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ABSTRACT

We introduce a novel framework for generative models based on Restricted Kernel
Machines (RKMs) with multi-view generation and uncorrelated feature learning
capabilities, called Gen-RKM. To incorporate multi-view generation, this mech-
anism uses a shared representation of data from various views. The mechanism
is flexible to incorporate both kernel-based, (deep) neural network and Convo-
lutional based models within the same setting. To update the parameters of the
network, we propose a novel training procedure which jointly learns the features
and shared subspace representation. The latent variables are given by the eigen-
decomposition of the kernel matrix, where the mutual orthogonality of eigenvec-
tors represents uncorrelated features. Experiments demonstrate the potential of
the framework through qualitative and quantitative evaluation of generated sam-
ples on various standard datasets.

1 INTRODUCTION

In the past decade, interest in generative models has grown tremendously, finding applications in
multiple fields such as, generated art, on-demand video, image denoising (Vincent et al., 2010),
exploration in reinforcement learning (Florensa et al., 2018), collaborative filtering (Salakhutdinov
et al., 2007), inpainting (Yeh et al., 2017) and many more.

Some examples of graphical models based on a probabilistic framework with latent variables are
Variational Auto-Encoders (Kingma & Welling, 2014) and Restricted Boltzmann Machines (RBMs)
(Smolensky, 1986; Salakhutdinov & Hinton, 2009). More recently proposed models are based on
adversarial training such as Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) and
its many variants. Furthermore, auto-regressive models such as Pixel Recurrent Neural Networks
(PixelRNNs) (Van Den Oord et al., 2016) model the conditional distribution of every individual
pixel given previous pixels. All these approaches have their own advantages and disadvantages. For
example, RBMs perform both learning and Bayesian inference in graphical models with latent vari-
ables. However, such probabilistic models must be properly normalized, which requires evaluating
intractable integrals over the space of all possible variable configurations (Salakhutdinov & Hinton,
2009). Currently GANs are considered as the state-of-the-art for generative modeling tasks, pro-
ducing high-quality images but are more difficult to train due to unstable training dynamics, unless
more sophisticated variants are applied.

Many datasets are comprised of different representations of the data, or views. Views can corre-
spond to different modalities such as sounds, images, videos, sequences of previous frames, etc.
Although each view could individually be used for learning tasks, exploiting information from all
views together could improve the learning quality (Pu et al., 2016; Liu & Tuzel, 2016; Chen & De-
noyer, 2017). Also, it is among the goals of the latent variable modelling to model the description
of data in terms of uncorrelated or independent components. Some classical examples are Indepen-
dent Component Analysis; Hidden Markov models (Rabiner & Juang, 1986); Probabilistic Principal
Component Analysis (PCA) (Tipping & Bishop, 1999); Gaussian-Process Latent variable model
(Lawrence, 2005) and factor analysis. Hence, when learning a latent space in generative models,
it becomes interesting to find a disentangled representation. Disentangled variables are generally
considered to contain interpretable information and reflect separate factors of variation in the data
for e.g. lighting conditions, style, colors, etc. The definition of disentanglement in the literature is
not precise, however many believe that a representation with statistically independent variables is a
good starting point (Schmidhuber, 1992; Ridgeway, 2016). Such representations extract informa-
tion into a compact form which makes it possible to generate samples with specific characteristics
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(Chen et al., 2018; Bouchacourt et al., 2018; Tran et al., 2017; Chen et al., 2016). Additionally, these
representations have been found to generalize better and be more robust against adversarial attacks
(Alemi et al., 2017).

In this work, we propose an alternative generative mechanism based on the framework of Restricted
Kernel Machines (RKMs) (Suykens, 2017), called Generative RKM (Gen-RKM). RKMs yield a
representation of kernel methods with visible and hidden units establishing links between Kernel
PCA, Least-Squares Support Vector Machines (LS-SVM) (Suykens et al., 2002) and RBMs. This
framework has a similar energy form as RBMs, though there is a non-probabilistic training proce-
dure where the eigenvalue decomposition plays the role of normalization. Recently, Houthuys &
Suykens (2018) used this framework to develop tensor-based multi-view classification models and
Schreurs & Suykens (2018) showed how kernel PCA fits into this framework.

Contributions. 1) A novel multi-view generative model based on the RKM framework where mul-
tiple views of the data can be generated simultaneously. 2) Two methods are proposed for computing
the pre-image of the feature vectors: with the feature map explicitly known or unknown. We show
that the mechanism is flexible to incorporate both kernel-based, (deep) convolutional neural network
based models within the same setting. 3) When using explicit feature maps, we propose a training
algorithm that jointly performs the feature-selection and learns the common-subspace representation
in the same procedure. 4) Qualitative and quantitative experiments demonstrate that the model is
capable of generating good quality images of natural objects. Further experiments on multi-view
datasets exhibit the potential of the model. Thanks to the orthogonality of eigenvectors of the kernel
matrix, the learned latent variables are uncorrelated. This resembles a disentangled representation,
which makes it possible to generate data with specific characteristics.

This paper is organized as follows. In Section 2, we discuss the Gen-RKM training and generation
mechanism when multiple data sources are available. In Section 3, we explain how the model
incorporates both kernel methods and neural networks through the use of implicit and explicit feature
maps respectively. When the feature maps are defined by neural networks, the Gen-RKM algorithm
is explained in Section 4. In Section 5, we show experimental results of our model applied on
various public datasets. Section 6 concludes the paper along with directions towards the future
work. Additional supplementary materials are given in the Appendix A.

2 GENERATIVE RESTRICTED KERNEL MACHINES FRAMEWORK

The proposed Gen-RKM framework consists of two phases: a training phase and a generation phase
which occurs one after another.

2.1 TRAINING

Similar to Energy-Based Models (EBMs, see LeCun et al. (2004) for details), the RKM objective
function captures dependencies between variables by associating a scalar energy to each configura-
tion of the variables. Learning consists of finding an energy function in which the observed con-
figurations of the variables are given lower energies than unobserved ones. Note that the schematic
representation, as shown in Figure 1 is similar to Discriminative RBMs (Larochelle & Bengio, 2008)
and the objective function Jt (defined below) has an energy form similar to RBMs with additional
regularization terms. The latent space dimension in the RKM setting has a similar interpretation
as the number of hidden units in a restricted Boltzmann machine, where in the specific case of the
RKM these hidden units are uncorrelated.

We assume a datasetD = {xi,yi}Ni=1, with xi ∈ Rd, yi ∈ Rp comprising ofN data points. Here yi
may represent an additional view of xi, e.g., an additional image from a different angle, the caption
of an image or a class label. Starting from the RKM interpretation of Kernel PCA, which gives an
upper bound on the equality constrained Least-Squares Kernel PCA objective function (Suykens,
2017), and applying the feature-maps φ1 : Rd 7→ Rdf and φ2 : Rp 7→ Rpf to the input data points,
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Figure 1: Gen-RKM schematic representation modeling a common subspace H between two data
sources X and Y . The φ1, φ2 are the feature maps (Fx and Fy represent the feature-spaces) corre-
sponding to the two data sources. While ψ1, ψ2 represent the pre-image maps. The interconnection
matrices U ,V model dependencies between latent variables and the mapped data sources.

the training objective function Jt for generative RKM is given by1:

Jt =
N∑
i=1

(
−φ1(xi)

>Uhi − φ2(yi)
>V hi +

λ

2
h>i hi

)
+
η1

2
Tr(U>U) +

η2

2
Tr(V >V ), (1)

where U ∈ Rdf×s and V ∈ Rpf×s are the unknown interaction matrices, and hi ∈ Rs are the
latent variables modeling a common subspaceH between the two input spaces X and Y (see Figure
1). The derivation of this objective function is given in the Appendix A.1.

Given η1 > 0 and η2 > 0 as regularization parameters, the stationary points of Jt are given by:
∂Jt
∂hi

= 0 =⇒ λhi = U>φ1(xi) + V >φ2(yi), ∀i = 1, . . . , N
∂Jt
∂U = 0 =⇒ U = 1

η1

∑N
i=1 φ1(xi)h

>
i

∂Jt
∂V = 0 =⇒ V = 1

η2

∑N
i=1 φ2(yi)h

>
i .

(2)

Substituting U and V in the first equation above, denoting Λ = diag{λ1, . . . , λs} ∈ Rs×s with
s ≤ N , yields the following eigenvalue problem:[

1

η1
K1 +

1

η2
K2

]
H> = H>Λ, (3)

whereH =
[
h1, . . . ,hN

]
∈ Rs×N with s ≤ N is the number of selected principal components and

K1,K2 ∈ RN×N are the kernel matrices corresponding to data sources2. Based on Mercer’s theo-
rem (Mercer, 1909), positive-definite kernel functions k1 : Rd × Rd 7→ R, k2 : Rp × Rp 7→ R can
be defined such that k1(xi,xj) = 〈φ1(xi), φ1(xj)〉, and k2(yi,yj) = 〈φ2(yi), φ2(yj)〉, ∀i, j =
1, . . . , N forms the elements of corresponding kernel matrices. The feature maps φ1 and φ2, map-
ping the input data to the high-dimensional feature space (possibly infinite) are implicitly defined
by kernel functions. Typical examples of such kernels are given by the Gaussian RBF kernel
k(xi,xj) = e−‖xi−xj‖

2
2/(2σ

2) or the Laplace kernel k(xi,xj) = e−‖xi−xj‖2/σ just to name a few
(Scholkopf & Smola, 2001). However, one can also define explicit feature maps, still preserving the
positive-definiteness of the kernel function by construction (Suykens et al., 2002).

2.2 GENERATION

In this section, we derive the equations for the generative mechanism. RKMs resembling energy-
based models, the inference consists in clamping the value of observed variables and finding con-
figurations of the remaining variables that minimizes the energy (LeCun et al., 2004). Given the

1For convenience, it is assumed that all the feature vectors are centered in the feature spaceF using φ̃(x) :=

φ(x)− 1
N

∑N
i=1 φ(xi). Otherwise, a centered kernel matrix could be obtained using Eq. 17 (Appendix A.4).

2While in the above section we have assumed that only two data sources (namely X and Y) are available
for learning, the above procedure could be extended to multiple data-sources. For theM views or data-sources,
this yields the training problem:

[∑M
`=1

1
η`
K`

]
H> = H>Λ.
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learned interconnection matrices U and V , and a given latent variable h?, consider the following
objective function:

Jg = −φ1(x?)>Uh? − φ2(y?)>V h∗ +
1

2
φ1(x?)>φ1(x?) +

1

2
φ2(y?)>φ2(y?), (4)

with an additional regularization term on data sources. Here Jg denotes the objective function for
generation. The given latent variable h? can be the corresponding latent code of a training point, a
newly sampled hidden unit or a specifically determined one. Above cases correspond to generating
the reconstructed visible unit, generating a random new visible unit or exploring the latent space by
carefully selecting hidden units respectively. The stationary points of Jg are characterized by:{

∂Jg
∂φ1(x?) = 0 =⇒ φ1(x?) = Uh?,
∂Jg

∂φ2(y?) = 0 =⇒ φ2(y?) = V h?.
(5)

Using U and V from Eq. 2, we obtain the generated feature vectors:

φ1(x?) =

(
1

η1

N∑
i=1

φ1(xi)h
>
i

)
h?, φ2(y?) =

(
1

η2

N∑
i=1

φ2(yi)h
>
i

)
h?. (6)

To obtain the generated data, one now needs to compute the inverse images of the feature maps
φ1(·) and φ2(·) in the respective input spaces, i.e., solve the pre-image problem. We seek to find
the functions ψ1 : Rdf 7→ Rd and ψ2 : Rpf 7→ Rp corresponding to the two data-sources, such that
(ψ1 ◦φ1)(x?) ≈ x? and (ψ2 ◦φ2)(y?) ≈ y?, where φ1(x?) and φ2(y?) are calculated using Eq. 6.

When using kernel methods, explicit feature maps are not necessarily known. Commonly used
kernels such as the radial-basis function and polynomial kernels map the input data to a very high
dimensional feature space. Hence finding the pre-image, in general, is known to be an ill-conditioned
problem (Mika et al., 1999). However, various approximation techniques have been proposed (Bui
et al., 2019; Kwok & Tsang, 2003; Honeine & Richard, 2011; Weston et al., 2004) which could
be used to obtain the approximate pre-image x̂ of φ1(x?). In section 3.1, we employ one such
technique to demonstrate the applicability in our model, and consequently generate the multi-view
data. One could also define explicit pre-image maps. In section 3.2, we define parametric pre-image
maps and learn the parameters by minimizing the appropriately defined objective function. The next
section describes the above two pre-image methods for both cases, i.e., when the feature map is
explicitly known or unknown, in greater detail.

3 IMPLICIT & EXPLICIT FEATURE MAP

3.1 IMPLICIT FEATURE MAP

As noted in the previous section, since x? may not exist, we find an approximation x̂. A possible
technique is shown by Schreurs & Suykens (2018). Left multiplying Eq. 6 by φ1(xi)

> and φ2(yi)
>,

∀i = 1, . . . , N , we obtain:

kx? =
1

η1
K1H

>h?, ky? =
1

η2
K2H

>h?, (7)

where, kx? = [k(x1,x
?), . . . , k(xN ,x

?)]
> represents the similarities between φ1(x?) and training

data points in the feature space, and K1 ∈ RN×N represents the centered kernel matrix of X .
Similar conventions follow for Y respectively. Using the kernel-smoother method (Hastie et al.,
2001), the pre-images are given by:

x̂ = ψ1 (φ1(x?)) =

∑nr
j=1 k̃1(xj ,x

?)xj∑nr
j=1 k̃1(xj ,x?)

, ŷ = ψ2 (φ2(y?)) =

∑nr
j=1 k̃2(yj ,y

?)yj∑nr
j=1 k̃2(yj ,y?)

, (8)

where k̃1(xi,x
?) and k̃2(yi,y

?) are the scaled similarities (see Eq. 8) between 0 and 1 and nr the
number of closest points based on the similarity defined by kernels k̃1 and k̃2.
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3.2 EXPLICIT FEATURE MAP

While using an explicit feature map, Mercer’s theorem is still applicable due to the positive semi-
definiteness of the kernel function by construction, thereby allowing the derivation of Eq. 3. In the
experiments, we use a set of (convolutional) neural networks as the feature maps φθ(·). Another
(transposed convolutional) neural network is used for the pre-image map ψζ(·) (Dumoulin & Visin,
2016). The network parameters {θ, ζ} are learned by minimizing the reconstruction errors defined
by L1(x, ψ1ζ1

(φ1θ1
(x))) and L2(y, ψ2ζ2

(φ2θ2
(y))). In our experiments, we use the mean-squared

errors L1(x, ψ1ζ1
(φ1θ1

(x))) = 1
N

∑N
i=1

∥∥xi − ψ1ζ1
(φ1θ1

(xi))
∥∥2

2
and L2(y, ψ2ζ2

(φ2θ2
(y))) =

1
N

∑N
i=1

∥∥yi − ψ2ζ2
(φ2θ2

(yi))
∥∥2

2
, however, in principle, one can use any other loss appropriate to

the dataset. Here φ1θ1
(xi) and φ2θ2

(yi) are computed from Eq. 6, i.e., the generated points in
feature space from the subspaceH.

Adding the loss function directly into the objective function Jt is not suitable for minimization.
Instead, we use the stabilized objective function defined as Jstab = Jt+ cstab

2 J 2
t , where cstab ∈ R+

is the regularization constant (Suykens, 2017). This tends to push the objective function Jt towards
zero, which is also the case when substituting the solutions λi,hi back into Jt (see Appendix A.3
for details). The combined training objective is given by:

min
θ1,θ2,ζ1,ζ2

Jc = Jstab +
cacc

2N

(
N∑
i=1

[
L1(xi, ψ1ζ1

(φ1θ1
(xi))) + L2(yi, ψ2ζ2

(φ2θ2
(yi)))

])
, (9)

where cacc ∈ R+ is a regularization constant to control the stability with reconstruction accuracy. In
this way, we combine feature-selection and subspace learning within the same training procedure.

There is also an intuitive connection between Gen-RKM and autoencoders. Namely, the properties
of kernel PCA resemble the objectives of the 3 variations of an autoencoder: standard (Kramer,
1991), VAE (Kingma & Welling, 2014) and β-VAE (Higgins et al., 2017). 1) Similar to an autoen-
coder, Gen-RKM minimizes the reconstruction error in the loss function (see Eq. 9), where kernel
PCA which acts as a denoiser (the information is compressed in the principal components). 2) By
interpreting kernel PCA within the LS-SVM setting (Suykens et al., 2002), the PCA analysis can
take the interpretation of a one-class modeling problem with zero target value around which one
maximizes the variance (Suykens et al., 2003). When choosing a good feature map, one expects
the latent variables to be normally distributed around zero. This property resembles the added reg-
ularization term in the objective of the VAE (Kingma & Welling, 2014), which is expressed as the
Kullback-Leibler divergence between the encoder’s distribution and a unit Gaussian as a prior on
the latent variables. 3) Kernel PCA gives uncorrelated components in feature space. While it was
already shown that PCA does not give a good disentangled representation for images (Eastwood
& Williams, 2018; Higgins et al., 2017). Hence by designing a good kernel (through appropriate
feature-maps) and doing kernel PCA, it is possible to get a disentangled representation for images
as we show on the example in Figure 5. The uncorrelated components enhances the interpretation
of the model.

4 THE GEN-RKM ALGORITHM

Based on the previous analysis, we propose a novel algorithm, called the Gen-RKM algorithm,
combining kernel learning and generative models. We show that this procedure is efficient to train
and evaluate. It is also scalable to large datasets when using explicit feature maps. The training
procedure simultaneously involves feature selection, common-subspace learning and pre-image map
learning. This is achieved via an optimization procedure where one iteration involves an eigen-
decomposition of the kernel matrix which is composed of the features from various views (see Eq.
3). The latent variables are given by the eigenvectors, which are then passed via a pre-image map to
reconstruct the sample. Figure 1 shows a schematic representation of the algorithm when two data
sources are available.

Thanks to training in m mini-batches, this procedure is scalable to large datasets (sample size N )
with training time scaling super-linearly with Tm = c Nγ

mγ−1 , instead of Tk = cNγ , where γ ≈ 3
for algorithms based on decomposition methods, with some proportionality constant c. The training
time could be further reduced by computing the covariance matrix (size (df+pf )×(df+pf )) instead
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of a kernel matrix (size N
m × N

m ), when the sum of the dimensions of the feature-spaces is less than
the samples in mini-batch i.e. df + pf ≤ N

m . While using neural networks as feature maps, df and
pf correspond to the number of neurons in the output layer, which are chosen as hyperparameters
by the practitioner. Eigendecomposition of this smaller covariance matrix would yield U and V
as eigenvectors (see Eq. 10 and Appendix A.2 for detailed derivation), where computing the hi
involves only matrix-multiplication which is readily parallelizable on modern GPUs:[ 1

η1
ΦxΦ>x

1
η1

ΦxΦ>y
1
η2

ΦyΦ>x
1
η2

ΦyΦ>y

] [
U
V

]
=

[
U
V

]
Λ,

Φx := [φ1(x1), . . . , φ1(xN )] ,

Φy := [φ2(y1), . . . , φ2(yN )] .
(10)

Algorithm 1 Gen-RKM
Input: {xi,yi}Ni=1, η1, η2, feature map φj(·) - explicit or implicit via kernels kj(·, ·), for j ∈ {1, 2}
Output: Generated data x?, y?

1: procedure TRAIN
2: if φj(·) = Implicit then
3: Hyperparameters: kernel specific
4: Solve Eq. 3
5: Select s principal components
6: else if φj(·) = Explicit then
7: while not converged do
8: {x,y} ← {Get mini-batch}
9: φ1(x)← x; φ2(y)← y

10: do steps 4-5
11: {φ1(x), φ2(y)} ← h (Eq. 6)
12: {x,y} ← {ψ1(φ1(x)), ψ2(φ2(y))}
13: ∆θ1 ∝ −∇θ1Jc; ∆θ2 ∝ −∇θ2Jc
14: ∆ζ1 ∝ −∇ζ1Jc; ∆ζ2 ∝ −∇ζ2Jc
15: end while
16: end if
17: end procedure

1: procedure GENERATION
2: Select h?

3: if φj(·) = Implicit then
4: Hyperparameter: nr
5: Compute kx∗ , ky∗ (Eq. 7)
6: Get x̂, ŷ (Eq. 8)
7: else if φj(·) = Explicit then
8: do steps 11-12
9: end if

10: end procedure

5 EXPERIMENTS

To demonstrate the applicability of the proposed framework and algorithm, we trained the Gen-
RKM model on a variety of datasets commonly used to evaluate generative models: MNIST (Le-
Cun & Cortes, 2010), Fashion-MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky, 2009), CelebA
(Liu et al., 2015), Dsprites (Matthey et al., 2017) and Teapot (Eastwood & Williams, 2018). The
experiments were performed using both the implicit feature map defined by a Gaussian kernel and
parametric explicit feature maps defined by deep neural networks, either convolutional or fully con-
nected. As explained in Section 2, in case of kernel methods, training only involves constructing the
kernel matrix and solving the eigenvalue problem in Eq. 3. In our experiments, we fit a Gaussian
mixture model (GMM) with l components to the latent variables of the training set, and randomly
sample a new pointh? for generating views using a kernel smoother. In case of explicit feature maps,
we define φ1θ1

and ψ1ζ1
as convolution and transposed-convolution neural networks, respectively

(Dumoulin & Visin, 2016); and φ2θ2
and ψ1ζ2

as fully-connected networks. The particular archi-
tecture details are outlined in Table 3 in the Appendix. The training procedure in case of explicitly
defined maps consists of minimizing Jc using the Adam optimizer (Kingma & Ba, 2014) to update
the weights and biases. To speed-up learning, we subdivided the datasets into m mini-batches, and
within each iteration of the optimizer, Eq. 3 is solved to update the value of H. Information on the
datasets and hyperparameters used for the experiments is given in Table 4 in the Appendix.

Generation:
Qualitative examples: Figure 2 shows the generated images using a convolutional neural network
and transposed-convolutional neural network as the feature map and pre-image map respectively.
The first column in yellow-boxes shows the training samples and the second column on the right
shows the reconstructed samples. The other images shown are generated by random sampling from
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(a) MNIST (b) Fashion-MNIST

(c) CIFAR-10 (d) CelebA

(e) Bilinear interpolation: MNIST (f) Bilinear interpolation: CelebA

Figure 2: Generated samples from the model using CNN as explicit feature map in the kernel func-
tion. In (a), (b), (c), (d) the yellow boxes in the first column show training examples and the adjacent
boxes show the reconstructed samples. The other images (columns 3-6) are generated by random
sampling from the fitted distribution over the learned latent variables. (e) and (f) shows the generated
images through bilinear interpolations in the latent space.

Male Mouth slightly open Young No beard
Bags under eye No beard No beard Big nose
Narrow eyes Narrow eyes Narrow eyes Mouth slightly open
Side buns smiling 0’clock shadow Oval face

Figure 3: Multi-view generation on CelebA dataset showing images and attributes.
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1 1 9 8 7 3 0 6 3 4 2 5

(a) MNIST: Implicit feature maps with Gaussian kernel are used during training. For generation, the pre-images
are computed using the kernel-smoother method.

9 1 7 6 4 6 0 8 2 1 3 7

(b) MNIST: Explicit feature maps and the corresponding pre-image maps are defined by the Convolutional
Neural Networks.

horse bird horse dog cat planehorse bird car plane ship deer

(c) CIFAR-10: Explicit feature maps as Convolutional Neural Networks. Pre-images are computed using
Transposed CNNs.

Figure 4: Multi-view Generation (images and labels) on various datasets using implicit and explicit
feature maps.

a GMM over the learned latent variables. Notice that the reconstructed samples are of better quality
visually than the other images generated by random sampling. To elucidate that the model has not
merely memorized the training examples, we show the generated images via bilinear-interpolations
in the latent space in 2e and 2f.
Comparison: We compare the proposed model with the standard VAE (Kingma & Welling, 2014).
For a fair comparison, the models have the same encoder/decoder architecture, optimization param-
eters and are trained until convergence, where the details are given in Table 3. We evaluate the
performance qualitatively by comparing reconstruction and random sampling, the results are shown
in Figure 8 in the Appendix. In order to quantitatively assess the quality of the randomly gener-
ated samples, we use the Fréchet Inception Distance (FID) introduced by Heusel et al. (2017). The
results are reported in Table 1. Experiments were repeated for different latent-space dimensions
(hdim), and we observe empirically that FID scores are better for the Gen-RKM. This is confirmed
by the qualitative evaluation in Table 8, where the VAE generates smoother images. An interesting
trend could be noted that as the dimension of latent-space is increased, VAE gets better at gener-
ating images whereas the performance of Gen-RKM decreases slightly. This is attributed to the
eigendecomposition of the kernel matrix whose eigenvalue spectrum decreases rapidly depicting
that most information is captured in few principal components, while the rest is noise. The presence
of noise hinders the convergence of the model. It is therefore important to select the number of latent
variables proportionally to the size of the mini-batch and the corresponding spectrum of the kernel
matrix (the diversity within a mini-batch affects the eigenvalue spectrum of the kernel matrix).

Table 1: FID Scores (Heusel et al., 2017) for randomly generated samples (smaller is better).

Dataset Algorithm FID score
hdim = 10 hdim = 30 hdim = 50

MNIST Gen-RKM 89.825 130.497 131.696
VAE 250 234.749 205.282

CelebA Gen-RKM 103.299 84.403 85.121
VAE 286.039 245.738 225.783

Multi-view Generation: Figures 3 & 4 demonstrate the multi-view generative capabilities of the
model. In these datasets, labels or attributes are seen as another view of the image that provides
extra information. One-hot encoding of the labels was used to train the model. Figure 4a shows the
generated images and labels when feature maps are only implicitly known i.e. through a Gaussian
kernel. Figures 4b, 4c shows the same when using fully-connected networks as parametric functions
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to encode and decode labels. We can see that both the generated image and the generated label
matches in most cases, albeit not all.

Figure 5: Exploring the learned uncorrelated-features by traversing along the eigenvectors. The first
column shows the scatter plot of latent variables using the top two principal components. The green
lines within, show the traversal in the latent space and the related rows show the corresponding
reconstructed images.

Table 2: Disentanglement Metric on DSprites and Teapot dataset with Lasso and Random Forest
regressor (Eastwood & Williams, 2018). For disentanglement and completeness higher score is
better, for informativeness, lower is better.

Lasso Random Forest

D
Sp

ri
te

s

hdim Algorithm Disent. Comple. Inform. Disent. Comple. Inform.

10
Gen-RKM 0.30 0.10 0.87 0.12 0.10 0.28

VAE 0.11 0.09 0.17 0.73 0.54 0.06
β-VAE (β = 3) 0.53 0.18 0.18 0.58 0.36 0.06

2
Gen-RKM 0.72 0.71 0.64 0.05 0.19 0.03

VAE 0.04 0.01 0.87 0.01 0.13 0.11
β-VAE (β = 3) 0.13 0.40 0.71 0.00 0.26 0.09

Te
ap

ot

10
Gen-RKM 0.28 0.23 0.39 0.48 0.39 0.19

VAE 0.28 0.21 0.36 0.30 0.27 0.21
β-VAE (β = 3) 0.33 0.25 0.36 0.31 0.24 0.20

5
Gen-RKM 0.22 0.23 0.74 0.08 0.09 0.27

VAE 0.16 0.14 0.66 0.11 0.14 0.28
β-VAE (β = 3) 0.31 0.25 0.68 0.13 0.15 0.29

Disentanglement:
Qualitative examples: The latent variables are uncorrelated, which gives an indication that the model
could resemble a disentangled representation. This is confirmed by the empirical evidence on Fig-
ure 5, where we explore the uncorrelated features learned by the models on the Dsprites and celebA
dataset. In our experiments, the Dsprites training dataset comprised of 32 × 32 positions of oval
and heart-shaped objects. The number of principal components chosen were 2 and the goal was
to findout whether traversing along the eigenvectors, corresponds to traversing the generated im-

9
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age in one particular direction while preserving the shape of the object. Rows 1 and 2 of Figure 5
show the reconstructed images of an oval while moving along first and second principal component
respectively. Notice that the first and second components correspond to the y and x positions re-
spectively. Rows 3 and 4 show the same for hearts. On the celebA dataset, we train the Gen-RKM
with 15 components. Rows 5 and 6 shows the reconstructed images while traversing along the prin-
cipal components. When moving along the first component from left-to-right, the hair-color of the
women changes, while preserving the face structure. Whereas traversal along the second compo-
nent, transforms a man to woman while preserving the orientation. When the number of principal
components were 2 while training, the brightness and background light-source corresponds to the
two largest variances in the dataset. Also notice that, the reconstructed images are more blurry due
to the selection of less number of components to modelH.
Comparison: To quantitatively assess disentanglement performance, we compare Gen-RKM with
VAE (Kingma & Welling, 2014) and beta-VAE (Higgins et al., 2017) on the Dsprites and Teapot
datasets (Eastwood & Williams, 2018). The models have the same encoder/decoder architecture, op-
timization parameters and are trained until convergence, where the details are given in Table 3. The
performance is measured using the proposed framework3 of Eastwood & Williams (2018), which
gives 3 measures: disentanglement, completeness and informativeness. The results are depicted in
Table 2. Gen-RKM has good performance on the Dsprites dataset when the latent space dimension
is equal to 2. This is expected as the number of disentangled generating factors in the dataset is
also equal to 2, hence there are no noisy components in the kernel PCA hindering the convergence.
The opposite happens in the case hdim = 10, where noisy component are present. The above is
confirmed by the Relative Importance Matrix on Figure 6 in the Appendix, where the 2 generating
factors are well separated in the latent space of the Gen-RKM. For the Teapot dataset, Gen-RKM
has good performance when hdim = 10. More components are needed to capture all variations in
the dataset, where the number of generating factors is now equal to 5. In the other cases, Gen-RKM
has a performance comparable to the others.

6 CONCLUSION AND FUTURE WORK

The paper proposes a novel framework, called Gen-RKM, for generative models based on RKMs
with extensions to multi-view generation and learning uncorrelated representations. This allows for
a mechanism where the feature map can be implicitly defined using kernel functions or explicitly
by (deep) neural network based methods. When using kernel functions, the training consists of
only solving an eigenvalue problem. In the case of a (convolutional) neural network based explicit
feature map, we used (transposed) networks as the pre-image functions. Consequently, a training
procedure was proposed which involves joint feature-selection and subspace learning. Thanks to
training in mini-batches and capability of working with covariance matrices, the training is scalable
to large datasets. Experiments on benchmark datasets illustrate the merit of the proposed framework
for generation quality as well as disentanglement. Extensions of this work consists of adapting the
model to more advanced multi-view datatsets involving speech, images and texts; further analysis
on other feature maps, pre-image methods, loss-functions and uncorrelated feature learning. Finally,
this paper has demonstrated the applicability of the Gen-RKM framework, suggesting new research
directions to be worth exploring.

3Code and dataset available at https://github.com/cianeastwood/qedr
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A APPENDIX

A.1 DERIVATION OF GEN-RKM OBJECTIVE FUNCTION

Given D = {xi,yi}Ni=1, where xi ∈ Rd, yi ∈ Rp and feature-map φ1 : Rd 7→ Rdf and φ2 : Rp 7→
Rpf , the Least-Squares Support Vector Machine (LS-SVM) formulation of Kernel PCA (Suykens
et al., 2002) for the two data sources can be written as:

min
U,V,ei

η1

2
Tr(U>U) +

η2

2
Tr(V >V )− 1

2λ

N∑
i=1

e>i ei

s.t. ei = U>φ1(xi) + V >φ2(yi) ∀i = 1, . . . , N,

(11)

where U ∈ Rd×s and V ∈ Rp×s are the interconnection matrices.

Using the notion of conjugate feature duality introduced in Suykens (2017), the error variables ei
are conjugated to latent variables hi using:

1

2λ
e>e+

λ

2
h>h ≥ e>h, ∀e,h ∈ Rs (12)

which is also known as the Fenchel-Young inequality for the case of quadratic functions (Rockafel-
lar, 1974). By eliminating the variables ei from Eq. 11 and using Eq. 12, we obtain the Gen-RKM
training objective function:

Jt =

N∑
i=1

(
−φ1(xi)

>Uhi − φ2(yi)
>V hi +

λ

2
h>i hi

)
+
η1

2
Tr(U>U) +

η2

2
Tr(V >V ). (13)

A.2 KERNEL PCA IN THE PRIMAL

From Eq. 2, eliminating the variables hi yields the following:

1

η1

[
N∑
i=1

φ1(xi)φ1(xi)
>U +

N∑
i=1

φ1(xi)φ2(yi)
>V

]
= λU ,

1

η2

[
N∑
i=1

φ2(yi)φ1(xi)
>U +

N∑
i=1

φ2(yi)φ2(yi)
>V

]
= λV .

(14)

Denote Φx := [φ1(x1), . . . , φ1(xN )], Φy := [φ2(y1), . . . , φ2(yN )] and Λ = diag{λ1, . . . , λs} ∈
Rs×s with s ≤ N . Now, composing the above equations in matrix form, we get the following
eigen-decomposition problem:[ 1

η1
ΦxΦ>x

1
η1

ΦxΦ>y
1
η2

ΦyΦ>x
1
η2

ΦyΦ>y

] [
U
V

]
=

[
U
V

]
Λ. (15)

Here the size of the covariance matrix is (df + pf ) × (df + pf ). The latent variables hi can be
computed using Eq. 2, which simply involves matrix multiplications.

A.3 STABILIZING THE OBJECTIVE FUNCTION

Proposition 1. All stationary solutions forH ,Λ in Eq. 3 of Jt lead to Jt = 0.

Proof. Let λi,hi are given by Eq. 3. Using Eq. 2 to substitute V and U in Eq. 1 yields:

Jt(V ,U ,Λ,H) =

N∑
i=1

−λ
2
h>i hi +

η1

2
Tr

 1

η2
1

N∑
i=1

hiφ1(xi)
>

N∑
j=1

φ1(xj)h
>
j


+
η2

2
Tr

 1

η2
2

N∑
i=1

hiφ2(yi)
>

N∑
j=1

φ2(yj)h
>
j
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=

N∑
i=1

−λ
2
h>i hi +

η1

2
Tr

(
1

η2
1

HK1H
>
)

+
η2

2
Tr

(
1

η2
2

HK2H
>
)

=

N∑
i=1

−λ
2
h>i hi +

1

2
Tr

(
H

[
1

η1
K1 +

1

η2
K2

]
H>

)
.

From Eq. 3, we get:

Jt(V ,U ,Λ,H) =

N∑
i=1

−λ
2
h>i hi +

1

2
Tr
(
HH>λ

)
=

N∑
i=1

−λ
2
h>i hi +

λ

2

N∑
i=1

h>i hi = 0.

Proposition 2. Let J(x) : RN −→ R be a smooth function, for all x ∈ RN and for c ∈ R>0, define
J̄(x) := J(x) +

c

2
J(x)2. Assuming (1 + cJ(x)) 6= 0, then x? is the stationary points of J̄(x) iff

x? is the stationary point for J(x).

Proof. Let x? be a stationary point of J(x), meaning that ∇J(x?) = 0. The stationary points for
J̄(x) can be obtained from:

dJ̄

dx
= (∇J(x) + cJ(x)∇J(x)) = (1 + cJ(x))∇J(x). (16)

It is easy to see from Eq. 2 that if x = x∗, ∇J(x∗) = 0, we have that
dJ̄

dx

∣∣∣
x∗

= 0, meaning that all

the stationary points of J(x) are stationary points of J̄(x).

To show the other way, let x? be stationary point of J̄(x) i.e. ∇J̄(x?) = 0. Assuming (1 +
cJ(x?)) 6= 0, then from Eq. 16 for all c ∈ R>0, we have

(1 + cJ(x?))∇J(x?) = 0,

implying that∇J(x?) = 0.

Based on the above propositions, we stabilize our original objective function Eq. 1 to keep it
bounded and hence is suitable for minimization with Gradient-descent methods. Without the re-
construction errors, the stabilized objective function is

min
U ,V ,hi

Jt +
c

2
J 2
t .

Denoting J̄ = Jt + cstab
2 J 2

t . Since the derivatives of Jt are given by Eq. 2, the stationary points of
J̄ are:

∂J̄
∂V = (1 + cstabJt)

(
−∑N

i=1 φ1(xi)h
>
i + η1V

)
= 0 =⇒ V = 1

η1

∑N
i=1 φ1(xi)h

>
i ,

∂J̄
∂U = (1 + cstabJt)

(
−∑N

i=1 φ2(yi)h
>
i + η2U

)
= 0 =⇒ U = 1

η2

∑N
i=1 φ2(yi)h

>
i ,

∂J̄
∂hi

= (1 + cstabJt)
(
−V >φ1(xi)−U>φ2(yi) + λhi

)
= 0 =⇒ λhi = V >φ1(xi)

+U>φ2(yi),

assuming 1 + cstabJt 6= 0. Elimination of V and U yields
[

1
η1
K1 + 1

η2
K2

]
H> = H>Λ, which

is indeed the same solution for cstab = 0 in Eq. 1 and Eq. 3.

A.4 CENTERING OF KERNEL MATRIX

Centering of the kernel matrix is done by the following equation:

Kc = K −N−111>K −N−1K11> +N−211>K11>, (17)

where 1 denotes an N -dimensional vector of ones andK is eitherK1 orK2.
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A.5 ARCHITECTURE DETAILS

See Table 3 and 4 for details on model architectures, datasets and hyperparameters used in this
paper. The PyTorch library in Python was used as the programming language with a 8GB NVIDIA
QUADRO P4000 GPU.

Table 3: Details of model architectures used in the paper. All convolutions and transposed-
convolutions are with stride 2 and padding 1. Unless stated otherwise, the layers have Parametric-
RELU (α = 0.2) activation function, except the output layers of the pre-image maps which has
sigmoid activation function.

Dataset Optimizer Architecture
(Adam) X Y

MNIST 1e-3

Input 28x28x1 10 (One-hot encoding)

Feature-map (fm)
Conv 32x4x4;
Conv 64x4x4;
FC 128 (Linear)

FC 15, 20 (Linear)

Pre-image map reverse of fm reverse of fm
Latent space dim. 500

Fashion
-MNIST

1e-3

Input 28x28x1 10 (One-hot encoding)

Feature-map
Conv 32x4x4;
64x4x4;
FC 128 (Linear)

FC 15, 20

Pre-image map (fm) reverse of fm reverse of fm
Latent space dim. 100

CIFAR-10 1e-3

Input 32x32x3 10 (One-hot encoding)

Feature-map (fm)
Conv 64x4x4;
Conv 128x4x4;
FC 128 (Linear)

FC 15, 20

Pre-image map reverse of fm reverse of fm
Latent space dim. 500

CelebA 1e-4

Input 64x64x3 -

Feature-map (fm)

Conv 32x4x4;
Conv 64x4x4;
Conv 128x4x4;
Conv 256x4x4 ;
FC 128 (Linear)

-

Pre-image map reverse of fm -
Latent space dim. 15

Dsprites 1e-4

Input 64x64x1 -

Feature-map (fm)

Conv 20x4x4;
Conv 40x4x4;
Conv 80x4x4;
FC 128 (Linear)

-

Pre-image map reverse of fm -
Latent space dim. 2/10

Teapot 1e-4

Input 64x64x3 -

Feature-map (fm)

Conv 30x4x4;
Conv 60x4x4;
Conv 90x4x4;
FC 128 (Linear)

-

Pre-image map reverse of fm -
Latent space dim. 5/10
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Table 4: Datasets and hyperparameters used for the experiments. The bandwidth of the Gaussian
kernel for generation corresponds to the bandwidth that gave the best performance determined by
cross-validation on the MNIST classification problem.

Dataset N d Nsubset s m σ nr l

MNIST 60000 28× 28 5000 500 50 1.3 4 10
Fashion-MNIST 60000 28× 28 500 100 5 / / 10
CIFAR-10 60000 32× 32× 3 500 500 5 / / 10
CelebA 202599 128× 128× 3 500 15 5 / / 20
Dsprites 737280 64× 64 1024 2/10 5 / / /
Teapot 200000 64× 64× 3 1000 5/10 100 / / /

A.6 BILINEAR INTERPOLATION

Given four vectors h1,h2,h3 and h4 (reconstructed images from these vectors are shown at the
edges of Figs. 2e, 2f), the interpolated vector h? is given by:

h? = (1− α)(1− γ)h1 + α(1− γ)h2 + γ(1− α)h3 + γαh4, 0 ≤ α, γ ≤ 1.

This h? is then used in step 8 of the generation procedure of Gen-RKM algorithm (see Algorithm
1) to compute x?.

A.7 VISUALIZING THE DISENTANGLEMENT METRIC

In this section we show the Hinton plots to visualize the disentaglement scores as shown in Table
2. Following the conventions of Eastwood & Williams (2018), z represents the ground-truth data
generating factors. Figs. 6 & 7 shows the Hinton plots on DSprites and Teapot datasets using Lasso
and Random Forest regressors for various algorithms. Here the square size indicates the magnitude
of the relative importance of the latent code hi in predicting zi.
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Figure 6: Relative importance matrix as computed by Lasso and Random Forest regaressors on
DSprites dataset for hdim = {10, 2} against the underlying data generating factors zdim = {2}
corresponding to x, y positions of object.
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Figure 7: Relative importance matrix as computed by Lasso and Random Forest regaressors on
Teapot dataset for hdim = {10, 5} against the underlying data generating factors zdim = {5}
corresponding to azimuth, elevation and colors red, green and blue of the teapot object.
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A.8 FURTHER EMPIRICAL RESULTS
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Figure 8: Comparing Gen-RKM and standard VAE for reconstruction and generation quality. In re-
construction MNIST and reconstruction CelebA, uneven columns correspond to the original image,
even columns to the reconstructed image.
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