
PROGRESSIVE WEIGHT PRUNING OF DEEP NEURAL
NETWORKS USING ADMM

ABSTRACT

Deep neural networks (DNNs), although achieving human-level performance in
many domains, have very large model size that hinders their broader applica-
tions on edge computing devices. Extensive research work has been conducted
on DNN model compression or pruning. However, most of the previous work
has taken heuristic approaches. This work proposes a progressive weight pruning
approach based on ADMM (Alternating Direction Method of Multipliers), a pow-
erful technique to deal with non-convex optimization problems with potentially
combinatorial constraints. Motivated by dynamic programming, the proposed
method reaches extremely high pruning rate by using partial prunings with mod-
erate pruning rates. Therefore, it resolves the accuracy degradation and long con-
vergence time problems when pursuing extremely high pruning ratios. It achieves
up to 34× pruning rate for ImageNet data set and 167× pruning rate for MNIST
data set, significantly higher than those reached by existing work in the literature.
Under the same number of epochs, the proposed method also achieves better con-
vergence and higher compression rates. The codes and pruned DNN models are
avilable in the link: bit.ly/2zxdlss.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved human-level performance in many application do-
mains such as image classification (Krizhevsky et al., 2012), object recognition (LeCun et al., 1998;
He et al., 2016), natural language processing (Hinton et al., 2012; Dahl et al., 2012), etc. At the
same time, the networks are growing deeper and bigger for higher classification/recognition perfor-
mance (i.e., accuracy) (Simonyan & Zisserman, 2015). However, the very large DNN model size
increases the computation time of the inference phase. To make matters worse, the large model size
hinders DNN’ deployments on edge computing, which provides the ubiquitous application scenarios
of DNNs besides cloud computing applications.

As a result, extensive research efforts have been devoted to DNN model compression, in which DNN
weight pruning is a representative technique. Han et al. (2015) is the first work to present the DNN
weight pruning method, which prunes the weights with small magnitudes and retrains the network
model, heuristically and iteratively. After that, more sophisticated heuristics have been proposed
for DNN weight pruning, e.g., incorporating both weight pruning and growing (Guo et al., 2016),
L1 regularization (Wen et al., 2016), and genetic algorithms (Dai et al., 2017). Other improve-
ment directions of weight pruning include trading-off between accuracy and compression rate, e.g.,
energy-aware pruning (Yang et al., 2017), incorporating regularity, e.g., channel pruning (He et al.,
2017), and structured sparsity learning (Wen et al., 2016).

While the weight pruning technique explores the redundancy in the number of weights of a network
model, there are other sources of redundancy in a DNN model. For example, the weight quantization
(Leng et al., 2017; Park et al., 2017; Zhou et al., 2017; Lin et al., 2016; Wu et al., 2016; Rastegari
et al., 2016; Hubara et al., 2016; Courbariaux et al., 2015) and clustering (Zhu et al., 2017; Han
et al., 2016) techniques explore the redundancy in the number of bits for weight representation.
The activation pruning technique (Jung et al., 2018; Sharify et al., 2018) leverages the redundancy
in the intermediate results. While our work focuses on weight pruning as the major DNN model
compression technique, it is orthogonal to the other model compression techniques and might be
integrated under a single ADMM-based framework for achieving more compact network models.
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The majority of prior work on DNN weight pruning take heuristic approaches to reduce the number
of weights as much as possible, while preserving the expressive power of the DNN model. Then
one may ask, how can we push for the utmost sparsity of the DNN model without hurting accuracy?
and what is the maximum compression rate we can achieve by weight pruning? Towards this end,
Zhang et al. (2018b) took a tentative step by proposing an optimization-based approach that lever-
ages ADMM (Alternating Direction Method of Multipliers), a powerful technique to deal with non-
convex optimization problems with potentially combinatorial constraints. This direct ADMM-based
weight pruning technique can be perceived as a smart DNN regularization where the regularization
target is dynamically changed in each ADMM iteration. As a result it achieves higher compression
(pruning) rate than heuristic methods.

Inspired by Zhang et al. (2018b), in this paper we propose a progressive weight pruning approach
that incorporates both an ADMM-based algorithm and masked retraining, and takes a progressive
means targeting at extremely high compression (pruning) rates with negligible accuracy loss. The
contributions of this work are summarized as follows:

• We make a key observation that when pursuing extremely high compression rates (say
150× for LeNet-5 or 30× for AlexNet), the direct ADMM-based weight pruning approach
(Zhang et al., 2018b) cannot produce exactly sparse models upon convergence, in that many
weights to be pruned are close to zero but not exactly zero. Certain accuracy degradation
will result from this phenomenon if we simply set these weights to zero.

• We propose and implement the progressive weight pruning paradigm that reaches an ex-
tremely high compression rate through multiple partial prunings with progressive pruning
rates. This progressive approach, motivated by dynamic programming, helps to mitigate
the long convergence time by direct ADMM pruning.

• Extensive experiments are performed by comparing with many state-of-the-art weight
pruning approaches and the highest compression rates in the literature are achieved by
our progressive weight pruning framework, while the loss of accuracy is kept negligible.
Our method achieves up to 34× pruning rate for the ImageNet data set and 167× pruning
rate for the MNIST data set, with virtually no accuracy loss. Under the same number of
epochs, the proposed method achieves notably better convergence and higher compression
rates than prior iterative pruning and direct ADMM pruning methods.

We provide codes (both Caffe and TensorFlow versions) and pruned DNN models (both for the
ImageNet and MNIST data sets) in the link: bit.ly/2zxdlss.

2 THE PROGRESSIVE WEIGHT PRUNING FRAMEWORK OF DNNS

This section introduces the proposed progressive weight pruning framework using ADMM. Section
2.1 describes the overall framework. Section 2.2 discusses the ADMM-based algorithm for DNN
weight pruning (Zhang et al., 2018b), which we will improve and incorporate into the progressive
weight pruning framework. Section 2.3 proposes a direct improvement of masked retraining to
restore accuracy. Section 2.4 provides the motivations and details of the proposed progressive weight
pruning framework.

2.1 THE OVERALL FRAMEWORK

Masked	ADMM	
regularization	

Masked	
retraining

Thresholding	
mask	updating

Pruned	modelPre-trained	model

Figure 1: The overall progressive weight pruning framework including masked ADMM-based algo-
rithm, thresholding mask updating, and masked retraining steps.
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The overall framework of progressive weight pruning is shown in Figure 1. It applies the ADMM-
based pruning algorithm on a pre-trained (uncompressed) network model. Then it defines threshold-
ing masks, with which the weights smaller than thresholds are forced to be zero. To restore accuracy,
the masked retraining step is applied, that only updates nonzero weights specified by the threshold-
ing masks. The ADMM-based algorithm, thresholding mask updating, and masked retaining steps
are performed for several rounds, and each round is considered as a partial pruning, progressively
pushing for the utmost of the DNN model pruning. Note that in our progressive weight pruning
framework, we change the ADMM-based algorithm into a “masked” version that reuses the par-
tially pruned model by masking the gradients of the pruned weights, thereby preventing them from
recovering to nonzero weights and thus accelerating convergence.

2.2 ADMM-BASED PRUNING ALGORITHM

Our ADMM-based pruning algorithm takes a pre-trained network as the input and outputs a pruned
network model satisfying some sparsity constraints. Consider anN -layer DNN, where the collection
of weights in the i-th (convolutional or fully-connected) layer is denoted by Wi and the collection
of biases in the i-th layer is denoted by bi. The loss function associated with the DNN is denoted
by f

(
{Wi}Ni=1, {bi}Ni=1

)
.

The DNN weight pruning problem can be formulated as:

minimize
{Wi},{bi}

f
(
{Wi}, {bi}

)
,

subject to Wi ∈ Si, i = 1, . . . , N,
(1)

where Si = {Wi | card(Wi) ≤ li}, i = 1, . . . , N and li is the desired number of weights in the
i-th layer of the DNN. It is clear that S1, . . . ,SN are nonconvex sets, and it is in general difficult to
solve optimization problems with nonconvex constraints.

The problem can be equivalently rewritten in a format without constraints, namely

minimize
{Wi},{bi}

f
(
{Wi}, {bi}

)
+

N∑
i=1

gi(Wi), (2)

where gi(·) is the indicator function of Si, i.e.,

gi(Wi) =

{
0 if card(Wi) ≤ li,
+∞ otherwise.

(3)

The ADMM technique (Boyd et al., 2011) can be applied to solve the weight pruning problem by
formulating it as:

minimize
{Wi},{bi}

f
(
{Wi}, {bi}

)
+

N∑
i=1

gi(Zi),

subject to Wi = Zi, i = 1, . . . , N.

Through the augmented Lagrangian, the ADMM technique decomposes the weight pruning problem
into two subproblems, and solving them iteratively until convergence. The first subproblem is:

minimize
{Wi},{bi}

f
(
{Wi}, {bi}

)
+

N∑
i=1

ρi
2
‖Wi − Zk

i + Uk
i ‖2F . (4)

This subproblem is equivalent to the original DNN training plus an L2 regularization term, and
can be effectively solved using stochastic gradient descent with the same complexity as the original
DNN training. Note that we cannot prove global optimality of the solution to subproblem (4), just
as we cannot prove optimality of the solution to the original DNN training problem.

On the other hand, the second subproblem is:

minimize
{Zi}

N∑
i=1

gi(Zi) +

N∑
i=1

ρi
2
‖Wk+1

i − Zi + Uk
i ‖2F .
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Since gi(·) is the indicator function of the set Si, the globally optimal solution to this subproblem
can be explicitly derived as in Boyd et al. (2011):

Zk+1
i = ΠSi

(Wk+1
i + Uk

i ), (5)

where ΠSi
(·) denotes the Euclidean projection onto the set Si.

Note that Si is a nonconvex set, and computing the projection onto a nonconvex set is a difficult
problem in general. However, the special structure of Si = {Wi | card(Wi) ≤ li} allows us to
express this Euclidean projection analytically. Namely, the optimal solution (5) is to keep the li
largest elements of Wk+1

i + Uk
i and set the rest to zero (Boyd et al., 2011). Here we introduce set

Pi for weights that were pruned to be zero. In every layer, Pi is a subset of Si. By introducing set
Pi, we introduce progressive pruning. We will show more detail in Algorithm 1.

Finally, we update the dual variable Ui as

Uk+1
i = Uk

i + Wk+1
i − Zk+1

i . (6)

This concludes one iteration of the ADMM.

In the context of deep learning, the ADMM-based algorithm for DNN weight pruning can be un-
derstood as a smart DNN regularization technique (see Eqn. (4)), in which the regularization target
(in the L2 regularization term) is dynamically updated in each ADMM iteration. This is one rea-
son that the ADMM-based algorithm for weight pruning achieves higher performance than heuristic
methods and other regularization techniques (Wen et al., 2016), and the Projected Gradient Descent
technique (Zhang et al., 2018a).

2.3 MASKED RETRAINING STEP

Applying the ADMM-based pruning algorithm alone has limitations for high compression rates.
At convergence, the pruned DNN model will not be exactly sparse, in that many weights to be
pruned will be close to zero instead of being exactly equal to zero. This is due to the non-convexity
of Subproblem 1 in the ADMM-based algorithm. Certain accuracy degradation will result from
this phenomenon if we simply set those weights to zero. This accuracy degradation will be non-
negligible for high compression rates.

Instead of waiting for the full convergence of the ADMM-based algorithm, a masked retraining step
is proposed, that (i) terminates the ADMM iterations early, (ii) keeps the li largest weights (in terms
of magnitude) and sets the other weights to zero, and (iii) performs retraining on the nonzero weights
(with zero weights masked) using the training data set. More specifically, masks are applied to
gradients of zero weights, preventing them from updating. Essentially, the ADMM-based algorithm
sets a good starting point, and then the masked retraining step encourages the remaining nonzero
weights to learn to recover classification accuracies.

Integrating masked retraining after the ADMM-based algorithm, a good compression rate can be
achieved with reasonable training time. For example, we can achieve 21× model pruning rate
without accuracy loss for AlexNet using a total of 417 epochs, much faster than the iterative weight
pruning method of Han et al. (2016), which achieves 9× pruning rate in a total of 960 epochs. When
translating into training time, our time of training is 72 hours using single NVIDIA 1080Ti GPU,
whereas the reported training time in Han et al. (2016) is 173 hours.

2.4 PROGRESSIVE WEIGHT PRUNING

The algorithm for producing an intermediate model is discussed in Algorithm 1. Although the
ADMM-based pruning algorithm in Section 2.2 and the masked retraining step in Section 2.3 to-
gether can achieve the state-of-the-art model compression (pruning) rates for many network models,
we find limitations to this approach at extremely high pruning rates, for example at 150× pruning
rate for LeNet-5 or 30× pruning rate for AlexNet.

Specifically, with a very high weight pruning rate, it takes a relatively long time for the ADMM-
based algorithm to choose which weights to prune. For example, it is difficult for the ADMM-based
algorithm to converge for 30× pruning rate on AlexNet but easy for 21× pruning rate.
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To overcome this difficulty, we propose the progressive weight pruning method. This technique is
motivated by dynamic programming, achieving a high weight pruning rate by using partial pruning
models with moderate pruning rates. We use Figure 2 as an example to show the process used to
achieve 30× weight pruning rate in AlexNet without accuracy loss. In Figure 2 (a), we start from
three partial pruning models, with 15×, 18×, and 21× pruning rates, which can be directly derived
from the uncompressed DNN model via the ADMM-based algorithm with masked retraining. To
achieve 24×weight pruning rate, we start from these three models and check which gives the highest
accuracy (suppose it is the 15× one). Because we start from partial pruning models, the convergence
rate is fast. We then replace 15× partial pruning model by 24× model to derive the 27× model, see
Figure 2 (b). In this way we always maintain three partial results and limit the total searching time.
Suppose this time the 18× pruning model results in the highest accuracy and then we replace it
with the 27× one. Finally, in Figure 2 (c), we find 24× model gives highest accuracy to reach 30×
pruning rate.

21x

√
Replace

(a)

18x

15x

24x

24x

√
Replace

21x

18x

27x

27x

√24x

21x

30x

(b) (c)

Figure 2: Illustration of the progressive weight pruning algorithm.

Note that during progressive weight pruning, to leverage the partial pruning models, we use
“masked” training when we reuse the partial pruning models in the ADMM-based algorithm. Specif-
ically, it masks the gradients of the already pruned weights to prevent them from recovering to
nonzero values. In this way, the algorithm is encouraged to focus on pruning nonzero weights.

Figure 3: Results on AlexNet for ImageNet dataset. When pursuing high pruning rates, multiple
pruning methods suffer severely from the degradation in Top-5 accuracy. The proposed method
mitigates the issue even in extremly high pruning rates.

Figure 3 demonstrates that pruning gets harder when pursuing high pruning rates. Methods such as
Projected Gradient descents and Iterative Pruning (Han et al., 2015) occurs large accuracy loss when
pruning rates are high. However, the proposed method mitigates the performance degradation.
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Algorithm 1 Progressive weight pruning using ADMM
Define constant Max-Iterations
Define constant ADMM-Iterations, empirically 1/10 of Max-Iterations
for i in number of layers do

Apply mask on gradients for weights in Pi

end for
for each k in Max-Iterations do

for i in the number of layers do
Solve (Eqn.4) and update Wi’s and bi’s;
if k is dividable by ADMM-Iterations then:

Update Zi’s by performing Euclid mapping (Eqn.5);
Update Ui’s according to dual update (Eqn.6).

end if
end for

end for
for i in number of layers do

Apply masks on elements of Wi;
Apply masks on gradients of Wi;

end for
Apply masked retrain

3 EXPERIMENTAL RESULTS AND DISCUSSIONS

Table 1: Comparisons of weight pruning results on AlexNet for ImageNet data set.
Method Top-5 Acc. No. Para. Rate
Uncompressed 80.27% 61.0M 1×
Network Pruning (Han et al., 2015) 80.3% 6.7M 9×
Optimal Brain Surgeon (Dong et al., 2017) 80.0% 6.7M 9.1×
Low Rank and Sparse Decomposition (Yu et al., 2017) 80.3% 6.1M 10×
Fine-Grained Pruning (Mao et al., 2017) 80.4% 5.1M 11.9×
NeST (Dai et al., 2017) 80.2% 3.9M 15.7×
Dynamic Surgery (Guo et al., 2016) 80.0% 3.4M 17.7×
ADMM Pruning (Zhang et al., 2018b) 80.2% 2.9M 21×
Progressive Weight Pruning (BVLC Model) 80.2% 2.02M 30×
Progressive Weight Pruning (BVLC Model) 80.0% 1.97M 31×
Progressive Weight Pruning (CaffeNet Model) 80.2% 2.02M 30×
Progressive Weight Pruning (CaffeNet Model) 80.0% 1.97M 31×

Table 2: Top-5 accuracy of direct ADMM pruning (Zhang et al., 2018b) and progressive pruning at
different pruning rates on AlexNet for ImageNet data set.

Pruning Rate Direct ADMM Pruning Progressive Weight Pruning
18× 80.3% 80.9%
21× 80.2% 80.8%
30× 76.7% 80.2%

3.1 EXPERIMENTAL SETUPS

We evaluate the proposed ADMM-based progressive weight pruning framework on the ImageNet
ILSVRC-2012 data set (Deng et al., 2009) and MNIST data set (LeCun et al., 1998). We also use
DNN weight pruning results from many previous works for comparison. For ImageNet data set, we
test on a variety of DNN models including AlexNet (both BAIR/BVLC model and CaffeNet model),
VGG-16, and ResNet-50 models. We test on LeNet-5 model for MNIST data set. The accuracies of
the uncompressed DNN models are reported in the tables for reference.
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Table 3: Comparisons of weight pruning results on VGG-16 for ImageNet data set.
Method Top-5 Acc. No. Para. Rate
Uncompressed 88.7% 138M 1×
Network Pruning (Han et al., 2015) 89.1% 10.6M 13×
Optimal Brain Surgeon (Dong et al., 2017) 89.0% 10.3M 13.3×
Low Rank and Sparse Decomposition (Yu et al., 2017) 89.1% 9.2M 15×
ADMM Pruning (Zhang et al., 2018b) 88.7% 7.26M 19.5×
Progressive Weight Pruning 88.7% 4.6M 30×
Progressive Weight Pruning 88.2% 4.1M 34×

Table 4: Comparisons of weight pruning results on ResNet-50 for ImageNet data set.
Method Top-5 Acc. No. Para. Rate
Uncompressed 92.40% 25.6M 1×
Fine-grained Pruning (Mao et al., 2017) 92.3% 9.8M 2.6×
Progressive Weight Pruning 92.3% 4.3M 6×
Progressive Weight Pruning 92.1% 2.8M 9.16×
Progressive Weight Pruning 91.5% 1.47M 17.43×

We implement our codes in Caffe (Jia et al., 2014). Experiments are tested on 12 Nvidia GTX
1080Ti GPUs and 12 Tesla P100 GPUs. As the key parameters in ADMM-based weight pruning,
we set the ADMM penalty parameter ρ to 1.5 × 10−3 for the masked ADMM-based algorithm.
When targeting at a high weight pruning rate, we change it to 3.0 × 10−3 for higher performance.
To eliminate the already pruned weights in partial pruning results from the masked ADMM-based
algorithm, ρi is forced to be zero if no more pruning is performed for a specific layer i. We use an
initial learning rate of 1.0 × 10−3 for the masked ADMM-based algorithm and an initial learning
rate of 1.0× 10−2 for masked retraining.

We provide the codes (both Caffe and TensorFlow versions) and all pruned DNN models (both for
ImageNet and MNIST data sets) in the link: bit.ly/2zxdlss.

3.2 COMPARISON RESULTS AND DISCUSSIONS

Table 1 presents the weight pruning comparison results on the AlexNet model between our proposed
method and prior works. Our weight pruning results clearly outperform the prior work, in that we
can achieve 31× weight reduction rate without loss of accuracy. Our progressive weight pruning
also outperforms the direct ADMM weight pruning in Zhang et al. (2018b) that achieves 21× com-
pression rate. Also the CaffeNet model results in slightly higher accuracy compared with the BVLC
AlexNet model. Table 2 presents more comparison results with the direct ADMM pruning. It can be
observed that (i) with the same compression rate, our progressive weight pruning outperforms the
direct pruning in accuracy; (ii) the direct ADMM weight pruning suffers from significant accuracy
drop with high compression rate (say 30× for AlexNet); and (iii) for a good compression rate (18×
and 21×), our progressive weight pruning technique can even achieve higher accuracy compared
with the original, uncompressed DNN model.

Table 3, Table 4, and Table 5 present the comparison results on the VGG-16, ResNet-50, and LeNet-
5 (for MNIST) models, respectively. These weight pruning results we achieved clearly outperform
the prior work, consistently achieving the highest sparsities in the benchmark DNN models. On the
VGG-16 model, we achieve 30× weight pruning with comparable accuracy with prior works, while
the highest pruning rate in prior work is 19.5×. We also achieve 34× weight pruning with minor
accuracy loss. For ResNet-50 model, we have tested 17.43× weight pruning rate and confirmed
minor accuracy loss. In fact, there is limited prior work on ResNet weight pruning for ImageNet data
set, due to (i) the difficulty in weight pruning since ResNet mainly consists of convolutional layers,
and (ii) the slow training speed of ResNet. Our method, on the other hand, achieves a relatively
high training speed, thereby allowing for the weight pruning testing on different large-scale DNN
models.

7

bit.ly/2zxdlss 


Table 5: Comparisons of weight pruning results on LeNet-5 for MNIST data set.
Method Accuracy No. Para. Rate
Uncompressed 99.2% 431K 1×
Network Pruning (Han et al., 2015) 99.2% 36K 12.5×
ADMM Pruning (Zhang et al., 2018b) 99.2% 6.05K 71.2×
Optimal Brain Surgeon (Dong et al., 2017) 98.3% 3.88K 111×
Progressive Weight Pruning 99.0% 2.58K 167×

Table 6: Comparisons of weight pruning with quantization results on LeNet-5 for MNIST data set.
Method Acc.

Loss
No.
Para.

Conv
No.
bits

FC No. bits Total data size
/Compress rate

Total size w.
index /Compress
rate

Uncompressed 0.0% 430.5K 32 32 1.7MB 1.7MB
Iterative pruning
(Han et al.,
2016)

0.1% 35.8K 8 5 24.2KB / 70.2× 52.1KB / 33×

Learning to
share (Ullrich
et al., 2017)

0.2% – – – – 10.4KB / 162×

Our Method 0.2% 2.57K 3 2 (3 for out-
put layer)

0.89KB / 1,910× 2.73KB / 623×

For LeNet-5 model compression, we achieve 167× weight reduction with almost no accuracy loss,
which is much higher than prior work under the same accuracy. The prior work Optimal Brain
Surgeon (Dong et al., 2017) also achieves a high pruning rate of 111×, but suffers from accuracy
drop of around 1% (already non-negligible for MNIST data set).

For other types of DNN models, we have tested the proposed method on the facial recognition
application on two representative DNN models (Krafka et al., 2016; Ho, 2016). We demonstrate
over 10× weight pruning rate with 0.2% and 0.4% accuracy loss, respectively, compared with the
original DNN models.

In summary, the experimental results demonstrate that our framework applies to a broad set of
representative DNN models and consistently outperforms the prior work. It also applies to the
DNN models that consist of mainly convolutional layers, which are different with weight pruning
using prior methods. These promising results will significantly contribute to the energy-efficient
implementation of DNNs in mobile and embedded systems, and on various hardware platforms.

Finally, some recent work have focused on the simultaneous weight pruning and weight quanti-
zation, as both will contribute to the model storage compression of DNNs. Weight pruning and
quantization can be unified under the ADMM framework, and we demonstrate the comparison re-
sults in Table 6 using the LeNet-5 model as illustrative example. As can be observed in the table, we
can simultaneously achieve 167× weight reduction and use 2-bit for fully-connected layer weight
quantization and 3-bit for convolutional layer weight quantization. The overall accuracy is 99.0%.
When we focus on the weight data storage, the compression rate is unprecendented 1,910× com-
pared with the original DNN model with floating point representation. When indices (required in
weight pruning) are accounted for, the overall compression rate is 623×, which is still much higher
than the prior work. It is interesting to observe that the amount of storage for indices is even higher
than that for actual weight data.

4 RELATED WORK ON DNN WEIGHT PRUNING/MODEL COMPRESSION

The pioneering work by Han et al. (2015) shows that DNN weights could be effectively pruned while
maintaining the same accuracy after iterative retraining, which gives 9× pruning in AlexNet and 13×
pruning in VGG-16. However, higher compression rates could hardly be obtained as the method
remains highly heuristic and time-consuming. Extensions of this initial work apply algorithm-level
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improvements. For example, Guo et al. (2016) adopts a method that performs both pruning and
growing of DNN weights, achieving 17.7× pruning rate in AlexNet. Dai et al. (2017) applies the
evolutionary algorithm that prunes and grows weights in a random manner, achieving 15.7× pruning
rate in AlexNet. The Optimal Brain Surgeon technique has been proposed Dong et al. (2017),
achieving minor improvement in AlexNet/VGGNet but a good pruning ratio of 111× with less than
1% accuracy degradation in MNIST. The L1 regularization method (Wen et al., 2016) achieves 6×
weight pruning in the convolutional layers of CaffeNet. Mao et al. (2017) uses different versions
of DNN weight pruning methods, from the fine-grained pruning to channel-wise regular pruning
methods. Recently, the direct ADMM weight pruning algorithm has been developed (Zhang et al.,
2018b), which is a systematic weight pruning framework and achieves state-of-the-art performance
in multiple DNN models.

The above weight pruning methods result in irregularity in weight storage, in that indices are need to
locate the next weight in sparse matrix representations. To mitigate the associated overheads, many
recent work have proposed to incorporate regularity and structure in the weight pruning framework.
Representative work include the channel pruning methods (He et al., 2017; Mao et al., 2017), and
row/column weight pruning method (Wen et al., 2016). The latter has been extended in a systematic
way in Zhang et al. (2018c). These work can partially mitigate the overheads in GPU, embedded
systems, and hardware implementations and result in higher acceleration in these platforms, but
typically cannot result in higher pruning ratio than unrestricted pruning. We will investigate the
application of progressive weight pruning to the regular/structured pruning as future work.

5 CONCLUSION

This work proposes a progressive weight pruning approach based on ADMM, a powerful technique
to deal with non-convex optimization problems with potentially combinatorial constraints. Mo-
tivated by dynamic programming, the proposed method reaches extremely high pruning rates by
using partial prunings, with moderate pruning rates in each partial pruning step. Therefore, it re-
solves the accuracy degradation and long convergence time problems when pursuing extremely high
pruning ratios. It achieves up to 34× pruning rate for the ImageNet data set and 167× pruning rate
for the MNIST data set, significantly higher than those reached by work in the existing literature.
Under the same number of epochs, the proposed method also achieves better convergence and higher
compression rates.
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