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ABSTRACT

We consider composition problems of the form 1
n

∑n
i=1 Fi(

1
n

∑n
j=1Gj(x)).

Composition optimization arises in many important machine learning applica-
tions: reinforcement learning, variance-aware learning, nonlinear embedding, and
many others. Both gradient descent and stochastic gradient descent are straight-
forward solution, but both require to compute 1

n

∑n
j=1Gj(x) in each single it-

eration, which is inefficient-especially when n is large. Therefore, with the aim
of significantly reducing the query complexity of such problems, we designed a
stochastically controlled compositional gradient algorithm that incorporates two
kinds of variance reduction techniques, and works in both strongly convex and
non-convex settings. The strategy is also accompanied by a mini-batch version
of the proposed method that improves query complexity with respect to the size
of the mini-batch. Comprehensive experiments demonstrate the superiority of the
proposed method over existing methods.

1 INTRODUCTION

In this paper, we study the following composition minimization problem,

min
x∈RN

{
f(x)

def
= F (G(x))

def
=

1

n

n∑
i=1

Fi

(
1

n

n∑
j=1

Gj(x)

)}
, (1.1)

where f : RN → R is differentiable and possibly non-convex, each Fi: RM → R is a smooth
function, each Gi: RN → RM is a mapping function, both the numbers of Fi’s and Gj’s are
assumed to be n for simplicity We call G(x):= 1

n

∑n
j=1Gj(x) the inner function, and F (w):=

1
n

∑n
i=1 Fi(w) the outer function. Many machine learning problems can be cast as composition

problems that include two finite-sum structures: reinforcement learning (Sutton et al., 1998; Wang
et al., 2017; Liu et al., 2016), variance-averse learning (Lian et al., 2017), and nonlinear embedding
(Hinton & Roweis, 2003; Dikmen et al., 2015). In particular,

• (reinforcement learning) The S × S system of Bellman equations Wang et al. (2017)
can be written as minx∈RS ‖E[B]x− E[b]‖2, where E[B] = I − γPπ , γ ∈ (0, 1) is a
discount factor, Pπ is the transition probability under policy π, and E[b] is the expected
state transition reward. This is one of key problems in reinforcement learning for evaluating
the value of a policy π.

• (risk-averse learning) The risk-averse learning Lian et al. (2017) aims to maximize the
expected return while control the variance (or risk) in the meantime:

minx − Ea[h(x; a)] + λVara[h(x; a)],

where h(x; a) is the loss function including a random variable a, λ > 0 is a regularization
parameter.

• (nonlinear embedding) Stochastic nonlinear embedding Hinton & Roweis (2003) aims
to map a group of points from a high dimensional space to a low dimensional space by
minimizing the KL divergence. It is a non-convex composition optimization

minx
∑
t

KL(p·|t ‖ q·|t) :=
∑
t

∑
i

pi|t log
pi|t

qi|t
, (1.2)

where pi|t and qi|t are the conditional probabilities w.r.p. {zi}ni=1 and {xi}ni=1,
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pi|t = d(zt,zi)∑
j 6=t d(zt,zj)

, qi|t = d(xt,xi)∑
j 6=t d(xt,xj)

,

where d(·, ·) is the dissimilar distance function between two samples.

To solve the composition optimization including the finite-sum structure in (1.1), two most straight-
forward approaches are the gradient descent (GD) and the stochastic gradient descent (SGD). How-
ever, it is extremely expensive to scan all the inner functions (for both SGD and GD) as well as all
the outer functions (for GD) in each iteration. However, note that, unlike solving common stochastic
optimization problems, randomly sampling one inner function and one outer function does not give
an unbiased estimate for the true gradient; that is, Ei∼[n],j∼[n][(∂Gj(x))T∂Fi(G̃(x))] 6= ∇f(x),

where G̃(x)is the estimation of G(x). The key to solving this composition objective is how to es-
timate the value of G(xk) and its Jacobian with high accuracy using only a few samples in each
iteration.

Recently, many stochastic optimization methods solving the composition problem have been devel-
oped, such as the stochastic gradient based method and the variance-reduction based method. For
example, stochastic compositional gradient descent (SCGD) (Wang et al., 2017; Liu et al., 2016)
estimates the inner function G(x) by using an iterative weighted average of the past values of G(x),
and then performs the stochastic quasi-gradient iteration. The advantage of this method is that con-
vergence rate does not depend on n; however, it queries more samples to the desired point. Another
set of approaches is based on variance reduction – for instance, compositional stochastic variance
reduction gradient (Compositional-SVRG) (Lian et al., 2017) estimates the inner function G(x) and
the gradient of function f(x) by using the variance reduction technique; however, the derived linear
convergence rate is related to n. Motivated by a few recent works (Lei & Jordan, 2017; Lei et al.,
2017; Allen-Zhu, 2017) that focus on the stochastically controlled gradient, we were inspired to look
for a way to improve the query complexity and reduce the dependence on n to solve the composition
optimization in (1.1).

Hence, this paper presents a novel and more efficient method named stochastically controlled com-
positional gradient (SCCG) for solving composition problems involving a two-finite-sum structure.
The result is improved query complexity over existing approaches. Further, all results in this paper
can be easily extended to cases where the number of Fi and the number of Gj are different. The
main contributions of this article are summarized below.

• We provide a stochastically controlled function to estimate the inner function G(x). In-
spired by stochastically controlled stochastic gradient (SCSG) (Lei & Jordan, 2017) that
estimates the gradient, G(x) can also be estimated by using a snapshot x̃s, in which G(x̃s)
is not computed directly, but is estimated through a random subset from [n]. This is the
first time that a stochastically controlled function has been incorporated into the process
of estimating the inner function. We have also analyzed how the size of the subset might
influence the query complexity for both strongly convex and non-convex functions.

• We provide a stochastically controlled compositional gradient to estimate the∇f(x). How-
ever, there are two potential situations that could be encountered in the estimation process
that can impede convergence. First, the expectation of the gradient is no longer an un-
biased estimation; and, second, the gradient of f(x̃s) at the snapshot is formed by two
random subsets, which are used for the functions Fi and Gj respectively. Moreover, the
biased gradient bring more difficulty in proving the convergence, which are greatly differ-
ent from those encountered in (Lei & Jordan, 2017; Lian et al., 2017; Lei et al., 2017). To
address these scenarios, we have identified a bound on the size of the subsets that are used
to estimate the gradient. The details of the analysis can be referred to Section 3.1 and 3.2.

• A mini-batch version of the proposed algorithm is also provided for both strongly convex
and non-convex functions. The corresponding query complexities are improved according
to the size of the mini-batch. More information can be referred to Section 3.3.

1.1 RESULTS

Following the classical benchmark for a general problem, the composition algorithm is also to find
a point x satisfying f(x) − f(x∗) ≤ ε for a convex function, where x∗ is the optimal point in the
strongly convex function, and ‖∇f(x)‖2 ≤ ε for a non-convex function, respectively. The elegance
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Algorithm Strongly Convex Non-convex
SCGD (Wang et al., 2017) O(1/ε3/2) O(1/ε4)

Acc-SCGD (Wang et al., 2017) O(1/ε5/4) O(1/ε7/2)

ASC-PG (Liu et al., 2016) O(1/ε5/4) O(1/ε9/4)

SC-SVRG (Liu et al., 2017b) O
((
n+ L2

f/µ
4
)

log (1/ε)
)

O(n4/5/ε)

mini-batch VRSC-PG (Huo et al., 2018) O
((
n+ L2

f/µ
3
)

log (1/ε)
)

O(n2/3/ε)

mini-batch C-SAGA (Yuan et al., 2019) O
((
n+ L2

f/µ
3
)

log (1/ε)
)

O(n2/3/ε)

SCCG O
((

min
{
n, 1

εµ2

}
+

L2
f

µ2 min
{
n, 1

µ2

})
log (1/ε)

)
O(min{ 1

ε9/5
, n

4/5

ε })

mini-batch SCCG (b= 1
µ ,min {n, 1ε }

2
3 ) O

((
min

{
n, 1

εµ2

}
+

L2
f

µ min
{
n, 1

µ2

})
log (1/ε)

)
O(min{ 1

ε5/3
, n

2/3

ε })

Table 1: Comparison of the query complexity with different algorithms. Note: µ and Lf are defined
in the Preliminary Section. b is the size of the mini-batch.

of a composition algorithm is evaluated based on its query complexity, defined as the number of
queries in a given sampling oracle that are needed to compute the gradient. Here, we give the query
complexities of the composition problem in Table 1, which offers an insightful comparison to other
algorithms.

Strongly convex function The query complexity for the strongly convex function is
O((min{n, 1/(εµ2)}+ L2

f/µ
2min{n, 1/µ2}) log(1/ε)). The result is the general form for the

strongly convex composition and is equal to or better than the query complexity in (Lian et al.,
2017) and (Liu et al., 2017a).

Non-convex function The query complexity is O(min{1/ε9/5, n4/5/ε}), which is better than the
result in (Liu et al., 2016) and comparable to the result in (Liu et al., 2017b).

Mini-batch 1 For the mini-batch version, the query complexity can be improved to some extent, that
is O((min{n, 1/(εµ2)}+ L2

f/(bµ
2)min{n, 1/µ2}) log(1/ε)). and O(min{1/ε9/5, n4/5/ε}/b1/5)

for strongly convex and non-convex functions, respectively, which are better than mini-batch vari-
ance reduced stochastic compositional proximal gradient method (VRSC-PG) (Huo et al., 2018) and
mini-batch Composite SAGA (C-SAGA) (Yuan et al., 2019) when b=1/µ and min {n, 1/ε}2/3 for
strongly convex and non-convex functions, respectively.

1.2 RELATED WORK

As the amount of data we have at our disposal grows, stochastic optimization has become a pop-
ular technique in the realm of machine and deep learning, particularly for optimizing finite-sum
functions. The typical algorithms for solving such problems include stochastic gradient descent
(Ghadimi & Lan, 2016), SVRG (Johnson & Zhang, 2013; Reddi et al., 2016), stochastic dual co-
ordinate ascent (SDCA) (Shalev-Shwartz & Zhang, 2014; 2013) and the accelerated Nesterov’s
method (Nesterov, 2013), accelerated randomized proximal coordinate (APCG) (Lin et al., 2014;
2015) and Katyusha method (Allen-Zhu, 2017). The standard procedure for optimizing a problem
with a finite-sum structure is to randomly select one or a block of components to estimate the gra-
dient. However, knowing that the estimated gradient usually has a large variance, the gradient of
the function is estimated from a snapshot to appropriately reduce the variance – in other words, the
procedure includes a variance reduction mechanism.

Composition optimization problems can also be solved with the above algorithms, but the two-
finite-sum structures in composition problems mean that when the gradient of the inner function is
estimated directly, the query complexity can substantially increase. Recently, Wang et al. (2017)
proposed a method based on first-order SCGD to overcome this issue where the variable and the
inner function are updated alternately in two steps. The method has a query complexity ofO(ε−7/2)
for a general function andO(ε−5/4) for a strongly convex function. Liu et al. (2016) employed Nes-

1b denotes the size of the mini-batch, can be obtained through the η ≤ 1 from Theorem 1 and Theorem 2.
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terov’s method to accelerate the composition problem, reachingO(ε−5/4) andO(ε−9/4) for strongly
convex and non-convex functions, respectively. Ghadimi et al. (2018) proposed a nested averaged
stochastic approximation method to find an approximate stationary point within the problem, result-
ing in a sample complexity of O(1/ε2). However, these methods estimate the inner function using
an iterative weighted average of the past function.

The other stream of solutions focuses on variance reduction technology. For instance, Lian et al.
(2017) initially applied the SVRG-based method to estimate the inner function G(x) and the gradi-
ent of the function f(x), which yields a linear convergence rate. Subsequently, Liu et al. (2017a) and
Devraj & Chen (2019) applied a dual-based method to composition problem, which also yields a lin-
ear convergence rate. Devraj & Chen (2019) also applied the stochastic variance reduced primal-dual
algorithms to composition problem. Yu & Huang (2017) turned to an ADMM-based Boyd (2011)
method and provided an analysis of convex functions that do not rely on Lipschitz smoothness.
Moreover, Liu et al. (2017b) went a step further and considered non-convex functions, analyzing the
query complexity with both inner and outer functions of different sizes. Lin et al. (2018) considered
non-smooth convex composition functions, offering an incremental first-order oracle complexity
analysis. Zhang & Xiao (2019) and Huo et al. (2018) also provided an randomized incremental
gradient method for the composition problem including regularization.

Many recent articles have discussed variance reduction methods that estimate the gradient from a
random subset rather than through direct computation. Lei & Jordan (2017), for example, proposed
an SCSG method for a convex finite-sum function. They then applied it to a non-convex problem
in (Lei et al., 2017) by using less than a single pass to compute the gradient at the snapshot point.
Furthermore, Allen-Zhu (2017) proposed the Natasha1.5 algorithm, in which the gradient for each
epoch is based on a random subset. Moreover, the objective function has the regularization term.
Liu et al. (2018) applied an SCSG based method to the zeroth-order optimization problems with the
finite-sum function. Recently, Yuan et al. (2019) applied the stochastic recursive gradient descent
method to the composition problem.

The rest of paper is organized as follows: in Section 2, we give preliminaries used for analyzing
the proposed algorithm. Section 3 presents the SCSG-based method for the strongly convex and
non-convex composition problem and the corresponding mini-batch version. In Section 4, we give
the experimental results. We conclude our paper in Section 5.

2 PRELIMINARIES

Throughout this paper, we use the Euclidean norm denoted by ‖ · ‖. We use i ∈ [n] to denote that
i is generated from [n] = {1, 2, ..., n}. We denote by (∂G(x))T∇F (G(x)) the full gradient of the
function f , ∂G(x) the Jacobian of G, and (∂Gj(x))T∇Fi(G(x)) as the stochastic gradient of the
function f , where i and j are randomly and independently selected from [n]. We use A = |A| to
denote the number of elements in the set A, and define GA(x) = 1

A

∑
1≤j≤AGA[j](x). We use

E to denote the expectation, that is EA[v] = 1
A

∑
1≤i≤A vA[i]. Note that all the variables such as

subsets A and B, elements i and j are independently selected from [n], in particular, the element
in A and B are independent. So we use E in instead of Ei, Ej ,EA and EB except when explicitly
stated otherwise. Recall definitions on Lipschitz function, smooth function and strongly convex.

Definition 1. For function p on X , ∀x, y ∈ X , A function p is a Bp-Lipschitz, that is
‖p(x)− p(y)‖ ≤ Bp‖x− y‖; A function p is a Lp-smooth, that is ‖∇p(x)−∇p(y)‖ ≤
Lp‖x− y‖; A function p is a µ-strongly convex, that is p (y) ≥ p (x)+〈p (x) , y−x〉+µ/2‖x− y‖2.

Through our discussions, we make the following assumptions,

Assumption 1. Let BG, LF and Lf be positive scalars, 2

• Gj is BG-Lipschitz, j ∈ [n], that is ‖Gj(x)−Gj(y)‖ ≤ BG‖x− y‖.

• Fi is LF -smooth, i ∈ [n], that is ‖∇Fi(x)−∇Fi(y)‖ ≤ LF ‖x− y‖.
2In the strongly convex composition problem, the upper bounded Jacobian does not imply that the gradient

of f(x) is upper bounded since we do not require the gradient of Fi is upper bounded. Moreover, in the
experimental section, we will show that the Jacobian of G(x) is bounded.
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• For function Fi(G(x)), there exists a constant Lf satisfying ‖(∂Gj(x))T∇Fi(G(x)) −
(∂Gj(y))T∇Fi(G(y))‖ ≤ Lf‖x− y‖,∀i, j ∈ [n].

• We assume that i and j are independently and randomly selected from [n], z ∈ RM , x ∈
RN , then E[(∂Gj(x))T∇Fi(z)] = (∂G(x))T∇F (z).

Furthermore, we define H1 and H2 are the upper bounds on the variance of G(x) and
(∂G(x))T∇F (y), respectively, that is,

1
n

n∑
i=1

‖G(x)−Gi(x)‖2 ≤ H1,
1
n2

n∑
j=1

n∑
i=1

∥∥(∂G(x))T∇F (y)− (∂Gj(x))T∇Fi(y)
∥∥2 ≤ H2.

In the paper, we denote by xsk the k-th inner iteration at s-th epoch. But in each epoch analysis, we
drop the superscript s and denote by xk for xsk. We let x∗ be the optimal solution of the convex
f(x). Throughout the convergence analysis, we use O(·) notation to avoid many constants, such as
BG, LF , and Lf , that are irrelevant with the convergence rate.

3 STOCHASTICALLY CONTROLLED COMPOSITIONAL GRADIENT

In this section, we present the variance-reduction based method for the composition problem, which
can be used for both the strongly convex function and non-convex function. Before describing the
proposed algorithm, we recall the original SVRG (Johnson & Zhang, 2013). The general process
of SVRG works as follows. The update process is divided into S epochs, and each of the epoch
consists of K iterations. At the beginning of each epoch, SVRG defines a snapshot vector x̃s, and
then compute the full gradient ∇f(x̃s). In the inner iteration of the current epoch, SVRG defines
the estimated gradient by randomly selecting ik from [n] at the k-th iteration,

(∂G(xk))T∇Fik(G(xk))− (∂G(x̃s))
T∇Fik(G(x̃s)) +∇f(x̃s). (3.1)

However, for the composition problem, there are also variance-reduction based methods in (Lian
et al., 2017; Liu et al., 2017a;b). The difference with SVRG is that there is another estimated
function for G(x), which also has the finite-sum structure. These methods define the estimated
function as

G̃k = GA(xk)−GA(x̃s) +G(x̃s), (3.2)

where A is the mini-batch formed by randomly sampling from [n]. Whereas, as the number of the
inner functionGj and the outer function Fi increase, it is not reasonable to compute the full gradient
of f(x) and the full function G(x) directly for each epoch.

Extending from the SCSG (Lei et al., 2017; Lei & Jordan, 2017) and Natasha1.5 (Allen-Zhu, 2017),
we present a new algorithm SCCG for the composition problem as shown in Algorithm 1. 3 We
introduce two subsets D1 and D2, which are independent with each other and randomly selected
from [n], respectively. We defineD = D1∪D2 as a new variable, which is important in analyzing the
convergence. Firstly, D1 is used for estimating the inner function. Based on the variance reduction
technique, the estimated inner function at k-th iteration of s-th epoch is

Ĝk = GA(xk)−GA(x̃s) +GD1(x̃s), (3.3)

where the subset of A is the same as in (3.2). Note that A and D are independent with each other.
The difference with (3.2) is that the third term in (3.3) is computed under the subset D1 rather than
[n]. Throughout the paper, we assume that |A| ≤ |D1|. Secondly, D2 is used to estimate the outer
function F . The key distinguish with (Lei et al., 2017; Lei & Jordan, 2017; Allen-Zhu, 2017) is
the biased full gradient of f(x̃s). We define this estimated full gradient of f(x̃s) for each epoch as
∇f̂D(x̃s) = (∂GD1

(x̃s))
T∇FD2

(GD1
(x̃s)). Though EA,D[∇f̂D(x̃s)] 6= ∇f(x̃s), we could still

estimate the gradient of the f(xk) by

∇f̃k = (∂Gjk(xk))T∇Fik(Ĝk)− (∂Gjk(x̃s))
T∇Fik(GD1(x̃s)) +∇f̂D(x̃s), (3.4)

3The parameters’ setting can be referred to Theorem 1 and Theorem 2 for the strongly convex and non-
convex function, respectively.
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Algorithm 1 Stochastically Controlled Compositional Gradient (SCCG) for the strongly convex or
non-convex composition problem
Require: K, S, η , x̃0 and D = D1 ∪ D2, where D1 and D2 are mini-batches.

for s = 0, 1, 2, · · · , S − 1 do
Sample from [n] for D times to form mini-batch D1

Sample from [n] for D times to form mini-batch D2

∇f̂D(x̃s) = (∂GD1
(x̃s))

T∇FD2
(GD1

(x̃s))
x0 = x̃s
for k = 0, 1, 2, · · · ,K − 1 do

Sample from [n] to form mini-batch A
Ĝk = GA(xk)−GA(x̃s) +GD1(x̃s)
Uniformly and randomly pick ik and jk from [n]

Compute the estimated gradient∇f̃k from (3.4)
xk+1 = xk − η∇f̃k

end for
Update x̃s+1 = xK , or x̃s+1 = xr, r is randomly selected from [K − 1]

end for
Output: x̂sk is uniformly and randomly chosen from s ∈ {0, ..., S − 1} and k ∈ {0, ..,K − 1}.

where ik and jk are randomly selected from [n] at the k-th iteration for functions F and G, respec-
tively. Furthermore, Eij ,jkA,D[∇f̃k] 6= ∇f(xk) as well. This gives us more discussion about the
upper bound with respect to the estimated function and the gradient under the new random subset D
(more details can be referred to appendix).

3.1 SCCG FOR THE STRONGLY CONVEX CASE

In this subsection, we analyze the query complexity for the strongly convex composition problem
and show that our result is better or comparable to the previous methods. Furthermore, we discuss
the query complexity under different value with respect to n, µ and ε

Theorem 1. In Algorithm 1, for the µ-strongly convex problem, suppose Assumption 1 holds, let the
step size is η ≤ µ/(135L2

f ), the subset size of A is A = min{n, 128B4
GL

2
F /µ

2}, the subset size of
D1 and D2 are both D = min

{
n, 5

(
16B4

GL
2
FH1 + 4H2

)
/(4εµ2)

}
, the number of the inner iter-

ation is K ≥ 540L2
f/µ

2, the number of outer iteration is S ≥ 1/(log(1/ρ)) log(2E‖x̃0 − x∗‖2/ε).

Then, the query complexity is (D +KA)S = O
((

min
{
n, 1

εµ2

}
+

L2
f

µ2 min
{
n, 1

µ2

})
log (1/ε)

)
.

As can be seen from the above result, Theorem 1 presents the general query complexity under
different parameters ( the details of parameters’ setting can be referred to the Appendix.). Comparing
n with corresponding parameters, we analyze the query complexity separately. We remove the
parameters such as B2

G, L2
F , H1 and H2, and analyze the size with the order of 1/µ2. We consider

three internals of n while the min value of the function in the above query complexity will take
different results:

• 1/µ2 ≤ 1/(εµ2) ≤ n. When n is large enough such that we can obtain the query complex-
ity is O((1/(εµ2) + L2

f/µ
4) log(1/ε)). This result avoids the situation that computing the

full gradient of f(x) and the full function G(x) for the large-scale number of n. What’s
more, this result is better than Compositional-SVRG (Lian et al., 2017; Liu et al., 2017a).

• 1/µ2 ≤ n ≤ 1/(εµ2). When n is smaller than 1/(εµ2), the query complexity becomes
O((n+ L2

f/µ
4) log(1/ε)), which is the same as Compositional-SVRG (Lian et al., 2017).

However, we need to compute the full gradient of ∇f(x̃s) as in (3.1). The estimation of
inner function G(x) is the same as in (Lian et al., 2017).

• n ≤ 1/µ2 ≤ 1/(εµ2). When n is the smallest one, the query complexity becomes
O((n+ L2

fn/µ
2) log(1/ε)). The result has a similar form to SVRG (Johnson & Zhang,

2013). This also gives us an intuition that the inner function should be computed directly
rather than estimated if n is small.

6



Under review as a conference paper at ICLR 2020

3.2 SCCG FOR THE NONCONVEX CASE

In the previous subsection, we showed convex SCCG converges to the optimal point with improved
query complexity. A natural question is whether the proposed algorithm can improve the perfor-
mance of the non-convex problem. We provide an affirmative answer. In this subsection, we present
the query complexity for the non-convex composition problem in term of stationarity gap ||∇f(x)||2.

Theorem 2. In Algorithm 1, for non-convex function, suppose Assumption 1 holds, let the step size
is η = min{1/n2/5, ε2/5}, the size of the subset D1 and D2 are D = min {n,O(1/ε)}, the size
of subset A is A = min {n,O (1/η)}, the number of inner iteration is K ≤ O

(
1/η3/2

)
, the total

number of iteration is T = O (1/ (εη)), in order to obtain E[‖∇f(x̂sk)‖2] ≤ ε, the query complexity
is O

(
min

{
1/ε9/5, n4/5/ε

})
.

From the above result, we analyze the query complexity of the non-convex problem separately:
1) when n ≥ 1/ε, our query complexity becomes O(1/ε9/5), which is independent on n. This
is better than the query complexity of the accelerated method in (Liu et al., 2016), in which the
query complexity does not depend on n as well. 2) when n ≤ 1/ε, the query complexity becomes
O(n4/5/ε), which is consistent with the result of (Liu et al., 2017b) in solving the problem (1.1).

3.3 MINI-BATCH VERSION OF SCCG

In this subsection, we present the mini-batch version of the proposed method in Algorithm 2 (in
appendix) and obtain the corresponding query complexities for both the strongly convex and the
non-convex functions, which provably benefit from mini-batching. As the process of the proof is
similar to that of Theorem 1 and Theorem 2, and the difference with Algorithm 1 is the computation
of the gradient of f(x) (the corresponding proof of bound is in appendix), we could directly present
the corresponding results for both the strongly convex and the non-convex problems.

Corollary 1. In Algorithm 2, for the µ-strongly convex problem, suppose Assumption 1 holds, let the
step size η ≤ bµ/(135L2

f ), the number of the inner iteration isK ≥ 540L2
f/(bµ

2), in order to obtain

E‖x̃s − x∗‖2 ≤ ε, the query complexity is O
((

min
{
n, 1

εµ2

}
+

L2
f

bµ2 min
{
n, 1

µ2

})
log (1/ε)

)
.

Corollary 2. In Algorithm 2, for the non-convex problem, suppose Assumption 1 holds, let the step
size η = b3/5 min{1/n2/5, ε2/5}, the number of the inner iteration is K ≤ O

(
b1/2/(η3/2)

)
, in

order to obtain E[‖∇f(x̂sk)‖2] ≤ ε, the query complexity is (1/b1/5)O
(
min

{
1/ε9/5, n4/5/ε

})
.

From the above-given query complexity results for the strongly convex and non-convex problems,
we can see that both of their step size η and the number of inner iteration K are larger than the
corresponding ones in the non-mini-batch version. These two key parameters lead to the improved
query complexity for both strongly convex and non-convex functions.

4 EXPERIMENTS

In this section, we evaluate the performance of our proposed algorithm on the strongly convex and
non-convex functions, respectively.

SCCG for strongly convex function4 To verify the effectiveness of the algorithm, we use the
mean-variance optimization in portfolio management5:

minx∈Rd − 1
n

∑n
i=1 〈ri, x〉+ 1

n

∑n
i=1(〈ri, x〉 − 1

n

n∑
i=1

〈ri, x〉)2,

where ri ∈ RN , i ∈ [n] is the reward vector, and x ∈ RN is the invested quantity. In the experi-
mental setting, we set n=3000, |A|≈ n2/3, |D1| = 2400, 2600, 2800, which are denoted as SCCG
(2400), SCCG (2600) and SCCG (2800). The reward vectors are generated on Gaussian distribution

4Our aim is to compare our general variance-reduce based method with the stochastic composition gradient
method, and also to verify the proposed algorithm, thus we do not include SVRG-based method.

5This formulation is just used to verify our proposed algorithm. In appendix, we show the bounded Jacobian.
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Figure 1: Strongly convex: Comparison of the gap between the function value and the optimal value
among SCGD, ASC-PG and SCCG methods. Dataset (from left to right): condition numbers of the
covariance matrix are set κcov =10, 30 and 50, respectively.
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Figure 2: Non-convex: Comparison of the norm of the gradient between SCGD, ASC-PG and
SCCG; Dataset (from left to right): mnist, olivettifaces and coil20.

with the condition number of its covariance matrix denoted by κcov . Furthermore, we consider three
conditions numbers, κcov=10, 30 and 50. We compare our algorithm with the stochastic gradient
based methods SCGD and accelerated stochastic method ASC-PG. Figure 1 shows the performance
of the gap between the value function and optimal value, we observe that our algorithm is better than
stochastic gradient methods, SCGD and ASC-PG.

SCCG for non-convex function For the non-convex function, we apply the proposed SCCG method
to the nonlinear embedding problem in (1.2). We consider the distance of low-dimension space
between xi and xj as 1/(1 + ‖xi − xj‖2), i, j ∈ [n]. Then, the problem can be formulated as the
problem in (1.1), in which the details can be referred to the appendix. We consider three datasets:
mnist, Olivetti faces and COIL-20 including different sample sizes and dimensions, 1000× 784,
400 × 4096 and 1440× 16384. Our experiment is to verify our proposed algorithm, thus we set
D1 = D2 in default and choose three different sizes of sample set D1, which are smaller than n. For
example, for the case of mnist, we choose |D1| = 400, 600, 800, which are denoted as SCCG (400),
SCCG (600) and SCCG (800). Furthermore, we also set |A|≈ n2/3, where n is the total number of
samples. Figure 2 shows the norm of the gradient, and Figure 3 (in appendix) shows the objection
value. We compare our algorithm with the stochastic gradient based method (SCGD and ASC-PG),
and observe that our proposed algorithm is better than SCGD and ASC-PG on both the norm of
the gradient and objective function. Additional experiments on reinforcement learning are given in
appendix.

5 CONCLUSION

In this paper, we propose the variance reduction based method for the strongly convex and non-
convex composition problems. We apply the stochastically controlled stochastic gradient to estimate
inner function G(x) and the gradient of f(x). The query complexity of our proposed algorithm is
better than or equal to the current methods on both strongly convex and non-convex functions.
Furthermore, we also present the corresponding mini-batch version of the proposed method, in
which the query complexities are improved as well. Experimental results also confirm that our
algorithm achieves better query complexity in a real-world problem.
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A TECHNICAL TOOL

For the subset A ⊆ [n], we present the following lemma that the variance of a random variable
decreases by a factor |A| if we choose |A| independent elements from [n] and average them. The
proof process is trivial However, it is an important tool for analyzing the query complexity under the
different sizes of the subsets.

Lemma 1. If v1, ..., vn ∈ Rd satisfy
∑n
i=1 vi = ~0, andA is a non-empty, uniform random subset of

[n] and A = |A|, that is elements in A are uniformly selected from [n] without replacement, then

EA
∥∥ 1
A

∑
b∈A vb

∥∥2 ≤ I(A<n)
A

1
n

n∑
i=1

||vi||2.

Furthermore, if elements in A are independently selected from [n] with replacement,, then

EA
∥∥ 1
A

∑
b∈A vb

∥∥2 = 1
An

n∑
i=1

||vi||2.

Proof. Based on the
∑n
i=1 vi = ~0, and permutation and combination,

For the case that A is a non-empty, uniformly random subset of [n], we have

EA
∥∥∥∑

b∈A
vb

∥∥∥2 =EA
[∑

b∈A
‖vb‖2

]
+

1

CAn

∑
i∈[n]

〈
vi,

CA−1n−1 (A− 1)

n− 1

∑
i 6=j

vj

〉

=A
1

n

∑n

i=1
‖vi‖2 +

A (A− 1)

n (n− 1)

∑
i∈[n]

〈
vi,
∑

i 6=j
vj

〉
=A

1

n

∑n

i=1
‖vi‖2 +

A (A− 1)

n (n− 1)

∑
i∈[n]
〈vi,−vi〉

=
A (n−A)

(n− 1)

1

n

∑n

i=1
‖vi‖2

≤AI (A < n)
1

n

∑n

i=1
‖vi‖2,

where CnA refer to the number of the combination of n things taken A at a time without repetition.
Thus, we have

EA
∥∥∥∥ 1

A

∑
b∈A

vb

∥∥∥∥2 =
1

A2
EA
∥∥∥∑

b∈A
vb

∥∥∥2 ≤ I (A < n)

A

1

n

n∑
i=1

‖vi‖2.

For the case that the element in A is randomly and independently selected from [n], we have

EA
∥∥∥∑

b∈A
vb

∥∥∥2 =EA
[∑

b∈A
‖vb‖2

]
+ 2EA

[∑
1≤b<A

〈
vb,
∑

b<k≤A
vk

〉]
=B

1

n

∑n

i=1
‖vi‖2 + 2EA

[∑
1≤b<A

〈
E [v] ,

∑
b<k≤A

vk

〉]
=A

1

n

∑n

i=1
‖vi‖2 +A (A− 1) ‖E [v]‖2 (A.1)

=A
1

n

∑n

i=1
‖vi‖2.

Based on Lemma 1, we can obtain the inequality with two-variables D1 and D2, which are used for
the gradient of f(x).
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Lemma 2. If w1, ..., wn ∈ RM×N and v1, ..., vn ∈ RM satisfy ( 1
n

∑
i∈[n] wi)

T( 1
n

∑
j∈[n] vj) =

w̄Tv̄, and D = [D1,D2] is a non-empty, uniform random subset consist of D1 and D2, which are
independently and uniformly selected from [n], D = |D1| = |D2|, then

ED
∥∥∥∥ 1

|D1| |D2|

(∑
d1∈D1

wd1

)T (∑
d2∈D2

vd2

)
− w̄v̄

∥∥∥∥2
=ED

∥∥∥∥ 1

D2

(∑
[d1,d2]∈D

(
(wd1)Tvd2 − w̄Tv̄

))∥∥∥∥2
≤
I
(
D2 < n2

)
D2

1

n2

n∑
i,j=1

∥∥(wi)
Tvj − w̄Tv̄

∥∥2.
B BOUND ANALYSIS OF SCCG FOR THE COMPOSITION PROBLEM

B.1 BOUNDS ANALYSIS OF THE ESTIMATED FUNCTION AND THE GRADIENT

Here, we mainly give different kinds of bounds for the proposed algorithm, such as EA,D1‖Ĝk −
G(xk)‖2, ED‖EA,ik,jk [∇f̃k]−∇f(xk)‖2 and Eik,jk,A,D‖∇f̃k−∇f(xk)‖2. These bounds will be
used to analyze the convergence rate and query complexity. These bounds are all based on Assump-
tion 1. Parameters such as BG, BF , LG, LF and Lf in the bound are all from these Assumptions.
We do not define the exact value of parameters such as h, A and D, which have a great influence on
the convergence but will be clearly defined in the query analysis. Our proposed bounds are similar
to that of (Lian et al., 2017; Liu et al., 2017a;b), but, the difference lies on that there is an extra
subset D, which shows an interesting phenomenon. That is when the subset D is equal to [n], the
corresponding bounds are the same as in (Lian et al., 2017; Liu et al., 2017a;b). However, it is the
independent subset D that gives more general query complexity result for the problem (1.1). The
following bounds are all used for the composition problem for both convex and non-convex prob-
lems based on the Lemma 1 and Lemma 2. For simplicity, we drop the superscript ik, jk, A and D
for the expectation with E in the proof.

Lemma 3. Suppose Assumption 1 holds, for Ĝk defined in (3.3) with D = |D1| and A = |A|, we
have

EA,D1
‖Ĝk −G(xk)‖2 ≤ 4

I (A < n)

A
B2
GE‖xk − x̃s‖

2
+ 6

I (D < n)

D
H1.

Proof. By the definition of Ĝk in (3.3), we have

E‖Ĝk −G(xk)‖2 =E‖Ĝk −GD1
(xk) +GD1

(xk)−G(xk)‖2
1©
≤2E‖Ĝk −GD1(xk)‖2 + 2E‖GD1(xk)−G(xk)‖2

2©
≤4

I (A < n)

A
B2
GE‖xk − x̃s‖

2
+ 6

I (D < n)

D
H1,

where 1© follows from ||a1 + a2||2 ≤ 2a21 + 2a22; 2© is based on Lemma 1 and the following
inequality: Through adding and subtracting the term G(xk)−G(x̃s), we have

E‖Ĝk −GD1(xk)‖2

=E‖GA(xk)−GA(x̃s) +GD1(x̃s)−GD1(xk)‖2

=E‖GA(xk)−GA(x̃s)− (G(xk)−G(x̃s)) + (G(xk)−G(x̃s)) +GD1(x̃s)−GD1(xk)‖2

1©
≤2E‖GA(xk)−GA(x̃s)− (G(xk)−G(x̃s)))‖2 + 2E‖GD1

(x̃s)−GD1
(xk)− (G(x̃s)−G(xk))‖2

2©
≤2

I (A < n)

A
Ei‖Gi(x̃s)−Gi(xk)‖2 + 2E‖GD1

(x̃s)−G(x̃s)‖2 + 2E‖−GD1
(xk) +G(xk)‖2

3©
≤2

I (A < n)

A
B2
GE‖xk − x̃s‖

2
+ 4

I (D < n)

D
H1,
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where 1© follows from ||a+b||2 ≤ 2a2+2b2; 2© is based on Lemma 1; 3© follows from the bounded
function of G and the upper bound of variance of G. Note that A and xk are independent; and D
and x̃s are independent.

Lemma 4. Suppose Assumption 1 holds, for Ĝk defined in (3.3) and ∇f̃k defined in (3.4) with
D = [D1,D2] and D = |D1| = |D2|, we have

ED‖EA,ik,jk [∇f̃k]−∇f(xk)‖2 ≤4B4
GL

2
F

(
4
I (A < n)

A

)
E‖xk − x̃s‖2

+ 32B2
GL

2
F

I(D < n)

D
H1 + 4

I(D2 < n2)

D2
H2.

Proof. Through adding and subtracting the terms of

(∂G(xk))T∇F (G(xk)), (∂GD1
(x̃s))

T∇FD1
(G(x̃s)), (∂G(x̃s))

T∇F (G(x̃s)),

we have

ED‖EA,ik,jk
[
∇f̃k

]
−∇f(xk)‖2

=E
∥∥∥(∂G(xk))T∇F (Ĝk)− (∂G(x̃s))

T∇F (GD1
(x̃s)) +∇f̂D(x̃s)−∇f(xk)

∥∥∥2
1©
≤4E

∥∥∥(∂G(xk))T∇F (Ĝk)− (∂G(xk))T∇F (G(xk))
∥∥∥2

+ 4E
∥∥(∂G(x̃s))

T∇F (G(x̃s))− (∂G(x̃s))
T∇F (GD1(x̃s))

∥∥2
+ 4E

∥∥∥∇f̂D(x̃s)− (∂GD1
(x̃s))

T∇FD2
(G(x̃s))

∥∥∥2
+ 4E

∥∥(∂GD1
(x̃s))

T∇FD2
(G(x̃s))− (∂G(x̃s))

T∇F (G(x̃s))
∥∥2

2©
≤4B2

GL
2
FE
∥∥∥Ĝk −G(xk)

∥∥∥2 + 4B2
GL

2
FE‖G(x̃s)−GD1

(x̃s)‖2 + 4B2
GL

2
FE‖G(x̃s)−GD1

(x̃s)‖2 + 4
I(D2 < n2)

D2
H2

3©
≤4B4

GL
2
F

(
4
I (A < n)

A

)
E‖xk − x̃s‖2 + 32B2

GL
2
F

I(D < n)

D
H1 + 4

I(D2 < n2)

D2
H2,

where 1© follows from ||a1 + a2 + a3 + a4||2 ≤ 4a21 + 4a22 + 4a23 + 4a24; 2© is based on the
bounded Jacobian of G and the smoothness of F in Assumption 1, and the upper bound of variance
in Lemma 2. 3© is based on Lemma 3 and the upper bound of variance of G(x). Note thatA and xk
are independent; and D and x̃s are independent.

Lemma 5. Suppose Assumption 1 holds, for Ĝk defined in (3.3) and ∇f̃k defined in (3.4) with
D = [D1,D2] and D = |D1| = |D2|, we have

Eik,jk,A,D‖∇f̃k −∇f (xk)‖2 ≤40B2
GL

2
F

I(D < n)

D
H1 + 5

I(D2 < n2)

D2
H2

+5B4
GL

2
F

(
L2
f

B4
GL

2
F

+ 4
I (A < n)

A

)
E‖xk − x̃s‖2.

Proof. Through adding and subtracting the term of (∂Gj(xk))T∇Fi(G(xk)),
(∂Gj(x̃s))

T∇Fi(G(x̃s)), (∂G(x̃s))
T∇F (G(x̃s)), (∂GD1

(x̃s))
T∇FD1

(G(x̃s)) (Note that, D
and x̃s are independent), we have

E‖∇f̃k −∇f (xk)‖2

=E
∥∥∥(∂Gj(xk))T∇Fi(Ĝk)− (∂Gj(x̃s))

T∇Fi(GD1
(x̃s)) +∇f̂D(x̃s)−∇f(xk)

∥∥∥2
1©
≤5E

∥∥(∂Gj(xk))T∇Fi(G(xk))− (∂Gj(x̃s))
T∇Fi(G(x̃s))−

(
∇f(xk)− (∂G(x̃s))

T∇F (G(x̃s))
)∥∥2
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+ 5E
∥∥∥(∂Gj(xk))T∇Fi(Ĝk)− (∂Gj(xk))T∇Fi(G(xk))

∥∥∥2
+ 5E

∥∥(∂Gj(x̃s))
T∇Fi(G(x̃s))− (∂Gj(x̃s))

T∇Fi(GD1(x̃s))
∥∥2

+ 5E
∥∥∥∇f̂D(x̃s)− (∂GD1

(x̃s))
T∇FD2

(G(x̃s))
∥∥∥2

+ 5E
∥∥(∂GD1(x̃s))

T∇FD2(G(x̃s))− (∂G(x̃s))
T∇F (G(x̃s))

∥∥2
2©
≤5L2

fE‖xk − x̃s‖
2

+ 5B2
GL

2
FE
∥∥∥Ĝk −G(xk)

∥∥∥2 + 5B2
GL

2
FE‖G(x̃s)−GD1

(x̃s)‖2

+ 5B2
GL

2
FE‖G(x̃s)−GD1

(x̃s)‖2 + 5
I(D2 < n2)

D2
H2

3©
≤5B4

GL
2
F

(
L2
f

B4
GL

2
F

+ 4
I (A < n)

A

)
E‖xk − x̃s‖2 + 40B2

GL
2
F

I(D < n)

D
H1 + 5

I(D2 < n2)

D2
H2,

where 1© follows from ||a1 + a2 + a3 + a4 + a5||2 ≤ 5a21 + 5a22 + 5a23 + 5a24 + 5a25; 2© is based
on E[‖X −E[X]‖2] = E[X2−‖E[X]‖2] ≤ E[X2], the smoothness of Fi, the bounded Jacobian of
G(x) and the smoothness of F in Assumption 1, and the upper bound of the variance. 3© is based
on Lemma 3.

As can be seen from the above results directly, when A and D increase, the upper bounds are close
to the bounds in (Lian et al., 2017; Liu et al., 2017a;b). Though there are extra terms with respect to
A and D, they give us another direction for analyzing the convergence rate and query complexity.
The convergence rate not only depends on the convergence sequence, but also the terms including
the event function I. Thus, we can obtain the lower bound range of A and D that is related to ε.
Furthermore, this lemma can be applied to analyze the convergence rate and query complexity of
the convex and non-convex composition problem.

C PROOF OF SCCG METHOD FOR COMPOSITION PROBLEM

C.1 PROOF OF SCCG METHOD FOR STRONGLY CONVEX COMPOSITION PROBLEM

In this section, we analyze the proposed algorithm for the strongly convex composition problem. We
first present the convergence of the proposed algorithm and then give the query complexity. Though
the proof is similar to that of (Lian et al., 2017) and (Xiao & Zhang, 2014), we present a more
clear and simple process as there is an extra term derived from the subset D. In order to ensure the
convergence of the proposed algorithm, we obtain the desired parameters’ setting, such as A, D, K,
η and h. Based on the setting, we can obtain the corresponding query complexity, which is better
than or equal to the SVRG-based method in (Lian et al., 2017) and (Liu et al., 2017a). This is in fact
that the event function I has an influence on the size of A and D.

C.1.1 CONVERGENCE ANALYSIS

Based on the strong convex and smoothness of the function of f(x), we provide the convergence
sequence, in which the parameters are not defined. But the sequences motivate us to consider the
parameters’ setting such that lead to the desired convergence rate. Note that, D and x̃s are indepen-
dent.

Theorem 3. Suppose Assumption 1 holds, in Algorithm 1, let h > 0, η > 0, A = |A|, D = |D1| =
|D2|, K is the number of the inner iteration, x∗ is the optimal point, we have

E‖x̃S − x∗‖2 ≤ ρSE‖x̃0 − x∗‖2 +
ρ3
ρ1

1− ρS

1− ρ
,

where ρ = ( 1
K + ρ2)/ρ1, ρ2 and ρ3 defined (V , V1 are defined in (C.4) and (C.5).)

ρ1 =

(
2µ− h− 4V

1

h
−
(
12L2

f + 10V
)
η

)
η, (C.1)
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ρ2 =2

(
2V

1

h
+ 5

(
L2
f + V

)
η

)
η, (C.2)

ρ3 =
1

h
η

4

5
V1 + 2η2V1. (C.3)

Proof. By the update of xk in Algorithm 1, we have

E‖xk+1 − x∗‖2

=E‖xk − x∗‖2 − 2ηE〈∇f̃k, xk − x∗〉+ η2E
∥∥∥∇f̂k∥∥∥2

=E‖xk − x∗‖2 − 2ηE〈∇f(xk) + EA,i,j
[
∇f̃k

]
−∇f(xk), xk − x∗〉+ η2E

∥∥∥∇f̂k∥∥∥2
=E‖xk − x∗‖2 − 2ηE〈∇f(xk), xk − x∗〉 − 2ηE〈EA,i,j

[
∇f̃k

]
−∇f(xk), xk − x∗〉

+ η2E
∥∥∥∇f̂k +∇f(xk)−∇f(xk)

∥∥∥2
1©
≤E‖xk − x∗‖2 − 2ηµE‖xk − x∗‖2 + η

1

h
E
∥∥∥EA,i,j [∇f̃k]−∇f(xk)

∥∥∥2 + hηE‖xk − x∗‖2

+ 2η2
(
E‖∇f(xk)‖2 + E

∥∥∥∇f̃k −∇f(xk)
∥∥∥2)

=E‖xk − x∗‖2 − (2ηµ− hη)E‖xk − x∗‖2 + η
1

h
E
∥∥∥EA,i,j [∇f̃k]−∇f(xk)

∥∥∥2
+ 2η2

(
E‖∇f(xk)−∇f(x∗)‖2 + E

∥∥∥∇f̃k −∇f(xk)
∥∥∥2)

2©
≤E‖xk − x∗‖2 − (2ηµ− hη)E‖xk − x∗‖2 + η

1

h

(
4V ‖xk − x̃s‖2 + V2

)
+ 2η2

(
L2
fE‖xk − x∗‖

2
+ 5

(
L2
f + V

)
‖xk − x̃s‖2 + V1

)
=E‖xk − x∗‖2 −

(
2µ− h− 4V

1

h
−
(
12L2

f + 10V
)
η

)
ηE‖xk − x∗‖2

+ 2

(
2V

1

h
+ 5

(
L2
f + V

)
η

)
ηE‖x̃s − x∗‖2 +

1

h
ηV2 + 2η2V1,

where

V =B4
GL

2
F

(
4
I (A < n)

A

)
, (C.4)

V1 =40B2
GL

2
F

I(D < n)

D
H1 + 5

I(D2 < n2)

D2
H2, (C.5)

V2 =32B2
GL

2
F

I(D < n)

D
H1 + 4

I(D2 < n2)

D2
H2 =

4

5
V1, (C.6)

1© is based on ||a1 + a2||2 ≤ 2a21 + 2a22 and 〈a1, a2〉 ≤ h||a1||2 + 1
h ||a2||

2, h > 0; 2© is based on
strongly-convex of f in Assumption 1, and Lemma 4, 5.

Summing up from k = 0 to k = K − 1, we have

E‖xK − x∗‖2 ≤ E‖x0 − x∗‖2 − ρ1
K−1∑
k=0

E‖xk − x∗‖2 +Kρ2E ‖x̃s − x∗‖+Kρ3,

where

ρ1 =

(
2µ− h− 4V

1

h
−
(
12L2

f + 10V
)
η

)
η,

ρ2 =2

(
2V

1

h
+ 5

(
L2
f + V

)
η

)
η,
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ρ3 =
1

h
ηV2 + 2η2V1.

For x0 = x̃s, by arranging, we have

ρ1E‖x̃s+1 − x∗‖2 ≤
1

K
E‖x0 − x∗‖2 + ρ2E‖x̃s − x∗‖2 + ρ3 −

1

K
E‖xK − x∗‖2

≤
(

1

K
+ ρ2

)
E‖x̃s − x∗‖2 + ρ3.

we assume that ρ1 > 0 in (C.1), then we can obtain

E‖x̃S − x∗‖2 ≤ρSE‖x̃0 − x∗‖2 +
ρ3
ρ1

S∑
s=0

ρs

≤ρSE‖x̃0 − x∗‖2 +
ρ3
ρ1

1− ρS

1− ρ
, (C.7)

where ρ = ( 1
K + ρ2)/ρ1, ρ2 and ρ3 defined in (C.2) and (C.3), the last inequality is based on the

formula of geometric progression.

Thus, if x̃S converges to the optimal point x∗, we need to ensure that ρ < 1 and the second term
ρ3(1− ρS)/(ρ1(1− ρ)) is less than ε/2. Actually, ifD = n, the second term is equal to zero, which
will be similar to the convergence results in (Lian et al., 2017) and (Liu et al., 2017a).

Proof of Theorem 1

Proof. In order to keep the proposed algorithm converge, we consider the parameters’ setting, we
first ensure that ρ1 > 0 in (C.1), and then define

ρ = (
1

K
+ ρ2)/ρ1, (C.8)

that require ρ < 1, where ρ2 defined in (C.2). Thus, the convergence sequence is

E‖x̃S − x∗‖2 ≤ ρSE‖x̃0 − x∗‖2 +
ρ3
ρ1

S∑
s=0

ρs ≤ ρSE‖x̃0 − x∗‖2 +
ρ3
ρ1

1

1− ρ
.

We ensure ρ3
ρ1

1
1−ρ ≤

1
2ε, where ρ3 defined in (C.3), that we can derive the size of the D. In the

following we analyze the parameters’ setting such that satisfying the above requirement.

1. In order to ensure ρ1 > 0 in (C.1), we consider the parameter h, η and A,

(a) h = µ, consider ρ1 in (C.1), we should require that h ≤ µ, however, V in (C.4) has the
relationship with A and D. In order to keep A small enough, we set the upper bound
of h. Thus, we set h = µ.

(b) A = min
{
n, 128B4

GL
2
F

1
µ2

}
, based on the setting of h, we require that V/h < µ

16 .
Thus, we have

V = B4
GL

2
F

(
4 I(A<n)A

)
≤ 8B4

GL
2
F
I(A<n)

A ≤ 1
16µ

2.

For V defined in (C.4), if A < n, we have
A ≥ 128B4

GL
2
F

1
µ2 ,

otherwise, A = n satisfy the requirement. Thus, we have A =

min
{
n, 128B4

GL
2
F

1
µ2

}
.

(c) η ≤ 3µ
53L2

f
, back to the target of ρ1 > 0, we require that η ≤ 3µ

53L2
f
≤

3
4µ

12L2
f+

10
8 L

2
f

≤
3
4µ

12L2
f+

10
8 µ

2 =
µ−4 1

µV

12L2
f+10V

=
2µ−h−4 1

hV

2L2
f+10(L2

f+V )
, note that µ ≤ Lf by the definition in

preliminaries.
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2. In order to ensure ρ < 1 in (C.8), we first consider ρ1 and ρ2 in (C.1) and (C.2). By the
setting of h = µ and V < µ2/16, we have,

ρ1 ≥
(
µ− 2L2

fη −
(

1

4
µ+ 10

(
L2
f +

1

16
µ2

)
η

))
η ≥

(
3

4
µ− 101

8
L2
fη

)
η, (C.9)

ρ2 ≤4
1

µ
η

1

16
µ2 + 10

(
L2
f +

1

16
µ2

)
η2 ≤

(
1

4
µ+ 10

(
L2
f +

1

16
µ2

)
η

)
η ≥

(
1

4
µ+

85

8
L2
fη

)
η.

(C.10)

We require that ρ = 1
Kρ1

+ ρ2
ρ1
< 1, and analyze the two terms separately,

(a) In order to ρ2
ρ1
< 1

2 , that is

ρ2
ρ1

<

(
1
4µ+ 85

8 L
2
fη
)
η(

3
4µ−

101
8 L2

fη
)
η
<

1

2
.

We get η ≤ µ
135L2

f
.

(b) In order to 1
Kρ1

< 1
2 , that is

1

Kρ1
<

1

2Kρ2
≤ 1

2K
(

1
4µ+ 10

(
L2
f + 1

16µ
2
)
η
)
η

≤ 1

2K
(

1
4µ+ 85

8 L
2
fη
)
η
≤ 1

2K
(
1
4µη

) < 1

2
.

Thus, we have K ≥ 540
L2
f

µ2 .

3. Consider the term ρSE‖x̃0 − x∗‖2 + ρ3
ρ1

1
1−ρ , we analyze them separately,

(a) In order to ensure ρ3
ρ1

1
1−ρ ≤

1
2ε, that is

ρ3
ρ1

1

1−
(

1
Kρ1

+ ρ2
ρ1

) =
ρ3

ρ1 − 1
K − ρ2

≤ ρ3

ρ1 − 1
K −

1
2ρ1
≤ ρ3

1
2ρ1 −

1
K

≤ 2ρ3
ρ1
≤ 1

2
ε.

Based on the bound of ρ1 in (C.9), the definition of V1 in (C.5) and the step size η
mentioned above, we have
i. For V

2

1
µηV2 + 2η2V1

ρ1
= 2

1
µV2 + 2ηV1
3
4µ−

101
8 L2

fη
=

4
5
1
µV1 + 2ηV1

3
4µ−

101
8 L2

fη
=

(
4
5µ + 2η

)
V1

3
4µ−

101
8 L2

fη
≤ ε,

thus, we have

V1 ≤
4

5
εµ2 ≤

(
3
4 −

101
8

1
135

)
4
5 + 2

135

εµ2 ≤
(
3
4 −

101
8

1
135

)
µ

4
5µ + 2 µ

135µ2

ε ≤
3
4µ−

101
8 L2

f
µ

135L2
f

4
5µ + 2 µ

135L2
f

ε ≤
3
4µ−

101
8 L2

fη(
4
5µ + 2η

) ε

ii. If D < n, we can obtain D ≥ 5
4εµ2

(
20B4

GL
2
FH1 + 5H2

)
, other-

wise D = 0, the above inequality is correct. Thus, we obtain D =

min
{
n,
(
16B4

GL
2
FH1 + 4H2

)
5

4εµ2

}
.

(b) In order to ensure ρSE‖x̃0 − x∗‖2 ≤ 1
2ε, we need the number of the outer iterations

S ≥ 1

log (1/ρ)
log

2E‖x̃0 − x∗‖2

ε
.
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All in all, we consider the query complexity based on above parameters’ setting. For each outer
iteration, there will be (D +KA) queries. Thus, the query complexity is

(D +KA)S = O

((
min

{
n,

1

εµ2

}
+
L2
f

µ2
min

{
n,

1

µ2

})
log (1/ε)

)
.

C.2 PROOF OF SCCG METHOD FOR NON-CONVEX COMPOSITION PROBLEM

C.2.1 RELATED BOUNDS

Lemma 6. Suppose Assumption 1 hold, in Algorithm 1, we can obtain the following new sequence
with respect to f(xk) and ||xk − x̃s||2, let h > 0, η > 0, A = |A| and D = |D1| = |D2|, we have

E[f(xk+1)] + ck+1E‖xk+1 − x̃s‖2 ≤ E[f(xk)] + ckE‖xk − x̃s‖2 − uk‖∇f(xk)‖2 + Jk,

where

W =B4
GL

2
F

(
4
I (A < n)

A
+ 4

I (D < n)

D

)
, (C.11)

ck =ck+1

(
1 +

(
2

h
+ 4hW

)
η + 10

(
L2
f +W

)
η2
)

+ 2Wη + 5(L2
f +W )Lfη

2, (C.12)

uk =

((
1

2
− hck+1

)
η − (Lf + 2ck+1) η2

)
, (C.13)

W1 =20B2
GL

2
F

I(D < n)

D
H1 + 5

I(D2 < n2)

D2
H2, (C.14)

Jk =

(
1

2
+ hck+1

)
4

5
W1η + (Lf + 2ck+1)W1η

2. (C.15)

Proof. Consider the upper bound of f(xk+1) and ‖xk+1 − x̃s‖2, respectively,

• Base on the smoothness of f in Assumption 1 and take expectation with respective to ik, jk,
we have

Ei,j [f(xk+1)]

≤E [f(xk)]− ηE〈∇f(xk),∇f̃k〉+
Lf
2
η2E

∥∥∥∇f̃k∥∥∥2
=E [f(xk)]− ηE〈∇f(xk),∇f̃k −∇f(xk) +∇f(xk)〉+

Lf
2
η2E

∥∥∥∇f̃k∥∥∥2
=E [f(xk)]− ηE〈∇f(xk),∇f(xk)〉 − η〈∇f(xk),E

[
∇f̃k

]
−∇f(xk)〉+

Lf
2
η2E

∥∥∥∇f̃k −∇f(xk) +∇f(xk)
∥∥∥2

≤E [f(xk)]− ηE‖∇f(xk)‖2 +
1

2
ηE‖∇f(xk)‖2 +

1

2
ηE
∥∥∥EA,i,j [∇f̃k]−∇f(xk)

∥∥∥2
+
Lf
2
η2
(

2E‖∇f(xk)‖2 + 2E
∥∥∥∇f̃k −∇f(xk)

∥∥∥2)
=E [f(xk)]− 1

2
ηE‖∇f(xk)‖2 +

1

2
ηE
∥∥∥EA,i,j [∇f̃k]−∇f(xk)

∥∥∥2 + Lfη
2

(
E‖∇f(xk)‖2 + E

∥∥∥∇f̃k −∇f(xk)
∥∥∥2)

=E [f(xk)]−
(

1

2
η − Lfη2

)
E‖∇f(xk)‖2 +

1

2
ηE
∥∥∥EA,i,j [∇f̃k]−∇f(xk)

∥∥∥2 + Lfη
2E
∥∥∥∇f̃k −∇f(xk)

∥∥∥2,
where the last inequality is based on ||a1 + a2||2 ≤ 2a21 + 2a22.
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• Base on the update of xk in Algorithm 1 and take expectation with respective to ik, jk, we
have,

Ei.j‖xk+1 − x̃s‖2

=E‖xk − x̃s‖2 − 2ηE〈∇f̃k, xk − x̃s〉+ η2E
∥∥∥∇f̃k∥∥∥2

=E‖xk − x̃s‖2 − 2ηE〈∇f̃k −∇f(xk) +∇f(xk), xk − x̃s〉] + η2E
∥∥∥∇f̃k∥∥∥2

=E‖xk − x̃s‖2 − 2ηE〈∇f(xk), xk − x̃s〉]− 2η〈E
[
∇f̃k

]
−∇f(xk), xk − x̃s〉]

+ η2E
∥∥∥∇f̃k −∇f(xk) +∇f(xk)

∥∥∥2
≤E‖xk − x̃s‖2 + hη‖∇f(xk)‖2 + hη

∥∥∥E [∇f̃k]−∇f(xk)
∥∥∥2 +

2

h
ηE‖xk − x̃s‖2

+ η2
(

2E‖∇f(xk)‖2 + 2E
∥∥∥∇f̃k −∇f(xk)

∥∥∥2)
=

(
1 +

2

h
η

)
E‖xk − x̃s‖2 +

(
hη + 2η2

)
E‖∇f(xk)‖2 + hηE

∥∥∥E [∇f̃k]−∇f(xk)
∥∥∥2 + 2η2E

∥∥∥∇f̃k −∇f(xk)
∥∥∥2,

where the inequality is based on 2〈a1, b2〉 ≤1/h‖a1‖2+h‖a2‖2, ∀h > 0, and ||a1+a2||2 ≤
2a21 + 2a22.

Combine above equalities and Lemma 4, 5, we form a Lyapunov function,

E[f(xk+1)] + ck+1E‖xk+1 − x̃s‖2

=E[f(xk)]−
(

1

2
η − Lfη2

)
‖∇f(xk)‖2 +

1

2
η
∥∥∥E [∇f̃k]−∇f(xk)

∥∥∥2 + Lfη
2
∥∥∥∇f̃k −∇f(xk)

∥∥∥2
+ ck+1

((
1 +

2

h
η

)
E‖xk − x̃s‖2 +

(
hη + 2η2

)
‖∇f(xk)‖2 + hη

∥∥∥E [∇f̃k]−∇f(xk)
∥∥∥2 + 2η2

∥∥∥∇f̃k −∇f(xk)
∥∥∥2)

=E[f(xk)] + ck+1

(
1 +

2

h
η

)
E‖xk − x̃s‖2 −

((
1

2
− ck+1h

)
η − (Lf + 2ck+1) η2

)
‖∇f(xk)‖2

+
(
Lfη

2 + 2η2ck+1

) ∥∥∥∇f̃k −∇f(xk)
∥∥∥2 +

(
1

2
η + hηck+1

)∥∥∥E [∇f̃k]−∇f(xk)
∥∥∥2

≤E[f(xk)] + ckE‖xk − x̃s‖2 − uk‖∇f(xk)‖2 + Jk,

where

uk =

((
1

2
− hck+1

)
η − (Lf + 2ck+1) η2

)
;

W1 =40B2
GL

2
F

I(D < n)

D
H1 + 5

I(D2 < n2)

D2
H2;

W2 =
4

5
W1;

Jk =

(
1

2
+ hck+1

)
W2η + (Lf + 2ck+1)W1η

2;

W =B4
GL

2
F

(
4
I (A < n)

A

)
;

ck =ck+1

(
1 +

(
2

h
+ 4hW

)
η + 10

(
L2
f +W

)
η2
)

+ 2Wη + 5(L2
f +W )Lfη

2.

Based on the above inequality with respect to the sequence E[f(xk)] + ckE‖xk − x̃s‖2 and Algo-
rithm 1, we can obtain the convergence form in which the parameters are not clear defined.
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Theorem 4. In Algorithm 1, suppose Assumption 1 holds, we can obtain the following new sequence
with respect to f(xk) and ||xk− x̃s||2. K is the number of inner iterations, S is the number of inner
iterations, we have

u0E[‖∇f(x̂sk)‖2] ≤ f(x0)− f(x∗)

KS
+ J0,

where x̂sk is the output point, J0 and u0 are defined in (C.15) and (C.13).

Proof. Based on the update for ck in (C.12), we can see that ck > ck+1. As ck is a decreasing
sequence, we have u0 < uk and Jk < J0. Then, we get

u0E[‖∇f(xk)‖2] ≤ E[f(xk)] + ckE[‖xk − x̃s‖2]− (E[f(xk+1)] + ck+1E[‖xk+1 − x̃s‖2]) + J0.

Sum from k = 0 to k = K − 1, we can get

1

K

K−1∑
k=0

uE[‖∇f(xk)‖2] ≤ E[f(x0)]− (E[f(xK)] + cKE[‖xK − x̃s‖2])

K
+ J0

≤ E[f(x0)]− E[f(xK)]

K
+ J0.

Since x0 = x̃s, let x̃s+1 = xK , we obtain,

1

K

K−1∑
k=0

u0E[‖∇f(xk)‖2] ≤ E[f(x̃s)]− E[f(x̃s+1)]

K
+ J0.

Summing the outer iteration from s = 0 to S − 1, we have

u0E[‖∇f(x̂sk)‖2] =
1

S

S−1∑
s=0

1

K

K−1∑
k=0

u0E[‖∇f(xsk)‖2] + J0

≤ E[f(x̃0)]− E[f(x̃S)]

KS
+ J0 ≤

f(x0)− f(x∗)

KS
+ J0,

where xsk indicates the s-th outer iteration at k-th inner iteration, and x̂sk is uniformly and randomly
chosen from s = {0, ..., S − 1} and k={0, ..,K − 1}.

C.2.2 CONVERGENCE ANALYSIS

Base on Algorithm 1, the analysis of convergence is based on the smoothness of f(x) and the
update of x under the Lyapunov function to form the convergence sequence. Theorem 1 shows that
our proposed algorithm can converge to the stationary point.

The convergence proof is similar to that of (Liu et al., 2017b; Reddi et al., 2016), however, our
algorithm considers the inexact computation of the gradient at the beginning of each epoch. Thus,
we derive the different parameters’ setting. In particular, the number of the subset D and A depend
on the min function. Intuitively, we can compute the gradient and inner function based on the subset
rather on the whole sample. Moreover, considering the convergence results, we can see that the step
size η has the relationship with many parameters, such as the subset A, inner iteration K and the
total iteration T .

Proof of Theorem 2

Proof. In order to have E[‖∇f(x̂sk)‖2] ≤ ε, that is

E[‖∇f(x̂sk)‖2] ≤ Lf (f(x0)−f(x∗))
u0SK

+ J0/u0 ≤ ε
2 + ε

2 ≤ ε,

we consider the corresponding parameters’ setting:
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1. For the first term, consider ck defined in (C.12) define ck = ck+1Y + U , for k = K, we
have

cK =

(
1

Y

)K (
c0 +

U

Y − 1

)
− U

Y − 1
,

where

Y =1 +

(
2

h
+ 4hW

)
η + 10

(
B4
GL

2
F +W

)
η2,

U =2Wη + 5(L2
f +W )Lfη

2 > 0.

By setting cK → 0, we obtain

c0 =
UY K

Y − 1
− U

Y − 1
=
U
(
Y K − 1

)
Y − 1

.

Then, putting the Y and U into the above equation. We have

c0 =
2Wη + 5(L2

f +W )Lfη
2(

2
h + 4hW

)
η + 10

(
L2
f +W

)
η2
C =

2W + 5(L2
f +W )Lfη(

2
h + 4hW

)
+ 10

(
L2
f +W

)
η
C, (C.16)

where C = Y K − 1. Because c0 has the influence on the parameters such as K, C and u0,
we analyze them separately,

(a) For K and C, based on the character of function
(

1 + 1
t2

)t1
→ e,6 as t1, t2 → +∞

and t1t2 < 1, and the function is also the increasing function with an upper bound of
e, we require

K < 1/

((
2

h
+ 4hW

)
η + 10

(
L2
f +W

)
η2
)
, (C.17)

thus, we have C < e− 1.
(b) For u0 defined in (C.13), in order to keep uk > 0, we need to keep c0h < 1/4. If

c0h < 1/4, there exits a constant ũ such that u0 = ũη. In order to satisfy c0h < 1/4,
combine with (C.16) and C < e− 1, that is

c0h ≤
2W + 5(L2

f +W )Lfη(
2
h + 4hW

)
+ 10

(
L2
f +W

)
η
h (e− 1) ≤ 1

4
,

i. By setting h = 1

5
√
L3
fη

, there exist w̃ > 0, based on above inequality, we have

W ≤
16L3

fη + 50L3.5
f

√
ηη

9.6 + 34L3
fη − 50

√
L3
fηη

< w̃L3
fη

Thus, combine with the definition of W in (C.11), we require that

W = B4
GL

2
F

(
4
I(A < n)

A

)
≤ 8B4

GL
2
F

I(A < n)

A
≤ w̃L3

fη = O
(
L3
fη
)
.

If A < n, we require A ≥ O
(
B4
GL

2
F /(L

3
fη)
)

. Thus, we have A =

min {n,O (1/η)}.
ii. Based on the setting of h and W , combing with (C.17), we have

K <
1(

10
√
L3
fη + 4

5
√
L3
fη
w̃L3

fη

)
η + 10

(
L2
f + w̃L3

fη
)
η2

=
1(

10
√
L3
fη + 4

5

√
L3
fη
)
η + 10

(
L2
f + η

)
η2

= O

(
1

(Lfη)
3/2

)
.

6Here the ’e’ is the Euler number, approximate to 2.718.
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2. For the second term about J0, as u0 = w1η, we require

J0
ũη

=
1

ũ

(
1

2
+ hc0

)
W2 + (Lf + 2c0)W1η

≤ 1

ũ
W1

(
3

5
+ Lfη +

1

2
η
√
η

)
≤ 1

ũ

(
20B2

GL
2
FH1 + 5H2

)(3

5
+ Lfη + η

√
η

)
I(D < n)

D
≤ 1

2
ε,

Then, if D < n, we require that

D ≥ 2
εũ

(
20B2

GL
2
FH1 + 5H2

) (
3
5 + 1

2Lfη + c0η
√
η
)

= O
(
1
ε

)
.

Thus, we set D = min {n,O(1/ε)}.

3. Based on the first term Lf (f(x0)−f(x∗))
ηSK ≤ 1

2ε, the total number of iteration is T = SK =
2Lf (f(x0)−f(x∗))

ηε .

Thus, based on the above parameters’ setting, we can ensure that E[‖∇f(x̂sk)‖2] ≤ ε.
Based on the parameters’ setting, that is D = min {n,O(1/ε)}, A = min {n,O (1/η)}, K ≤
O
(
1/η3/2

)
, and T = O (1/ (εη)), we have,

O
(
T

K
(D +KA)

)
=O

(
1

εη

(
D

K
+A

))
=O

(
1

εη

(
min

{
n,

1

ε

}
η3/2 +

1

η

))
=O

(
1

ε

(
min

{
n,

1

ε

}
η1/2 +

1

η2

))
≥O

(
min

{
1

ε9/5
,
n4/5

ε

})
,

where the optimal η = min
{

1/n2/5, ε2/5
}

.

D PROOF FOR THE MINI-BATCH OF THE SCCG TO THE COMPOSITION
PROBLEM

We provide the Mini-batch version of SCCG:

The following lemma is distinguish with Lemma 5 in which the estimated gradient γ is obtained
through b times repeat.

Lemma 7. Suppose Assumption 1 holds, for Ĝk defined in (3.3) and Λ defined in Algorithm 2 with
D = [D1,D2] and D = |D1| = |D2|, we have

Eik,jk,A,D‖Λ−∇f (xk)‖2 ≤5B4
GL

2
F

(
L2
f

bB4
GL

2
F

+ 4
I (A < n)

A
+ 4

I (D < n)

D

)
E‖xk − x̃s‖2

+ 20B2
GL

2
F

I(D < n)

D
H1 + 5

I(D2 < n2)

D2
H2,

Proof. Through adding and subtracting the term of 1
b

∑
(i,j)∈Ib

(∂Gj(xk))T∇Fi(G(xk)),

1
b

∑
(i,j)∈Ib

(∂Gi(x̃s))
T∇Fi(G(x̃s)), and (∂G(x̃s))

T∇F (G(x̃s)), (∂GD1(x̃s))
T∇FD1(G(x̃s)),

we have

E‖Λ−∇f (xk)‖2
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Algorithm 2 Mini-batch version of SCCG
Require: K, S, η (learning rate), x̃0 and D = [D1,D2]

for s = 0, 1, 2, · · · , S − 1 do
Sample from [n] for D times to form mini-batch D1

Sample from [n] for D times to form mini-batch D2

∇f̂D(x̃s) = (∂GD1(x̃s))
T∇FD2(GD1(x̃s))

x0 = x̃s
for k = 0, 1, 2, · · · ,K − 1 do

Sample from [n] to form mini-batch A
Ĝk = GA(xk)−GA(x̃s) +GD1

(x̃s)
Λ0 = 0
for t=1,...,b do

Uniformly and randomly pick ik and jk from [n]

Compute the estimated gradient∇f̃k from (3.4)
Λt+1 = Λt +∇f̃k

end for
Λ = Λb/b
xk+1 = xk − ηΛ

end for
Update x̃s+1 = xK , or x̃s+1 = xr, r is randomly selected from [K − 1]

end for
Output: x̂sk is uniformly and randomly chosen from s ∈ {0, ..., S − 1} and k ∈ {0, ..,K − 1}.

1©
≤5E

∥∥∥∥∥∥1

b

∑
(i,j)∈Ib

(∂Gj(xk))
T∇Fi(G(xk))− (∂Gj(x̃s))

T∇Fi(G(x̃s))−
(
∇f(xk)− (∂G(x̃s))

T∇F (G(x̃s))
)∥∥∥∥∥∥

2

+ 5E

∥∥∥∥∥∥1

b

∑
(i,j)∈Ib

(∂Gj(xk))T∇Fi(Ĝk)− (∂Gj(xk))T∇Fi(G(xk))

∥∥∥∥∥∥
2

+ 5E

∥∥∥∥∥∥1

b

∑
(i,j)∈Ib

(∂Gj(x̃s))
T∇Fi(G(x̃s))− (∂Gj(x̃s))

T∇Fi(GD1
(x̃s))

∥∥∥∥∥∥
2

+ 5E
∥∥∥∇f̂D(x̃s)− (∂GD1(x̃s))

T∇FD2(G(x̃s))
∥∥∥2

+ 5E
∥∥∥(∂GD1

(x̃s))
T∇FD2

(G(x̃s))− (∂G(x̃s))
T∇F (G(x̃s))

∥∥∥2
2©
≤5

b
L2
fE‖xk − x̃s‖

2
+ 5B2

GL
2
FE
∥∥∥Ĝk −G(xk)

∥∥∥2 + 5B2
GL

2
FE‖G(x̃s)−GD1

(x̃s)‖2

+ 5B2
GL

2
FE‖G(x̃s)−GD1

(x̃s)‖2 + 5
I(D2 < n2)

D2
H2

3©
≤5B4

GL
2
F

(
L2
f

bB4
GL

2
F

+ 4
I (A < n)

A

)
E‖xk − x̃s‖2 + 40B2

GL
2
F

I(D < n)

D
H1 + 5

I(D2 < n2)

D2
H2,

where 1© follows from ||a1 + a2 + a3 + a4 + a5||2 ≤ 5a21 + 5a22 + 5a23 + 5a24 + 5a25, and 2© is
based on E[‖X − E[X]‖2] = E[X2 − ‖E[X]‖2] ≤ E[X2] and Lemma 1, the smoothness of Fi,
the bounded Jacobian of G(x) and the smoothness of F in Assumption 1, and the upper bound of
variance in Lemma 2. 3© is based on Lemma 3.

Proof of Corollary 2
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Proof. Based on the parameters’ setting, that is D = min {n,O(1/ε)}, A = min {n,O (b/η)},
K ≤ O

(
b1/2/η3/2

)
, and T = O (1/ (εη)), we have,

O
(
T

K
(D +KA)

)
=O

(
η3/2

εb1/2η

(
min

{
n,

1

ε

}
+
b1/2b

η3/2η

))
= O

(
η1/2

εb1/2

(
min

{
n,

1

ε

}
+
b3/2

η5/2

))
=

1

εb1/2
O

(
min

{
n,

1

ε

}
η1/2 +

b3/2

η2

)
≥ 1

b1/5
O

(
min

{
n4/5

ε
,

1

ε9/5

})
,

where the optimal η = b3/5 min
{

1/n2/5, ε2/5
}

.

E EXPERIMENT

E.1 RISK-AVERSE LEARNING

To verify the effectiveness of the algorithm, we use the mean-variance optimization in portfolio
management7:

min
x∈Rd

− 1

n

n∑
i=1

〈ri, x〉+
1

n

n∑
i=1

(〈ri, x〉 −
1

n

n∑
i=1

〈ri, x〉)2,

where ri ∈ RN , i ∈ [n] is the reward vector, and x ∈ RN is the invested quantity. The objec-
tive function can be transformed as the composition of two finite-sum functions in (1.1) with the
following forms:

Gj(x) =[x, 〈rj , x〉]T, y =
1

n

∑n

j=1
Gj(x) = [y1, y2]T,

Fi(y) =− 〈ri, y1〉+ (〈ri, y1〉 − y2)2, j, i ∈ [n].

where y1 ∈ RM and y2 ∈ R.

Note that the function Gj(x) = [x, 〈rj , x〉], and the corresponding Jacobian is [I, e]>, where I ∈
RN×N is a unit matrix, and e ∈ RN×1 is all-ones vector. It is straightforward to prove that the
norm of the Jacobian is bounded, i.e. Gj(x) is BG-Lipschitz. We choose such example of the
composition problem to verify the efficiency of the proposed algorithms, because it has been widely
used in related researches (Lian et al., 2017; Wang et al., 2017; Lin et al., 2018). The source code
package will be released as soon as possible to ensure the reproducibility.

E.2 NON-LINEAR EMBEDDING

For the non-convex function, we apply the proposed SCCG method to the nonlinear embed-
ding problem in (1.2). We consider the distance of low-dimension space between xi and xj as
1/(1 + ‖xi − xj‖2), i, j ∈ [n]. Then, the problem can be formulated as the problem in (1.1). In
particular,

1

n

∑n

i=1
Fi (y) =

1

n

∑n

i=1
Fi

(
1

n

∑n

j=1
Gj (x)

)
,

where

y =
1

n

∑n

j=1
Gj(x);

Gj(x) =

[
x,

n

1 + ‖x1 − xj‖2
− 1, ...,

n

1 + ‖xn − xj‖2
− 1

]T
;

Fi(y) =n
∑n

k=1
pk|i(‖yi − yk‖

2
+ log(yn+k)), i, j ∈ [n].

7This formulation is just used to verify our proposed algorithm.
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Figure 3: Non-convex: Comparison of the objective function between SCGD, ASC-PG and SCCG;
Dataset (from left to right): mnist, olivettifaces and coil20.

Note that, consider the function g (x) = 1
1+x2 , its gradient is∇g (x) = 2x

(1+x2)2
. For different value

of x, we can see that
|x| ≥ 1⇒

(
1 + x2

)2 ≥ x;

|x| < 1⇒
(
1 + x2

)2 ≥ 1 > x.

Thus, we obtain |∇g (x)| ≤ 2, which is upper bounded. Based on this results, we can obtain that the
norm of Jacobian is also bounded. Moreover, in practice, wo do not compute the Jacobian directly
as the dimension is large. The matrix of Jacobian is sparse due to the random subset, which greatly
save much space.

We consider three datasets: mnist, Olivetti faces and COIL-20 with different sample sizes and di-
mensions, 1000× 784, 400 × 4096 and 1440× 16384. Our experiment is to verify our proposed
algorithm, thus, we set D1 = D2 in default and choose three different sizes of sample set D1, which
are smaller than n. For example, for the case of mnist, we choose |D1| = 400, 600, 800, which
are denoted as SCCG (400), SCCG (600) and SCCG (800). Furthermore, we also set |A|≈ n2/3,
where n is the total number of samples. Figure 2(in the main paper) shows the norm of the gradient,
and Figure 3 shows the function value. We compare our algorithm with stochastic gradient based
method (SCGD and ASC-PG) and observe that our proposed algorithm is better than SCGD and
ASC-PG on both the norm of the gradient and objective function.

E.3 REINFORCEMENT LEARNING

We consider the policy value evaluation in reinforcement learning. Let the policy of interest be π,
total states be S, and the value function of state be V π at state s1,

V π (s1) = Eπ {Rs1,s2 + γV π (s2) |s2} , s1, s2 ∈ [S],

where Rs1,s2 is the reward of moving from state s1 to s2, and the expectation is taking over state s2
conditioned on state s1. We assume V π(s) ≈ΦTs w

∗ for some w∗ ∈ Rd, where Φ is the linear map
of the feature used to approximate the value of the state. Then, the problem can be formulated as the
Bellman residual minimization problem, that is

min
w

S∑
i=1

〈Φi, w〉 − S∑
j=1

Pπi,j (Ri,j + γ 〈Φj , w〉)

2

,

where γ is a discount factor, rij is the random reward of transition from i to state j. Our proposed
algorithm can be applied to the above problem, which can be formulated as the composition problem
by taking

gj (w) =S
[
〈Φ1, w〉 , ..., 〈Φ2, w〉 , Pπ1,j (R1,j + γ 〈Φj , w〉) , ..., PπS,j (RS,j + γ 〈Φj , w〉)

]T
;

g (w) =

S∑
j=1

gi (w) = y =

[
y1
y2

]
;

fi (y) =S‖y1,i − y2,i‖2.
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Figure 4: Reinforcement Learning application: Comparison of the objectively values between
SCGD, ASC-PG and SCCG (including three different values of |D1|= 0.95 ∗ n, 0.9 ∗ n, 0.8n);
Dataset (from left to right): n=500,1000, and 1500.
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Figure 5: Reinforcement Learning application: Comparison of the norm of gradient between SCGD,
ASC-PG and SCCG (including three different values of |D1|= 0.95∗n, 0.9∗n, 0.8n); Dataset (from
left to right): n=500,1000, and 1500.

In the experiments, parameters Pπ , Φ and R are randomly selected. We implement on three data
with the size of n = 500, 1000, 1500. And we set |D1| = 0.95 ∗ n, 0.9 ∗ n, 0.8n, respectively
for different value of n. We set b = |A|≈ n2/3 based on our theory analysis. Figure 4 and 5
show the experimental results, which demonstrate that our proposed method is better than the non-
variance reduction based methods SCGD and ASC-PG on both the objective value and the norm of
the gradient.
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