1

E
⇥
cj�icj�i0u

2
j

⇤

Assume u is a fixed vector. Then, var(yi) =
Pn

j=1 u
2
j�

2 and cov(yi, yi0) = 0 for i 6= i
0 because

cj�i is independent from cj�i0 .

Now assume that uj = ReLU(xj) where xj is a r.v. Clearly, u2
j is independent from cj�i and cj�i0 .

Thus:

cov(yi, yi0) =
nX

j=1

E [cj�icj�i0 ]E
⇥
u
2
j

⇤

For i 6= i
0, then cj�i and cj�i0 are independent, and thus E [cj�icj�i0 ] = E [cj�i]E [cj�i0 ] = 0.

Therefore, cov(yi, yi0) = 0 if i 6= i
0. Let us compute the variance. We get var(yi) =Pn

j=1 var(cj�i).E
⇥
u
2
j

⇤
. Because the p.d.f. of xj is symmetric, E

⇥
x
2
j

⇤
= 2E

⇥
u
2
j

⇤
and E [xj ] = 0.

Thus, var(yi) = 1
2

Pn
j=1 var(cj�i).E

⇥
x
2
j

⇤
= 1

2

Pn
j=1 var(cj�i).var(xj).

Finally, note that cov(ȳi, ȳi0) = cov(yi, yi0) + cov(bi, bi0). This yields the covariances of ȳ.

To derive cov(zi, zi0) and cov(z̄i, z̄i0) , the required calculus is nearly identical. We let the reader
check by himself/herself.

5 ADDITIONAL INFORMATION ON THE EMPIRICAL EVALUATION

Architectures & Hyper-Parameters: For the first set of our experiments (e.g. experiments on
CIFAR-10), we train all networks for 200 epochs, a batch size of 200, Leaky ReLU activation with
a different slope. We minimize the Cross Entropy Loss with Adam optimizer and use a piecewise
constant learning rate of 5⇥ 10e� 5, 2.5⇥ 10e� 5, 5⇥ 10e� 6 and 1⇥ 10e� 6 after respectively
40000, 60000 and 80000 steps.

For the YouTube-8M dataset experiments, we built a neural network based on the state-of-the-art
architecture initially proposed by Abu-El-Haija et al. (2016) and later improved by Miech et al.
(2017). Remark that no convolution layer is involved in this application since the input vectors are
embeddings of video frames processed using state-of-the-art convolutional neural networks trained
on ImageNet.

We trained our models with the CrossEntropy loss and used Adam optimizer with a 0.0002 learning
rate and a 0.8 exponential decay every 4 million examples. All fully connected layers are composed
of 512 units. DBoF, NetVLAD and NetFV are respectively 8192, 64 and 64 of cluster size for video
frames and 4096, 32, 32 for audio frames. We used 4 mixtures for the MoE Layer. We used all the
available 300 frames for the DBoF embedding. In order to stabilize and accelerate the training, we
used batch normalization before each non linear activation and gradient clipping.
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