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ABSTRACT

Learning overcomplete representations finds many applications in machine learning
and data analytics. In the past decade, despite the empirical success of heuristic
methods, theoretical understandings and explanations of these algorithms are still
far from satisfactory. In this work, we provide new theoretical insights for several
important representation learning problems: learning (i) sparsely used overcom-
plete dictionaries and (i) convolutional dictionaries. We formulate these problems
as ¢/*-norm optimization problems over the sphere, and study the geometric prop-
erties of their nonconvex optimization landscapes. For both problems, we show
the nonconvex objectives have benign (global) geometric structures, which enable
development of efficient optimization methods finding the target solutions. Finally,
our theoretical results are justified by numerical simulations.

1 INTRODUCTION

High dimensional data often has low-complexity structures (e.g., sparsity or low rankness). The
performance of modern machine learning and data analytical methods heavily depends on appropriate
low-complexity data representations (or features) which capture hidden information underlying the
data. While we used to manually craft representations in the past, it has been demonstrated that
learned representations from the data show much superior performance (Elad, 2010). Therefore,
(unsupervised) learning of latent representations of high-dimensional data becomes a fundamental
problem in signal processing, machine learning, theoretical neuroscience and many other fields
(Bengio et al., 2013). Moreover, overcomplete representations for which the number of latent features
exceeds the data dimensionality, have shown better representation of the data in various applications
compared to complete representations (Lewicki & Sejnowski, 2000; Chen et al., 2001; Rubinstein
et al., 2010). In this paper, we study the following overcomplete representation learning problems.

e Overcomplete dictionary learning (ODL). One of the most important unsupervised representa-
tion learning problems is learning sparsely used dictionaries (Olshausen & Field, 1997), which
finds many applications in image processing and computer vision (Wright et al., 2010; Mairal
et al., 2014). The task is given data

Y = A - X (1.1)
—— —— —

data dictionary  sparse code

we want to learn the compact representation (or dictionary) A € R™*™ along with the sparse code
X € R™*P, For better representation of the data, it is often more desired that the dictionary A is
overcomplete m > n, where it provides greater flexibility in matching structures in the data.

e Convolutional dictionary learning (CDL). Inspired by deconvolutional networks (Zeiler et al.,
2010), the convolutional form of sparse representations (Bristow et al., 2013; Garcia-Cardona &

*The full version of this work can be found at ht tps://arxiv.org/abs/1912.02427.
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Wohlberg, 2018) replaces the unstructured dictiomanyith a set of convolution Iters aoku{(< 1
Namely, the problem is that given multiple circulant convolutional measurements
K
yi |Bmord  IdSmon 12 i@ p; 1.2)
K1 er sparse code

one wants to learn the Iterlsa()kuL< , along with the sparse codes. The problem resembles a lot
similarities to classical ODL. Indeed, one can show that Equation (1.2) reduces to Equation (1.1)
in overcomplete settings by reformulation (Huang & Anandkumar, 2015). The interest of studying
CDL was spurred by its better modeling ability of human visual and cognitive systems and the
development of more ef cient computational methods (Bristow et al., 2013), and has led to a
number of applications in which the convolutional form provides state-of-art performance (Gu
et al., 2015; Papyan et al., 2017b; Lau et al., 2019). Recently, the connections between CDL and
convolutional neural network have also been extensively studied (Papyan et al., 2017a; 2018).

In addition, variants of nding overcomplete representations appear in many other problems beyond
the dictionary learning problems we introduced here, such as overcomplete tensor decomposition
(Anandkumar et al., 2017; Ge & Ma, 2017), overcomplete ICA (Lewicki & Sejnowski, 1998; Le

et al., 2011), and short-and-sparse blind deconvolution (Zhang et al., 2017; 2018; Kuo et al., 2019).

Prior arts on dictionary learning (DL). In the past decades, numerous heuristic methods have
been developed for solving DL (Lee et al., 2007; Aharon et al., 2006; Mairal et al., 2010). Despite
their empirical success (Wright et al., 2010; Mairal et al., 2014), theoretical understandings of when
and why these methods work are still limited.

When the dictionanA is complete (Spielman et al., 2012) (i.e., square and invertible, n), by

the fact that the row space ¥f equals to that oK (i.e.,rowpY g rowpX @), Sun et al. (2016a)
reduced the problem to nding the sparsest vector in a subspace (Demanet & Hand, 2014; Qu et al.,
2016). By considering a (smooth) variant of the followilgminimization problem over the sphere,

mn = g’Y ; st qPS % (1.3)
a p
Sun et al. (2016a) showed that the nonconvex problem has no spurious local minima when the sparsity
level: P Oplg and every local minimizeq is a global minimizer withg? Y corresponding to one
row of X . The new discovery has led to ef cient, guaranteed optimization methods for complete DL

from random initializations (Sun et al., 2016b; Bai et al., 2018; Gilboa et al., 2019).

However, all these methods critically rely on the fact tleatpY q rowpX gfor completeA , there

is no obvious way to generalize the approach to the overcomplete settingn. On the other
hand, for learning incoherent overcomplete dictionaries, with sparst@pl{ ngand stringent
assumptions oiX , most of the current theoretical analysis results are local (Geng et al., 2011,
Arora et al., 2015; Agarwal et al., 2016; Chatterji & Bartlett, 2017), in the sense that they require
complicated initializations that could be dif cult to implement in practice. Therefore, the legitimate
guestion remains: why do heuristic methods solve ODL with simple initializations?

Contributions. In this work we study the geometry of nonconvex landscapes for overcom-
plete/convolutional DL, where our result can be simply summarized by the following statement.

There exists nonconvex formulations for ODL/CDL with benign optimization landscapes,|that
descent methods can learn overcomplete/convolutional dictionaries with Siimitildizations.

Our approach follows the spirit of Sun et al. (2016a), while we overcome the aforementioned obstacles
for overcomplete dictionaries lirectly nding columns ofA instead of recovering sparse rows of
X . We achieve this by reducing the problem to maximizing theorn® of Y ? g over the sphere,

"Here, the sparsity level denotes the proportion of nonzero entriein

2Here, for ODL simple means random initializations; for CDL, it means simple data-driven initializations.

3The use of “-norm can also be justi ed from the perspective of sum of squares (SOS) (Barak et al., 2015;
Ma et al., 2016; Schramm & Steurer, 2017). One can utilize properties of higher order SOS polynomials
(such agt-th order polynomials) to correctly recover columnsfof But the complexity of these methods are
quasi-polynomial, and hence much more expensive than the direct optimization approach we consider here.
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which is known to promote thgpikinesf the solution (Zhang et al., 2018; Li & Bresler, 2018; Zhai
et al., 2019). In particular, we show the following results for ODL and CDL, respectively.

1. For the ODL problem, wheA is unit norm tight frame and incoherent, our nonconvex objective
is strict saddlg(Ge et al., 2015; Sun et al., 2015b) in the sense that any saddle point can be escaped
by negative curvature and all local minimizers are globally optimal. Furthermore, every local
minimizer is close to a column &.

2. For the CDL problem, when the lters are self and mutual incoherent, a similar nonconvex
objective is strict saddle over a sublevel set, within which every local minimizer is close to a target
solution. Moreover, we develop a simple data-driven initialization that falls into this sublevel set.

Our analysis on ODL provides thest global characterization for nonconvex optimization landscape

in the overcomplete regime. On the other hand, our result also givesthgrovable guarantee for

CDL. Indeed, under mild assumptions, our landscape analysis implies that with simple initializations,
any descent method with the ability of escaping strict saddle ggintsably nds global minimizers

that are close to our target solutions for both problems. Moreover, our result opens up several
interesting directions on nonconvex optimization that are worth of further investigations.

2 OVERCOMPLETEDICTIONARY LEARNING

In this section, we start stating our result with ODL. In Section 3, we will show how our geometric
analysis here can be extended to CDL in a nontrivial way.

2.1 BASIC ASSUMPTIONS

We study the DL problem in Equation (1.1) under the following assumption& ferR" ™ and
X PR™ P_In particular, our assumption for the dictionakycan be viewed as a generalization of
orthogonality in the overcomplete setting (Mixon, 2016).

Assumption 2.1 (Tight frame and incoherent dictionaryA) We assume that the dictionadyis
unit norm tight frame (UNTF) (Mixon, 2016), in the sense that

%AA J l; }a} 1pleiomg (2.1)
and its columns satisfy theincoherenceondition. Namely, leA r a; a; ams
B F
. aj . aj .
: max ;—— P ®; 1 2.2

We assume the coherencefois small, i.e., pAq! 1.
Assumption 2.2 (Random Bernoulli-GaussiarX ) We assume entries ¥ i.q. BGp ¢, that
X BdG; Bj iia Berpg Gj i NpOlg

where the Bernoulli parameterP ®; 1qcontrols the sparsity level of .

Remark 1. The coherence parameteplays an important role in shaping the optimization land-
scape. A smaller coherencamplies that the columns & are less correlated, and hence easier
for optimization. For matrices with?-normalized columns, classical Welch bound gWelch, 1974;

Foucart & Rauhut, 2013a) suggests that the coherenséower bounded by pA q ¥ m’{‘ 1”qn ,

which is achieved wheA is equiangular tight framgSustik et al., 2G07). Forgeneric randorh

matrix A, w.h.p. it is approximately UNTF, with coherenceA g 'O%m roughly achieving

the order of Welch bound. For a typical dictionakyunder Assumption 2.1, this suggests that the
coherence parametepA qoften decreases w.r.t. the feature dimension

“Recent results show that methods such as trust-region (Absil et al., 2007; Boumal et al., 2018), cubic-
regularization (Nesterov & Polyak, 2006), curvilinear search (Goldfarb et al., 2017), and even gradient descent
(Lee et al., 2016) can provably escape strict saddle points.

Here, we us®Gp qfor abbreviation of Bernoulli-Gaussian distribution, with sparsity level 0; 1q

SFor instance, wheA is random Gaussian matrix, with each erdry iia: N pO;{ng
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Figure 2: Spikiness % q vs.
} }3{}q}4. We generate UNTF
A, randomly draw many points
qPS" 1 and computé }4and
spikiness% q as in (2.6) with

A7 . On the plot, we mark
each poing PS" thy* .

Figure 1: Plots of landscapes tpygand ' p. paq over S2.
Both function values are normalizedn@ 1s. The overcomplete
dictionaryA is generated to be UNTF, with 3 andm

The sparse coef cienK BGp qwith 0:1 andp

2 10 Black dots denote columns &f (target).

2.2 PROBLEM FORMULATION
We solve DL in the overcomplete regime by considering the following problem

. Cp 4 Co 4
min ‘i paq : TL gy, TL qQ’AX i st olah, L (2.3)
wherecp. | 0is a normalizing constant. At the rst glance, our objective looks similar to
Equation (1.3) in complete DL, but we tackle the problem from a very different aspect — we directly
nd columns of A instead of recovering sparse rowsf Given UNTFA and randonX  BGp g
our intuition of solving Equation (2.3) originates from the fact (Lemma D.1)

m 2 1 4
Ex r' ' . ' : =~ Alqg; 2.4
x I'oLpggs " tpaq 2 g n TPIq 2 Aas (2.4)
where' rpggcan be viewed as the objective #th order tensor decomposition in Ge & Ma (2017).
Whenp is large, this tells us that optimizing Equation (2.3) is approximately maximiAingorm of
A q over the sphere (see Figure 1)glequals to one of the target solutions (eqg., ai),
J

. 2 .
ma: A'd  (Bulonfodeon  Rbfen (2.5)
1 Il Il
then isspikywhen issmall(e.g., ! 1). Here, we introduce a notion spikines4for a vector
PR™ by
WA pq{ g g ¥ g ¥ ¥ g (2.6)

where , denotes théth ordered entry of . Figure 2 shows that largép gleads to large} }j

with “2-norm xed. This implies that maximizing*-norm over the sphengromotesthe spikiness of
(Zhang et al., 2018; Li & Bresler, 2018; Zhai et al., 2019). Thus, from Equation (2.5), we expect

theglobal minimizerq of Equation (2.3) is close to one columnAf Ge & Ma (2017) proved

that for' 1 pggthere is no spurious local minimizer below a sublevel set whose measur8lover

geometrically shrinks w.r.t. the dimensianand without providing valid initialization into the set.

Therefore, the challenge still remains: can simple descent methods solve the nonconvex objective

Equation (2.3) to global optimality? In this work, we show that the answaf imative. Under

proper assumptions, we show that our objective actually has beghitwal geometric structure,

explaining why descent methods with random initialization solve the problem to the target solutions.

2.3 GEOMETRICANALYSIS OF NONCONVEX OPTIMIZATION LANDSCAPE

To characterize the landscape' af, pqgover the spher& 1, letus rst introduce some basic tools
from Riemannian optimization (Absil et al., 2009a). For any funcfiarS" ' PNR, we have

gradfpg : Pgxr f g Hessfpgg @ Pgx 1 2fmag xq;r f pgayl Pgx
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to be the Riemannian gradient and Hes&iaif piqg In addition, we partitior8” ® into two regions
|

! )

Ry : qPS" ! 'rmg¥ o %) pqq}i): 2.7)
!

Rc: qPS"?! 'tmge o 2%} mak ; (2.8)

for some xed numerical constang. i 0. Unlike the approach in Sun et al. (2016a), our partition
and landscape analysis are based on function Vaiygq instead of target solutions. This is
because in overcomplete case the optimization landscape ismeggar compared to that of the
complete/orthogonal case, which introduces extra dif culties for explicit partition of the sphere. In
particular, for each region we show the following results.

Theorem 2.3 (Global geometry of nonconvex landscape for ODLBuppose we have
K: m{n; Pmuh3t: o i 2% P 0,40 ! ; (2.9)

and assum&  AX suchthatA andX satisfy Assumption 2.1 and Assumption 2.2, respectively.
1. (Negative curvature iR y) W.h.p. over the randomnessXf, whenever

1
p¥ CK“Plogpn{ g and K = 3 1 6 625
any pointq P Ry exhibits negative curvature in the sense that

DvPS 1 st v)'Hess ppmgav & 3} }i} }§ ;

2. (No bad critical points iR ¢) W.h.p. over the randomnessXf, whenever
p¥ CK3max ?Kn 2 ndlogpn{ q and K ao 3*s;

every critical pointg; of ' p_ pgqin Rc is either a strict saddle point that exhibits negative
curvature for descent, or it is near one of the target solutions @;ysuch that

xai{}ai};qy ¥ 1 5%

HereC | 0Ois a universal constant.

Remark 2. A combination of our geometric analysis for both regions provides the rst global
geometric analysis for ODL with P Oplg which implies that p, pgq hasno spurious local
minimizers overS" 1: any critical point is either a strict saddle point that can be ef ciently escaped,
or it is near one of the target solutions. Moreover, recent results show that nonconvex problems with
this type of optimization landscapes can be solved to optimal solutions by using (noisy) gradient
descent methods with random initializations (Lee et al., 2016; Jin et al., 2017; Lee et al.; Criscitiello
& Boumal, 2019). In addition, we point out several limitations of our result for future work.

As we have only characterized properties of critical points, our result does not directly lead to
convergence rate for descent methods. To show polynomial-time convergence, as suggested by
Sun et al. (2016a; 2018); Li & Bresler (2018); Kuo et al. (2019), we need ner partitions of the
sphere and uniform controls of derivatives in each regjitve leave this for future work.

Our analysis irRy says that when is suf ciently smalP the maximum overcompleteneiss
allowed is roughlK 3, which is smaller than that d® ¢ (which could be a large constant).

We believe this is mainly due to loose bounds for controlling norm& @i R . Moreover, our
experiment result in Section 4 suggests that there is a substantial fapetfveen our theory and
practice: the phase transition in Figure 3a shows that gradient descent with random initialization
works even in the regime @ n2. We leave improvement of our result as an open question.

"The Riemannian derivatives are similar to ordinary derivatives in Euclidean space, but they are de ned in
the tangent space of the manifdll ~ S" . We refer readers to Absil et al. (2009a) for more details.

80ur preliminary investigation indicates that our premature analysis is not tight enough to achieve this.
°From Remark 1, for a typical , we expect P ®pmK q *2qto be diminishing w.r.tn.
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Brief sketch of analysis. From Equation (2.4), we know thab pyqreduces to tpqin large
sample limit ap N 8 . This suggests an expectation and concentration type of angiysise rst
characterize critical points and negative curvature for the deterministic fuictipggin R¢ and
Rn (see Appendix B)(ii) for any small j 0, we show the measure concentrates in the sense that

fora nitely largep ¥ "p 2polypnqq

sup }grad' pLpgq grad' tpaqr @ sup }Hess pLpgq Hess tpyq} ©
gPs" 1 gqPs" 1

holds w.h.p. over the randomnessXf Thus we can turn our analysis 'of pqqto that of' 5. pgq

by a perturbation analysis (see Appendix C & D). Here, it should be noticedythdt p. pgq
andHess p. pggaredth-order polynomials oK , which areheavy-tailedempirical processes over

q PS" 1. To control suprema of heavy-tailed processes, we developed a general truncation and
concentration type of analysis similar to Zhang et al. (2018); Zhai et al. (2019), so that we can utilize
classical bounds for sub-exponential random variables (Boucheron et al., 2013) (see Appendix F).

3 CONVOLUTIONAL DICTIONARY LEARNING
3.1 PROBLEM FORMULATION

Recall from Section 1, the basic task of CDL is that given convolutional measurements in the form of

Equation (1.2), we want to recover kernedﬁ)ku:f .- Here, by reformulatinty CDL in the form of
ODL, we generalize our analysis from Section 2.3 to CDL with a few new ingredients.

Reduction from CDLto ODL. Foranyz PR",letC, PR" " be the circulant matrix generated
from z. From Equation (1.2), the properties of circulant matrix imply that
K

B

CYi COE 1a0kf Xik CaOkCXik AO X" 10 I a p’
k 1
with Ag 1 Ca,, Cay Cay Sand X cj. ci. ci, 7, sothat

Ao PR" ™ isovercompletend structured. Thus, contencating@Jl,, we have

I(%boo&j@oooooorﬁéooooo@ﬁbd&bo%éooooon%eﬁoo@fbooogon Ao X:

Y PR 1P X PRnK - np

This suggests that we can view the CDL problem as ODL.: if we can recover a column of the
overcomplete dictionarf o, we nd one of the Itersag pl @ k @ K qup to acirculant shift!.

Nonconvex problem formulation and preconditioning. To solve CDL, one may consider the
same objective Equation (2.3) as ODL. However, for many applications our structured dicdogpary
could be badly conditioned ambt tight frame, which results in bad optimization landscape and even
spurious local minimizers. To deal with this issue, wigitenour dataY by preconditioning?

1 12

PY PAoX ; P K?np “YY’ : (3.1)

For largep, we approximately have K 1ApA} e (see Appendix E.5), so that

i 1{2

PY K 1A0A} Ao X A X; A K AGA] Ao
whereA is automatically tight frame witlkk *AA 7 | . This suggests to consider
. Cc 4
min " cot pag nE;)L o’ PYq,; st b, L (3.2)

10Similar formulation ideas also appeared in (Huang & Anandkumar, 2015) with no theoretical guarantees.
The CDL problem exhibits shift symmetry in the sense thatf Xix s ragksSf s ~ rxi s wheres rs
is a circulant shift operator by length This implies we can only hope to solve CDL up to a shift ambiguity.
2pgain, the here is only for normalization purpose, which does not affect optimization landscape. Similar
P is also considered in Sun et al. (2016a); Zhang et al. (2018); Qu et al. (2019).
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Algorithm 1 Finding one Iter with data-driven initialization

Input: datay PR" P
Output: an esimated ltera
1: preconditioning. Cook up the preconditioning matri in Equation (3.1).
2: initialization. Initialize Qijnt Ps 1 pPy-qwith arandom samplg-; 1o ~ o p.
3: optimization with escaping saddle pointsOptimize Equation (3.2) to a local minimizqr, by
using a descent method such as Goldfarb et al. (2017) that escapes strict saddle points.
4: return an estimated Itera Ps 1+ P g

for some normalizing constangp, j O, so that iscloseto optimizing
CcoL

np
for a tight frame dictionarA (we make this rigorous in Appendix E.4). To study the problem, we

make assumptions on the sparse sigrals ii¢: BGp gsimilar to Assumption 2.2. Furthermore,
we assumé\ o andA satisfy the following properties which serve as counterparts to Assumption 2.1.

PeoL Q- q’ AX j " coL PG

Assumption 3.1 (Properties ofA g and A) We assume the Iter matri& o has minimum singular
value min PAog i Owith bounded condition numbepAod : A max PA oG min PA oG In addition,

we assume the columns/Afare mutually incoherentmax;. j a—' 4 o

3.2 GEOMETRICANALYSIS AND NONCONVEX OPTIMIZATION

Optimization landscape for CDL. We characterize the geometric structuré @b, pggqover
|

[ )
Reor © qPS" ' 'tmae oo 2 “Cpagg) mah (3.3)

for some xed numerical constangp. | 0, where pgg  A7Jqgand' g 4 1y mq}f‘ as
introduced in Equation (2.4). We showp. pggsatis es the following properties.

Theorem 3.2 (Local geometry of nonconvex landscape for CDL) et us denoten : Kn, and
letCoj 5and 2 % be some positive constants. Suppose we have

Pm®%3'; oo C 5 P 040t
and assume that Assumption 3.1 and ig. BGp ghold. There exists some const&ht; 0,
w.h.p. over the randomnessxaf s, whenever
K® ®pAoq,
rznin FAoq '

every critical pointqc in R¢p is either a strict saddle point that exhibits negative curvature for
descent, or it is near one of the target solutions (a.g.such thatai{}ai};qcy ¥ 1 5 2:

p¥ CK? Zn*max n log®m{ q and K  Cg;

Remark 3. The analysis is similar to that of ODL iR ¢ (see Appendix D). In contrast, our sample
complexityp andR cp.  have extra dependence opA ggdue to preconditioning in Equation (3.1).
On the other hand, because our preconditioned dictioAaiytight frame but not necessarily UNTF,
in the worst case weannotexclude existence of spurious local minimeRg, ~ S" ! for CDL.

From geometry to optimization. Nonetheless, in Algorithm 1 we propose a simple data-driven
initialization ginit such thatgi,y P RcpL . SinceR¢p. does not have bad local minimizers, by
proving that all iterates stay withiR cp, , it suf ces to show global convergence of Algorithm 1.

We initialize g by randomly picking a preconditioned data samle with = P ps and set
Clnit Pe +PY-d; st it A’ G KPgw 1 AVAX: : (3.4)

For genericA , small pA gimplies thatA J A is close to a diagonal matfik so that ;,; is spikyfor
sparsex-. Therefore, we expect largejnit }j andqinit P RCD}._ by leveraging sparsity of-.
3This is because the off diagonal entries are bounded roughiykoy , which are tiny when is smalll.
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