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ABSTRACT

Learning overcomplete representations finds many applications in machine learning
and data analytics. In the past decade, despite the empirical success of heuristic
methods, theoretical understandings and explanations of these algorithms are still
far from satisfactory. In this work, we provide new theoretical insights for several
important representation learning problems: learning (i) sparsely used overcom-
plete dictionaries and (ii) convolutional dictionaries. We formulate these problems
as `4-norm optimization problems over the sphere, and study the geometric prop-
erties of their nonconvex optimization landscapes. For both problems, we show
the nonconvex objectives have benign (global) geometric structures, which enable
development of efficient optimization methods finding the target solutions. Finally,
our theoretical results are justified by numerical simulations.

1 INTRODUCTION

High dimensional data often has low-complexity structures (e.g., sparsity or low rankness). The
performance of modern machine learning and data analytical methods heavily depends on appropriate
low-complexity data representations (or features) which capture hidden information underlying the
data. While we used to manually craft representations in the past, it has been demonstrated that
learned representations from the data show much superior performance (Elad, 2010). Therefore,
(unsupervised) learning of latent representations of high-dimensional data becomes a fundamental
problem in signal processing, machine learning, theoretical neuroscience and many other fields
(Bengio et al., 2013). Moreover, overcomplete representations for which the number of latent features
exceeds the data dimensionality, have shown better representation of the data in various applications
compared to complete representations (Lewicki & Sejnowski, 2000; Chen et al., 2001; Rubinstein
et al., 2010). In this paper, we study the following overcomplete representation learning problems.

• Overcomplete dictionary learning (ODL). One of the most important unsupervised representa-
tion learning problems is learning sparsely used dictionaries (Olshausen & Field, 1997), which
finds many applications in image processing and computer vision (Wright et al., 2010; Mairal
et al., 2014). The task is given data

Y
loomoon

data

“ A
loomoon

dictionary

¨ X
loomoon

sparse code

, (1.1)

we want to learn the compact representation (or dictionary)A P Rnˆm along with the sparse code
X P Rmˆp. For better representation of the data, it is often more desired that the dictionaryA is
overcomplete m ą n, where it provides greater flexibility in matching structures in the data.

• Convolutional dictionary learning (CDL). Inspired by deconvolutional networks (Zeiler et al.,
2010), the convolutional form of sparse representations (Bristow et al., 2013; Garcia-Cardona &
˚The full version of this work can be found at https://arxiv.org/abs/1912.02427.
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Wohlberg, 2018) replaces the unstructured dictionaryA with a set of convolution �lterst a0k uK
k � 1.

Namely, the problem is that given multiple circulant convolutional measurements

y i �
Ķ

k � 1

a0kloomoon
�lter

f x ikloomoon
sparse code

; 1 ¤ i ¤ p; (1.2)

one wants to learn the �lterst a0k uK
k � 1 along with the sparse codes. The problem resembles a lot

similarities to classical ODL. Indeed, one can show that Equation (1.2) reduces to Equation (1.1)
in overcomplete settings by reformulation (Huang & Anandkumar, 2015). The interest of studying
CDL was spurred by its better modeling ability of human visual and cognitive systems and the
development of more ef�cient computational methods (Bristow et al., 2013), and has led to a
number of applications in which the convolutional form provides state-of-art performance (Gu
et al., 2015; Papyan et al., 2017b; Lau et al., 2019). Recently, the connections between CDL and
convolutional neural network have also been extensively studied (Papyan et al., 2017a; 2018).

In addition, variants of �nding overcomplete representations appear in many other problems beyond
the dictionary learning problems we introduced here, such as overcomplete tensor decomposition
(Anandkumar et al., 2017; Ge & Ma, 2017), overcomplete ICA (Lewicki & Sejnowski, 1998; Le
et al., 2011), and short-and-sparse blind deconvolution (Zhang et al., 2017; 2018; Kuo et al., 2019).

Prior arts on dictionary learning (DL). In the past decades, numerous heuristic methods have
been developed for solving DL (Lee et al., 2007; Aharon et al., 2006; Mairal et al., 2010). Despite
their empirical success (Wright et al., 2010; Mairal et al., 2014), theoretical understandings of when
and why these methods work are still limited.

When the dictionaryA is complete (Spielman et al., 2012) (i.e., square and invertible,m � n), by
the fact that the row space ofY equals to that ofX (i.e., rowpY q � rowpX q), Sun et al. (2016a)
reduced the problem to �nding the sparsest vector in a subspace (Demanet & Hand, 2014; Qu et al.,
2016). By considering a (smooth) variant of the following`1-minimization problem over the sphere,

min
q

1
p

�
� qJ Y

�
�

1 ; s.t. q PSn � 1; (1.3)

Sun et al. (2016a) showed that the nonconvex problem has no spurious local minima when the sparsity
level1 � P Op1q, and every local minimizerq� is a global minimizer withqJ

� Y corresponding to one
row of X . The new discovery has led to ef�cient, guaranteed optimization methods for complete DL
from random initializations (Sun et al., 2016b; Bai et al., 2018; Gilboa et al., 2019).

However, all these methods critically rely on the fact thatrowpY q � rowpX qfor completeA , there
is no obvious way to generalize the approach to the overcomplete settingm ¡ n. On the other
hand, for learning incoherent overcomplete dictionaries, with sparsity� P Op1{

?
nqand stringent

assumptions onX , most of the current theoretical analysis results are local (Geng et al., 2011;
Arora et al., 2015; Agarwal et al., 2016; Chatterji & Bartlett, 2017), in the sense that they require
complicated initializations that could be dif�cult to implement in practice. Therefore, the legitimate
question remains: why do heuristic methods solve ODL with simple initializations?

Contributions. In this work we study the geometry of nonconvex landscapes for overcom-
plete/convolutional DL, where our result can be simply summarized by the following statement.

There exists nonconvex formulations for ODL/CDL with benign optimization landscapes, that
descent methods can learn overcomplete/convolutional dictionaries with simple2 initializations.

Our approach follows the spirit of Sun et al. (2016a), while we overcome the aforementioned obstacles
for overcomplete dictionaries bydirectly �nding columns ofA instead of recovering sparse rows of
X . We achieve this by reducing the problem to maximizing the`4-norm3 of Y J q over the sphere,

1Here, the sparsity level� denotes the proportion of nonzero entries inX .
2Here, for ODL simple means random initializations; for CDL, it means simple data-driven initializations.
3The use of̀ 4-norm can also be justi�ed from the perspective of sum of squares (SOS) (Barak et al., 2015;

Ma et al., 2016; Schramm & Steurer, 2017). One can utilize properties of higher order SOS polynomials
(such as4-th order polynomials) to correctly recover columns ofA . But the complexity of these methods are
quasi-polynomial, and hence much more expensive than the direct optimization approach we consider here.
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which is known to promote thespikinessof the solution (Zhang et al., 2018; Li & Bresler, 2018; Zhai
et al., 2019). In particular, we show the following results for ODL and CDL, respectively.

1. For the ODL problem, whenA is unit norm tight frame and incoherent, our nonconvex objective
is strict saddle(Ge et al., 2015; Sun et al., 2015b) in the sense that any saddle point can be escaped
by negative curvature and all local minimizers are globally optimal. Furthermore, every local
minimizer is close to a column ofA .

2. For the CDL problem, when the �lters are self and mutual incoherent, a similar nonconvex
objective is strict saddle over a sublevel set, within which every local minimizer is close to a target
solution. Moreover, we develop a simple data-driven initialization that falls into this sublevel set.

Our analysis on ODL provides the�rst global characterization for nonconvex optimization landscape
in the overcomplete regime. On the other hand, our result also gives the�rst provable guarantee for
CDL. Indeed, under mild assumptions, our landscape analysis implies that with simple initializations,
any descent method with the ability of escaping strict saddle points4 provably �nds global minimizers
that are close to our target solutions for both problems. Moreover, our result opens up several
interesting directions on nonconvex optimization that are worth of further investigations.

2 OVERCOMPLETEDICTIONARY LEARNING

In this section, we start stating our result with ODL. In Section 3, we will show how our geometric
analysis here can be extended to CDL in a nontrivial way.

2.1 BASIC ASSUMPTIONS

We study the DL problem in Equation (1.1) under the following assumptions forA P Rn � m and
X PRm � p. In particular, our assumption for the dictionaryA can be viewed as a generalization of
orthogonality in the overcomplete setting (Mixon, 2016).
Assumption 2.1 (Tight frame and incoherent dictionaryA ) We assume that the dictionaryA is
unit norm tight frame (UNTF) (Mixon, 2016), in the sense that

n
m

AA J � I ; }a i } � 1 p1 ¤ i ¤ mq; (2.1)

and its columns satisfy the� -incoherencecondition. Namely, letA � r a1 a2 � � � am s,

� pA q :� max
1¤ i •� j ¤ m

�
�
�
�

B
a i

}a i }
;

a j

}a j }

F �
�
�
� P p0; 1q: (2.2)

We assume the coherence ofA is small, i.e.,� pA q ! 1.

Assumption 2.2 (Random Bernoulli-GaussianX ) We assume entries ofX � i:i:d: BGp� q5, that

X � B d G; B ij � i:i:d: Berp� q; Gij � i:i:d: N p0; 1q;

where the Bernoulli parameter� P p0; 1qcontrols the sparsity level ofX .

Remark 1. The coherence parameter� plays an important role in shaping the optimization land-
scape. A smaller coherence� implies that the columns ofA are less correlated, and hence easier
for optimization. For matrices with̀2-normalized columns, classical Welch bound (Welch, 1974;
Foucart & Rauhut, 2013a) suggests that the coherence� is lower bounded by� pA q ¥

b
m � n

pm � 1qn ,

which is achieved whenA is equiangular tight frame(Sustik et al., 2007). For ageneric random6

matrix A , w.h.p. it is approximately UNTF, with coherence� pA q �
b

log m
n roughly achieving

the order of Welch bound. For a typical dictionaryA under Assumption 2.1, this suggests that the
coherence parameter� pA qoften decreases w.r.t. the feature dimensionn.

4Recent results show that methods such as trust-region (Absil et al., 2007; Boumal et al., 2018), cubic-
regularization (Nesterov & Polyak, 2006), curvilinear search (Goldfarb et al., 2017), and even gradient descent
(Lee et al., 2016) can provably escape strict saddle points.

5Here, we useBGp� qfor abbreviation of Bernoulli-Gaussian distribution, with sparsity level� P p0; 1q.
6For instance, whenA is random Gaussian matrix, with each entryaij � i:i:d: N p0; 1{nq.
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(a) ' T pqq, n � 3, m � 4 (b) ' T pqq, n � 3, m � 4

Figure 1: Plots of landscapes' T pqq and ' DL pqq over S2.
Both function values are normalized tor0; 1s. The overcomplete
dictionaryA is generated to be UNTF, withn � 3 andm � 4.
The sparse coef�cientX � BGp� q with � � 0:1 and p �
2 � 104. Black dots denote columns ofA (target).

Figure 2: Spikiness %p� q vs.
}� }4

4 { } q}4. We generate UNTF
A , randomly draw many points
q P Sn � 1, and compute}� }4

4 and
spikiness%p� q as in (2.6) with
� � A J q. On the plot, we mark
each pointq PSn � 1 by “� ”.

2.2 PROBLEM FORMULATION

We solve DL in the overcomplete regime by considering the following problem

min
q

' DL pqq :� �
cDL

p

�
� qJ Y

�
� 4

4 � �
cDL

p

�
� qJ AX

�
� 4

4 ; s.t. }q}2 � 1; (2.3)

wherecDL ¡ 0 is a normalizing constant. At the �rst glance, our objective looks similar to
Equation (1.3) in complete DL, but we tackle the problem from a very different aspect – we directly
�nd columns ofA instead of recovering sparse rows ofX . Given UNTFA and randomX � BGp� q,
our intuition of solving Equation (2.3) originates from the fact (Lemma D.1)

EX r' DL pqqs � ' T pqq �
�

2p1 � � q

� m
n

	 2
; ' T pqq :� �

1
4

�
� A J q

�
� 4

4 ; (2.4)

where' T pqqcan be viewed as the objective for4th order tensor decomposition in Ge & Ma (2017).
Whenp is large, this tells us that optimizing Equation (2.3) is approximately maximizing`4-norm of
� � A J q over the sphere (see Figure 1). Ifq equals to one of the target solutions (e.g.,q � a1),

� pqq :� A J q �
�

}a1}2
loomoon

� 1

aJ
1 a2loomoon

|�|   �

� � � aJ
1 amloomoon

|�|   �

� J

; (2.5)

then� is spikywhen� is small(e.g.,� ! 1). Here, we introduce a notion ofspikiness%for a vector
� PRm by

%p� q :�
�
�� p1q

�
� {

�
�� p2q

�
� ;

�
�� p1q

�
� ¥

�
�� p2q

�
� ¥ � � � ¥

�
�� pm q

�
� ; (2.6)

where� pi q denotes thei th ordered entry of� . Figure 2 shows that larger%p� qleads to larger}� }4
4

with `2-norm �xed. This implies that maximizing̀4-norm over the spherepromotesthe spikiness of
� (Zhang et al., 2018; Li & Bresler, 2018; Zhai et al., 2019). Thus, from Equation (2.5), we expect
theglobal minimizerq� of Equation (2.3) is close to one column ofA . Ge & Ma (2017) proved
that for' T pqqthere is no spurious local minimizer below a sublevel set whose measure overSn � 1

geometrically shrinks w.r.t. the dimensionn, and without providing valid initialization into the set.
Therefore, the challenge still remains: can simple descent methods solve the nonconvex objective
Equation (2.3) to global optimality? In this work, we show that the answer isaf�rmative. Under
proper assumptions, we show that our objective actually has benignglobal geometric structure,
explaining why descent methods with random initialization solve the problem to the target solutions.

2.3 GEOMETRIC ANALYSIS OF NONCONVEX OPTIMIZATION LANDSCAPE

To characterize the landscape of' DL pqqover the sphereSn � 1, let us �rst introduce some basic tools
from Riemannian optimization (Absil et al., 2009a). For any functionf : Sn � 1 ÞÑR, we have

gradf pqq :� PqK r f pqq; Hessf pqq :� PqK

�
r 2f pqq � x q; r f pqqyI

�
PqK

4
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to be the Riemannian gradient and Hessian7 of f pqq. In addition, we partitionSn � 1 into two regions

R N :�
!

q PSn � 1
�
� ' T pqq ¥ � � DL � 2{3 }� pqq}23

)
; (2.7)

R C :�
!

q PSn � 1
�
� ' T pqq ¤ � � DL � 2{3 }� pqq}23

)
; (2.8)

for some �xed numerical constant� DL ¡ 0. Unlike the approach in Sun et al. (2016a), our partition
and landscape analysis are based on function value' T pqq instead of target solutions. This is
because in overcomplete case the optimization landscape is moreirregular compared to that of the
complete/orthogonal case, which introduces extra dif�culties for explicit partition of the sphere. In
particular, for each region we show the following results.

Theorem 2.3 (Global geometry of nonconvex landscape for ODL)Suppose we have

K :� m{n; � P
�
m� 1; 3� 1

�
; � DL ¡ 26; � P

�
0; 40� 1

�
; (2.9)

and assumeY � AX such thatA andX satisfy Assumption 2.1 and Assumption 2.2, respectively.

1. (Negative curvature inR N ) W.h.p. over the randomness ofX , whenever

p ¥ C�K 4n6 logp�n {� q and K ¤ 3 �
�

1 � 6� � 6� 3{5
DL � 2{5

	 � 1
;

any pointq PR N exhibits negative curvature in the sense that

Dv PSn � 1; s.t. vJ Hess' DL pqqv ¤ � 3}� }4
4 }� }2

8 :

2. (No bad critical points inR C ) W.h.p. over the randomness ofX , whenever

p ¥ C�K 3 max
 
� � 2; Kn 2

(
n3 logp�n {� q and K ¤ � 3{2

DL {8;

every critical pointqc of ' DL pqq in R C is either a strict saddle point that exhibits negative
curvature for descent, or it is near one of the target solutions (e.g.a1) such that

xa1{ } a1} ; qcy ¥ 1 � 5� � 3{2
DL :

HereC ¡ 0 is a universal constant.

Remark 2. A combination of our geometric analysis for both regions provides the �rst global
geometric analysis for ODL with� P Op1q, which implies that' DL pqq hasno spurious local
minimizers overSn � 1: any critical point is either a strict saddle point that can be ef�ciently escaped,
or it is near one of the target solutions. Moreover, recent results show that nonconvex problems with
this type of optimization landscapes can be solved to optimal solutions by using (noisy) gradient
descent methods with random initializations (Lee et al., 2016; Jin et al., 2017; Lee et al.; Criscitiello
& Boumal, 2019). In addition, we point out several limitations of our result for future work.

� As we have only characterized properties of critical points, our result does not directly lead to
convergence rate for descent methods. To show polynomial-time convergence, as suggested by
Sun et al. (2016a; 2018); Li & Bresler (2018); Kuo et al. (2019), we need �ner partitions of the
sphere and uniform controls of derivatives in each region8. We leave this for future work.

� Our analysis inR N says that when� is suf�ciently small9 the maximum overcompletenessK
allowed is roughlyK � 3, which is smaller than that ofR C (which could be a large constant).
We believe this is mainly due to loose bounds for controlling norms ofA in R C . Moreover, our
experiment result in Section 4 suggests that there is a substantial gap ofK between our theory and
practice: the phase transition in Figure 3a shows that gradient descent with random initialization
works even in the regimem ¤ n2. We leave improvement of our result as an open question.

7The Riemannian derivatives are similar to ordinary derivatives in Euclidean space, but they are de�ned in
the tangent space of the manifoldM � Sn � 1 . We refer readers to Absil et al. (2009a) for more details.

8Our preliminary investigation indicates that our premature analysis is not tight enough to achieve this.
9From Remark 1, for a typicalA , we expect� P rOppnK q� 1{2qto be diminishing w.r.t.n.
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Brief sketch of analysis. From Equation (2.4), we know that' DL pqqreduces to' T pqqin large
sample limit asp Ñ 8 . This suggests an expectation and concentration type of analysis:(i) we �rst
characterize critical points and negative curvature for the deterministic function' T pqqin R C and
R N (see Appendix B);(ii) for any small� ¡ 0, we show the measure concentrates in the sense that
for a �nitely large p ¥ r
 p� � 2polypnqq,

sup
qPSn � 1

}grad ' DL pqq � grad ' T pqq} ¤ �; sup
qPSn � 1

}Hess' DL pqq � Hess' T pqq} ¤ �

holds w.h.p. over the randomness ofX . Thus we can turn our analysis of' T pqqto that of' DL pqq
by a perturbation analysis (see Appendix C & D). Here, it should be noticed thatgrad ' DL pqq
andHess' DL pqqare4th-order polynomials ofX , which areheavy-tailedempirical processes over
q P Sn � 1. To control suprema of heavy-tailed processes, we developed a general truncation and
concentration type of analysis similar to Zhang et al. (2018); Zhai et al. (2019), so that we can utilize
classical bounds for sub-exponential random variables (Boucheron et al., 2013) (see Appendix F).

3 CONVOLUTIONAL DICTIONARY LEARNING

3.1 PROBLEM FORMULATION

Recall from Section 1, the basic task of CDL is that given convolutional measurements in the form of
Equation (1.2), we want to recover kernelst a0k uK

k � 1. Here, by reformulating10 CDL in the form of
ODL, we generalize our analysis from Section 2.3 to CDL with a few new ingredients.

Reduction from CDL to ODL. For anyz P Rn , let Cz P Rn � n be the circulant matrix generated
from z. From Equation (1.2), the properties of circulant matrix imply that

Cy i � C ° K
k � 1 a 0k f x ik

�
Ķ

k � 1

Ca 0k Cx ik � A 0 � X i ; 1 ¤ i ¤ p;

with A 0 � r Ca 01 Ca 02 � � � Ca 0K s and X i �
�
C J

x i 1
C J

x i 2
� � � C J

x iK

� J
, so that

A 0 PRn � nK is overcompleteand structured. Thus, contencating allCy i , we have
�
Cy 1 Cy 2 � � � Cy p

�
loooooooooooooomoooooooooooooon

Y PRn � np

� A 0 � rX 1 X 2 � � � X psloooooooooooomoooooooooooon
X PRnK � np

ùñ Y � A 0 � X :

This suggests that we can view the CDL problem as ODL: if we can recover a column of the
overcomplete dictionaryA 0, we �nd one of the �ltersa0k p1 ¤ k ¤ K qup to acirculant shift11.

Nonconvex problem formulation and preconditioning. To solve CDL, one may consider the
same objective Equation (2.3) as ODL. However, for many applications our structured dictionaryA 0
could be badly conditioned andnot tight frame, which results in bad optimization landscape and even
spurious local minimizers. To deal with this issue, wewhitenour dataY by preconditioning12

P Y � P A 0X ; P �
� �

�K 2np
� � 1

Y Y J
� � 1{2

: (3.1)

For largep, we approximately haveP �
�
K � 1A 0A J

0

� � 1{2
(see Appendix E.5), so that

P Y �
�
K � 1A 0A J

0

� � 1{2
A 0 � X � A � X ; A :�

�
K � 1A 0A J

0

� � 1{2
A 0;

whereA is automatically tight frame withK � 1AA J � I . This suggests to consider

min
q

' CDL pqq :� �
cCDL

np

�
� qJ pP Y q

�
� 4

4 ; s.t. }q}2 � 1; (3.2)

10Similar formulation ideas also appeared in (Huang & Anandkumar, 2015) with no theoretical guarantees.
11The CDL problem exhibits shift symmetry in the sense thata0k f x ik � s̀ ra0k s f s� ` rx ik s, wheres̀ r�s

is a circulant shift operator by length`. This implies we can only hope to solve CDL up to a shift ambiguity.
12Again, the� here is only for normalization purpose, which does not affect optimization landscape. Similar

P is also considered in Sun et al. (2016a); Zhang et al. (2018); Qu et al. (2019).
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Algorithm 1 Finding one �lter with data-driven initialization

Input: dataY PRn � p

Output: an esimated �ltera �
1: preconditioning. Cook up the preconditioning matrixP in Equation (3.1).
2: initialization. Initialize qinit � PSn � 1 pP y ` qwith a random sampley ` ; 1 ¤ ` ¤ p.
3: optimization with escaping saddle points.Optimize Equation (3.2) to a local minimizerq� , by

using a descent method such as Goldfarb et al. (2017) that escapes strict saddle points.
4: return an estimated �ltera � � PSn � 1

�
P � 1q�

�
.

for some normalizing constantcCDL ¡ 0, so that iscloseto optimizing

p' CDL pqq :� �
cCDL

np

�
� qJ AX

�
� 4

4 � ' CDL pqq;

for a tight frame dictionaryA (we make this rigorous in Appendix E.4). To study the problem, we
make assumptions on the sparse signalsx ik � i:i:d: BGp� qsimilar to Assumption 2.2. Furthermore,
we assumeA 0 andA satisfy the following properties which serve as counterparts to Assumption 2.1.

Assumption 3.1 (Properties ofA 0 and A ) We assume the �lter matrixA 0 has minimum singular
value� min pA 0q ¡ 0 with bounded condition number� pA 0q :� � max pA 0q{� min pA 0q. In addition,

we assume the columns ofA are mutually incoherent:maxi •� j

�
�
�
A

a i
} a i } ; a j

} a j }

E�
�
� ¤ �:

3.2 GEOMETRIC ANALYSIS AND NONCONVEX OPTIMIZATION

Optimization landscape for CDL. We characterize the geometric structure of' CDL pqqover

R CDL :�
!

q PSn � 1
�
� ' T pqq ¤ � � CDL � 2{3� 4{3pA 0q}� pqq}23

)
; (3.3)

for some �xed numerical constant� CDL ¡ 0, where� pqq � A J q and' T pqq � � 4� 1 }� pqq}44 as
introduced in Equation (2.4). We show' CDL pqqsatis�es the following properties.

Theorem 3.2 (Local geometry of nonconvex landscape for CDL)Let us denotem :� Kn , and
let C0 ¡ 5 and�   2� 6 be some positive constants. Suppose we have

� P
�
m� 1; 3� 1

�
; � CDL � C0 � � � 2{3; � P

�
0; 40� 1

�
;

and assume that Assumption 3.1 andx ik � i:i:d: BGp� qhold. There exists some constantC ¡ 0,
w.h.p. over the randomness ofx ik s, whenever

p ¥ C�K 2� � 2n4 max
"

K 6� 6pA 0q
� 2

min pA 0q
; n

*
log6pn{� q and K   C0;

every critical pointqc in R CDL is either a strict saddle point that exhibits negative curvature for
descent, or it is near one of the target solutions (e.g.a1) such thatxa1{ } a1} ; qcy ¥ 1 � 5� � 2�:

Remark 3. The analysis is similar to that of ODL inR C (see Appendix D). In contrast, our sample
complexityp andR CDL have extra dependence on� pA 0qdue to preconditioning in Equation (3.1).
On the other hand, because our preconditioned dictionaryA is tight frame but not necessarily UNTF,
in the worst case wecannotexclude existence of spurious local minima inR c

CDL

“
Sn � 1 for CDL.

From geometry to optimization. Nonetheless, in Algorithm 1 we propose a simple data-driven
initialization qinit such thatqinit P R CDL . SinceR CDL does not have bad local minimizers, by
proving that all iterates stay withinR CDL , it suf�ces to show global convergence of Algorithm 1.
We initializeq by randomly picking a preconditioned data sampleP y ` with ` P rps, and set

qinit � PSn � 1 pP y ` q; s.t. � init � A J qinit �
?

K PSnK � 1

�
A J Ax `

�
: (3.4)

For genericA , small� pA qimplies thatA J A is close to a diagonal matrix13, so that� init is spikyfor
sparsex ` . Therefore, we expect large}� init }4

4 andqinit PR CDL by leveraging sparsity ofx ` .
13This is because the off diagonal entries are bounded roughly by

?
K� , which are tiny when� is small.
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