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ABSTRACT

The source code of a program not only serves as a formal description of an ex-
ecutable task, but it also serves to communicate developer intent in a human-
readable form. To facilitate this, developers use meaningful identifier names and
natural-language documentation. This makes it possible to successfully apply
sequence-modeling approaches, shown to be effective in natural-language pro-
cessing, to source code. A major advancement in natural-language understanding
has been the use of pre-trained token embeddings; BERT and other works have
further shown that pre-trained contextual embeddings can be extremely powerful
and can be finetuned effectively for a variety of downstream supervised tasks. In-
spired by these developments, we present the first attempt to replicate this success
on source code. We curate a massive corpus of Python programs from GitHub to
pre-train a BERT model, which we call Code Understanding BERT (CuBERT).
We also pre-train Word2Vec embeddings on the same dataset. We create a bench-
mark of five classification tasks and compare finetuned CuBERT against sequence
models trained with and without the Word2Vec embeddings. Our results show
that CaBERT outperforms the baseline methods by a margin of 2.9-22%. We also
show its superiority when finetuned with smaller datasets, and over fewer epochs.
We further evaluate CuBERT’s effectiveness on a joint classification, localization
and repair task involving prediction of two pointers.

1 INTRODUCTION

Modern software development places a high value on writing clean and readable code. This helps
other developers understand the author’s intent so that they can maintain and extend the code. De-
velopers use meaningful identifier names and natural-language documentation to make this hap-
pen (Martin, 2008)). As a result, source code contains substantial information that can be exploited
by machine-learning algorithms. Sequence modeling on source code has been shown to be success-
ful in a variety of software-engineering tasks, such as code completion (Hindle et al., 2012} Raychev
et al.| [2014), source code to pseudocode mapping (Oda et al.| 2015), API-sequence prediction (Gu
et al., 2016), program repair (Pu et al.| 2016; |Gupta et al., [2017), and natural language to code
mapping (Iyer et al., 2018), among others.

The distributed vector representations of tokens, called token (or word) embeddings, are a crucial
component of neural methods for sequence modeling. Learning useful embeddings in a supervised
setting with limited data is often difficult. Therefore, many unsupervised learning approaches have
been proposed to take advantage of large amounts of unlabeled data that are more readily available.
This has resulted in ever more useful pre-trained token embeddings (Mikolov et al.l 2013a; [Pen-
nington et al., [2014). However, the subtle differences in the meaning of a token in varying contexts
are lost when each word is associated with a single representation. Recent techniques for learning
contextual embeddings (McCann et al., [2017} |Peters et al., 2018; [Radford et al.,|2018};|2019; [Devlin
et al.| |2019; |Yang et al 2019) provide ways to compute representations of tokens based on their
surrounding context, and have shown significant accuracy improvements in downstream tasks, even
with only a small number of task-specific parameters.

Inspired by the success of pre-trained contextual embeddings for natural languages, we present
the first attempt to apply the underlying techniques to source code. In particular, BERT (Devlin
et al.} 2019) produces a bidirectional Transformer encoder (Vaswani et al., 2017) by training it to
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predict values of masked tokens and whether two sentences follow each other in a natural discourse.
The pre-trained model can be finetuned for downstream supervised tasks and has been shown to
produce state-of-the-art results on a number of NLP benchmarks. In this work, we derive contextual
embedding of source code by training a BERT model on source code. We call our model CuBERT,
short for Code Understanding BERT.

In order to achieve this, we curate a massive corpus of Python programs collected from GitHub.
GitHub projects are known to contain a large amount of duplicate code. To avoid biasing the model
to such duplicated code, we perform deduplication using the method of |Allamanis| (2018). The
resulting corpus has 6.6M unique files with a total of 2 billion words. We also train Word2Vec
embeddings (Mikolov et al., [2013a;b), namely, continuous bag-of-words (CBOW) and Skipgram
embeddings, on the same corpus. For evaluating CuBERT, we create a benchmark of five classifi-
cation tasks, ranging from classification of source code according to presence or absense of certain
classes of bugs, to mismatch between a function’s natural language description and its body, to pre-
dicting the right kind of exception to catch for a given code fragment. These tasks are motivated by
prior work in this space, but unfortunately, the associated datasets come from different languages
and varied sources. We want to ensure that there is no overlap between pre-training and finetuning
datasets, and that all of the tasks are defined on Python code. We therefore create new datasets
for the five tasks after carefully separating the pre-training and finetuning corpora. To evaluate Cu-
BERT’s effectiveness on a more complex task, we create a task for joint classification, localization
and repair of variable misuse bugs (Vasic et al.,2019), which involves predicting two pointers.

We finetune CuBERT on each of the classification tasks and compare the results with multi-layered
bidirectional LSTM (Hochreiter & Schmidhuber, |{1997) models. We train the LSTM models from
scratch and also using pre-trainined Word2Vec embeddings. Our results show that CuBERT con-
sistently outperforms these baseline models by 2.9-22% across the tasks. We perform a number of
additional studies by varying the sampling strategies used for training Word2Vec models, by varying
program lengths, and by comparing against Transformer models trained from scratch. In addition,
we also show that CuBERT can be finetuned effectively using only 33% of the task-specific labeled
data and with only 2 epochs, and that it attains results competitive to the baseline models trained
with the full datasets and much larger number of epochs. CuBERT when finetuned on the variable
misuse localization and repair task, produces high classification, localization and localization+repair
accuracies. The contributions of this paper are as follows:

e We present the first attempt at pre-training a BERT contextual embedding of source code.

o We show the efficacy of the pre-trained contextual embedding on five classification tasks.
Our results show that the finetuned models outperform the baseline LSTM models sup-
ported by Word2Vec embeddings, and Transformers trained from scratch. Further, the
finetuning works well even for smaller datasets and fewer training epochs. We also evalu-
ate CuBERT on a multi-headed pointer prediction task.

e We plan to make the models and datasets publicly available for use by others.

2 RELATED WORK

Given the abundance of natural-language text, and the relative difficulty of obtaining labeled data,
much effort has been devoted to using large corpora to learn about language in an unsupervised fash-
ion, before trying to focus on tasks with small labeled training datasets. Word2Vec (Mikolov et al.,
2013ab) computed word embeddings based on word co-occurrence and proximity, but the same em-
bedding is used regardless of the context. The continued advances in word embeddings (Pennington
et al.| 2014) led to publicly released pre-trained embeddings, used in a variety of tasks.

To deal with varying word context, contextual word embeddings were developed (McCann et al.,
2017; |Peters et al., 2018; Radford et al., 2018 2019), in which an embedding is learned for the
context of a word in a particular sentence, namely the sequence of words preceding it and possibly
following it. BERT (Devlin et all 2019) improved natural-language pre-training by using a de-
noising autoencoder. Instead of learning a language model, which is inherently sequential, BERT
optimizes for predicting a noised word within a sentence. Such prediction instances are generated by
choosing a word position and either keeping it unchanged, removing the word, or replacing the word
with a random wrong word. It also pre-trains with the objective of predicting whether two sentences
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can be next to each other. These pre-training objectives, along with the use of a Transformer-based
architecture, gave BERT an accuracy boost in a number of NLP tasks over the state-of-the-art.
BERT has been improved upon in various ways, including modifying training objectives, utilizing
ensembles, combining attention with autoregression (Yang et al., 2019)), and expanding pre-training
corpora and time (Liu et al.| [2019). However, the main architecture of BERT seems to hold up as
the state-of-the-art, as of this writing.

In the space of programming languages, attempts have been made to learn embeddings in the context
of specific software-engineering tasks. These include embeddings of variable and method identifiers
using local and global context (Allamanis et al., 2015]), abstract syntax trees or ASTs (Mou et al.,
2016), paths in ASTs (Alon et al.l 2019), memory heap graphs (Li et al.l 2016)), and ASTs enriched
with data flow information (Allamanis et al., 2018). These approaches require analyzing source
code beyond simple tokenization. In this work, we derive a pre-trained contextual embedding of
tokenized source code without explicitly modeling source-code-specific information, and show that
the resulting embedding can be effectively finetuned for downstream tasks.

3 EXPERIMENTAL SETUP

3.1 CODE CORPUS FOR FINETUNING TASKS

We use the ETH Py150 corpus (Raychev et al., 2016) to generate datasets for the finetuning tasks.
The ETH Py150 corpus consists of 150K Python files from GitHub, and is partitioned into a training
split (100K files) and a test split (50K files). We held out 10K files from the training split as a
validation split. We deduplicated the dataset in the fashion of |Allamanis| (2018), resulting in a
slightly smaller dataset of 85K, 9.5K, and 47K files in train, validation, and test, respectively.

3.2 THE GITHUB PYTHON PRE-TRAINING CODE CORPUS

We used the public GitHub repository hosted on Google’s BigQuery platform (the github_repos
dataset under BigQuery’s public-data project, bigquery-public—data). We extracted all files
ending in . py, under open-source, redistributable licenses, removed symbolic links, and retained
only files reported to be in the refs/heads/master branch. This resulted in about 16.1M files.

To avoid duplication between pre-training and finetuning data, we removed files that had high sim-
ilarity to the files in the ETH Py150 dataset, using the method of |Allamanis| (2018). In particular,
two files are considered similar to each other if the Jaccard similarity between the sets of tokens
(identifiers and string literals) is above 0.8 and in addition, it is above 0.7 for multi-sets of tokens.
This brought the dataset to 13.5M files. We then further deduplicated the remaining files, by clus-
tering them into equivalence classes holding similar files according to the same similarity metric,
and keeping only one exemplar per equivalence class. This helps avoid biasing the pre-trained em-
bedding. Finally, we removed files that could not be tokenized. In the end, we were left with 6.6M
Python files containing over 2 billion words. This is our Python pre-training code corpus.

3.3 SOURCE CODE MODELING

We first tokenize a Python program using the standard Python tokenizer (the t okenize package).
We leave language keywords intact and produce special tokens for syntactic elements that have
either no string representation (e.g., DEDENT tokens, which occur when a nested program scope
concludes), or ambiguous interpretation (e.g., new line characters inside string literals, at the logical
end of a Python statement, or in the middle of a Python statement result in distinct special tokens).
We split identifiers according to common heuristic rules (e.g., snake or Camel case). Finally, we split
string literals using heuristic rules, on whitespace characters, and on special characters. We limit all
thus produced tokens to a maximum length of 15 characters. We call this the program vocabulary.
Our Python pre-training code corpus contained 10.2M unique tokens, including 12 reserved tokens.

We greedily compress the program vocabulary into a subword vocabulary (Schuster & Nakajimal,
2012) using the SubwordTextEncoder from the Tensor2Tensor project (Vaswani et al.,[2018),
resulting in slightly over 50K tokens. All words in the program vocabulary can be losslessly encoded
using one or more of the subword tokens.
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We encode programs first into program tokens, as described above, and then encode those tokens one
by one in the subword vocabulary. The objective of this encoding scheme is to preserve syntactically
meaningful boundaries of tokens. For example, the identifier “snake_case” could be encoded as
“sna ke _ ca se”, preserving the snake case split of its characters, even if the subtoken “e_c”
were very popular in the corpus; the latter encoding might result in a smaller representation but
would lose the intent of the programmer in using a snake-case identifier. Similarly, “1=0" may
be very frequent in the corpus, but we still force it to be encoded as separate tokens i, =, and 0,
ensuring that we preserve the distinction between operators and operands. Both the BERT model
and the Word2Vec embeddings are built on the subword vocabulary.

3.4 FINETUNING TASKS

To evaluate CuBERT, we design five classification tasks and a multi-headed pointer task. These are
motivated by prior work, but unfortunately, the associated datasets come from different languages
and varied sources. We want the tasks to be on Python code, and for accurate results, we ensure that
there is no overlap between pre-training and finetuning datasets. We therefore create all the tasks
on the ETH Py150 corpus (see Section [3.1). As discussed in Section[3.2} we ensure that there is no
duplication between this and the pre-training corpus. We hope that our datasets for these tasks will
be useful to others as well. The finetuning tasks are described below. A more detailed discussion is
presented in Appendix [A]

Variable Misuse Classification |Allamanis et al.|(2018)) observed that developers may mistakenly
use an incorrect variable in the place of a correct one. These mistakes may occur when developers
copy-paste similar code but forget to rename all occurrences of variables from the original fragment,
or when there are similar variable names in contexts that can be confused with each other. These can
be subtle errors that remain undetected during compilation. The task by |Allamanis et al.[(2018)) is
to predict a correct variable name at a location within a function and was devised on C# programs.
We take the classification version restated by |Vasic et al.|(2019), wherein, given a function, the task
is to predict whether there is a variable misuse at some location in the function, without specifying
a particular location to consider. In this setting, the classifier has to consider all variables and their
usages to make the decision. In order to create negative (buggy) examples, we replace a variable use
at some location with another variable that is defined within the function.

Wrong Binary Operator |Pradel & Sen| (2018)) proposed the task of detecting whether a binary
operator in a given expression is correct. They use features extracted from limited surrounding
context. We use the entire function with the goal of detecting whether any binary operator in the
function is incorrect. The negative examples are created by randomly replacing some binary operator
with another type-compatible operator.

Swapped Operand |Pradel & Sen|(2018)) propose the wrong binary operand task where a variable
or constant is used incorrectly in an expression, but that task is quite similar to the variable misuse
task we already use. We therefore define another class of operand errors where the operands of non-
commutative binary operators are swapped. The operands can be arbitrary subexpressions, and are
not restricted to be just variables or constants. To simplify example generation, we restrict examples
for this task to those in which the binary operator and its operands all fit within a single line.

Function-Docstring Mismatch Developers are encouraged to write descriptive docstrings to ex-
plain the functionality and usage of functions. This provides parallel corpora between code and
natural language sentences that have been used for machine translation between the two (Barone &
Sennrich, 2017), detecting uninformative docstrings (Louis et al.; 2018)) and to evaluate their utility
to provide supervision in neural code search (Cambronero et al.,[2019). We prepare a sentence-pair
classification problem where the function and its docstring form two distinct sentences. Similar to
the other finetuning tasks, we use the ETH Py150 corpus to create this dataset. The positive ex-
amples come from the correct function-docstring pairs. We create negative examples by replacing
correct docstrings with docstrings of other functions, randomly chosen from the dataset. For this
task, the existing docstring is removed from the function body.
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Train Validation Test
Variable Misuse Classification 796020 8192 (86810) 429854
Wrong Binary Operator 537244 8192 (59112) 293872
Swapped Operand 276116 8192 (30818) 152248
Function-Docstring 391049 8192 (44029) 213269
Exception Type 21694 2459 (2459) 12036

Variable Misuse Localization and Repair 796020 8192 (86810) 429854

Table 1: Benchmark finetuning datasets. Note that for validation, we have subsampled the original
datasets (in parentheses) down to 8192 examples, except for exception classification, which only
had 2459 validation examples, all of which are included.

Exception Type While it is possible to write generic exception handlers (e.g., “except
Exception” in Python), it is considered a good coding practice to catch and handle the precise
exceptions that can be raised by a code fragment. We identified the 20 most common exception
types from the GitHub dataset, excluding the catch-all Exception (full list in Table[6). Given a
function with an except clause for one of these exception types, we replace the exception with
a special “hole” token. The task is the multi-class classification problem of predicting the original
exception type.

Variable Misuse Localization and Repair As an instance of a non-classification task, we con-
sider the joint classification, localization and repair version of the variable misuse task from |Vasic
et al.| (2019). Given a function, the task is to predict one pointer (called the localization pointer)
to identify a variable misuse location and another pointer (called the repair pointer) to identify a
variable from the same function that is the right one to use at the faulty location. The model is
also trained to classify functions that do not contain any variable misuse as bug-free by making the
localization pointer point to a special location in the function. We create negative examples using
the same method as used in the Variable Misuse Classification task.

Table [T] lists the sizes of the resulting benchmark datasets extracted from the (deduplicated) ETH
Py150 corpus. The Exception Type task contains fewer examples than the other tasks, since exam-
ples for this task only come from functions that catch one of the chosen 20 exception types.

3.5 BERT FOR SOURCE CODE

The BERT model (Devlin et al.l 2019) consists of a multi-layered Transformer encoder. It is trained
with two tasks: (1) to predict the correct tokens in a fraction of all positions, some of which have
been replaced with incorrect tokens or the special [MASK] token (the Masked Language Model
task) and (2) to predict whether the two sentences separated by the special [ SEP] token follow each
other in some natural discourse (the Next Sentence Prediction task). Thus, each example consists
of one (for MLM) or two (for NSP) sentences, where a sentence is the concatenation of contiguous
lines from the source corpus, sized to fit the target example length. To ensure that every sentence
is treated in multiple instances of both MLM and NSP, BERT by default duplicates the corpus 10
times, and generates independently derived examples from each duplicate. With 50% probability,
the second example sentence comes from a random document (for NSP). With 15% probability, a
token is chosen for an MLM prediction (up to 20 per example), and from those chosen, 80% are
masked, 10% are left undisturbed, and 10% are replaced with a random token.

CuBERT is similarly formulated, but a CuBERT sentence is a logical code line, as defined by the
Python standard. Intuitively, a logical code line is the shortest sequence of consecutive lines that
may constitute a legal statement, e.g., it has correctly matching parentheses. We count example
lengths by counting the subword tokens of both sentences (see Section [3.3).

We train the BERT Large model, consisting of 24 layers with 16 attention heads and hidden size of
1024 units. Sentences are created by parsing our pre-training dataset. Task-specific classifiers pass
the embedding of a special start-of-example [CLS] token through feedforward and softmax layers.
For the pointer prediction task, the pointer is computed over the sequence of outputs generated by
the last layer of the BERT model.
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3.6 BASELINES

3.6.1 WORD2VEC

We train Word2Vec models using the same pre-training corpus as the BERT model. To maintain
parity, we generate the dataset for Word2Vec using the same pipeline as BERT but by disabling
masking and generation of negative examples for NSP. The dataset is generated without any dupli-
cation. We train both CBOW and Skipgram models using GenSim (Rehtifek & Sojkal [2010). To
deal with the large vocabulary, we use negative sampling and hierarchical softmax (Mikolov et al.,
2013alb) to train the two versions. In all, we obtain four Word2Vec embeddings.

3.6.2 BIDIRECTIONAL LSTM AND TRANSFORMER

In order to obtain context-sensitive encodings of input sequences for the finetuning tasks, we use
multi-layered bidirectional LSTMs (Hochreiter & Schmidhuber, [1997) (BiLSTMs). These are
initialized with the pre-trained Word2Vec embeddings. Additionally, to further evaluate whether
LSTMs alone are sufficient without pre-training, we try initializing the BILSTM with an embedding
matrix that is trained from scratch. We also trained Transformer models (Vaswani et al., [2017) for
our finetuning tasks. We used BERT’s own Transformer implementation, to ensure comparability
of results. For comparison with prior work, we use the unidirectional LSTM and pointer model
from (Vasic et al.,|2019) for the Variable Misuse Localization and Repair task.

4 EXPERIMENTAL RESULTS

4.1 TRAINING DETAILS

As stated above, CuBERT’s dataset generation duplicates the corpus 10 times, whereas Word2Vec is
trained without duplication. To compensate for this difference, we trained Word2 Vec for 10 epochs
and CuBERT for 1 epoch. We pre-train CuBERT with the default configuration of the BERT Large
model. For sequences of length 128, 256 and 512, we use batch sizes of 8192, 4096 and 2048
respectively. For Word2Vec, when training with negative samples, we choose 10 negative samples.
The embedding sizes for all the pre-trained models are set at 1024.

For the baseline BILSTM models, we did extensive experimentation on the Variable Misuse task by
varying the number of layers (1-3) and the number of hidden units (128, 256, 512). We also tried
LSTM output dropout probability (0.1, 0.5), optimizers (Adam (Kingma & Ba, 2014) and Ada-
Grad (Duchi et al.l [2011))), and learning rates (1e-3, le-4, le-5). The most promising combination
was a 3-layered BiLSTM with 512 hidden units per layer, LSTM output dropout probability of 0.1
and Adam optimizer with learning rate of le-3. We use this set of parameters for all the tasks ex-
cept the Exception Type task. Due to the much smaller dataset size of the latter (Table[I)), we did
a separate search and chose a single-layer BILSTM with 256 hidden units. We used the batch size
of 8192 for the larger tasks and 64 for the Exception Type task. For the baseline Transformer mod-
els, we originally attempted to train a Transformer model of the same configuration as CuBERT.
However, the size of our training dataset seemed too small to train that large a Transformer. Instead,
we performed a hyperparameter search over transformer layers (1-6), hidden units (128, 256, 512),
learning rates (5e-5, le-4, Se-4, le-3) and batch sizes (64, 256, 1024, 2048, 4096, 8192) on the
Variable Misuse task. The best architecture (4 layers, 512 hidden units, 16 attention heads, learning
rate of Se-4, batch size of 4096) is used for all the tasks except the Exception Type task. A separate
experimentation for the smaller Exception Type dataset resulted in the best configuration of 3 layers,
512 hidden units, 16 attention heads, learning rate of Se-5, and batch size of 2048.

Finally, for our baseline pointer model (referred to as LSTM-+pointer below) we searched over the
following hyperparameter choices: hidden sizes of 512 and 1024, token embedding sizes of 512 and
1024, learning rates of 0.1, 0.01, and 0.001, and the AdaGrad and Gradient Descent optimizers. In
contrast to the original work, we generated one pair of buggy/bug-free examples per function (rather
than one per variable use, per function, which would bias towards longer functions), use CuBERT’s
subword-tokenized vocabulary of 50K subtokens (rather than a limited full-token vocabulary, which
leaves many tokens out of vocabulary).
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Setting | Misuse Operator Operand Docstring Exception

From scratch 76.05% 82.00% 87.77% 78.43% 40.37%

. T ns | 77.66% 84.42%  88.66%  89.13% 48.85%
(10361;533’1'5) CBOW 161 77.01%  84.11%  89.69%  86.74% 46.73%
p kiveram 1S | 7158%  83.06%  87.67%  84.69% 48.54%

pg hs | 7721%  83.06%  89.01%  82.56% 49.68%

2 epochs 90.09%  85.15% 88.67% 95.81% 52.38%
CuBERT 10 epochs 92.73%  88.43% 88.67% 95.81% 62.55%
20 epochs 94.61%  90.24% 92.56% 96.85% 71.74%

Transformer (100 epochs) | 79.37%  78.66% 86.21% 91.10% 48.60%

Table 2: Test accuracies of finetuned CuBERT against BILSTM (with and without Word2Vec
embeddings) and Transformer trained from scratch on the classification tasks. “ns” and “hs” re-
spectively refer to negative sampling and hierarchical softmax settings used for training CBOW and
Skipgram models. “From scratch” refers to training with freshly initialized token embeddings, that
is, without pre-trained Word2Vec embeddings.

4.2 RESEARCH QUESTIONS

We set out to answer the following research questions. We will address each with our results.

1. Do contextual embeddings help with source-code analysis tasks, when pre-trained on an
unlabeled code corpus? We compare CuBERT to BiLSTM models with and without pre-
trained Word2Vec embeddings on the classification tasks (Section[d.3)).

2. Does finetuning actually help, or is the Transformer model behind CuBERT the main power
behind the approach? We compare finetuned CuBERT models to Transformer-based mod-
els trained from scratch on the classification tasks (Section |4.4)).

3. How does the performance of CuBERT on the classification tasks scale with the amount of
labeled training data? We compare the performance of finetuned CuBERT models when
finetuning with one third, two thirds, or the full training dataset for each task (Section[4.5).

4. How does example length affect the benefits of CUBERT? We compare finetuning perfor-
mance for different example lengths on the classification tasks (Section {.6).

5. How does CuBERT perform on complex tasks? We implemented and finetuned a model
for a multi-headed pointer prediction task, namely, the Variable-Misuse Localization and
Repair task (Section[d.7). We compare it to the model from Vasic et al.| (2019).

Except for Section .6 all the results are presented for sequences of length 512. We give examples
of classification instances in Appendix |B|and include visualizations of attention weights for them.

4.3 CONTEXTUAL VS. WORD EMBEDDINGS

The purpose of this analysis is to understand how much pre-trained contextual embeddings help,
compared to word embeddings. For each classification task, we trained BiLSTM models starting
with each of our baseline Word2Vec embeddings, namely, continuous bag of words (CBOW) and
Skipgram trained with negative sampling or hierarchical softmax. In all the models, the Word2Vec
embeddings can be refined during training. Within the first 100 epochs, the performance of the
BiLSTM models stopped improving. The best model weights per task were selected by finding the
minimum validation loss on the corresponding dataset (Table (1)) over the first 100 epochs. On the
CuBERT side, we finetuned the pre-trained model for 20 epochs, with similar model selection.

The resulting test-split accuracies are shown in Table[2] CuBERT consistently outperforms BiILSTM
(with the best task-wise Word2Vec configuration) on all tasks, by a margin of 2.9-22%. Thus,
the pre-trained contextual embedding provides superior results even with a smaller budget of 20
epochs, compared to the 100 epochs used for BILSTMs. The Exception Type classification task is
an interesting case since it has an order of magnitude less training data than the other tasks (see
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Best of Train
# Epochs Fraction

100% 90.09%  85.15% 88.67% 95.81% 52.38%
2 66% 89.52%  83.26% 88.66% 95.17% 34.70%
33% 88.64%  82.28% 87.45% 95.29% 26.87%

100% 92.73%  88.43% 88.67% 95.81% 62.55%
10 66% 92.06%  87.06% 90.39% 95.64% 64.59%
33% 91.23%  84.44% 87.45% 95.48% 54.22%

100% 94.61%  90.24% 92.56% 96.85% 71.74%
20 66% 94.19%  89.36% 92.01% 96.17% 70.11%
33% 93.54%  87.67% 91.30% 96.37% 67.72%

Misuse Operator Operand Docstring Exception

Table 3: Effects of reducing training-split size on finetuning performance on the classification tasks.

Table[T)). The difference between the performance of BILSTM and CuBERT is the highest for this
task. Thus, finetuning is of much value for tasks with limited labeled training data.

We analyzed the performance of CuBERT with the reduced finetuning budget of only 2 and 10
epochs (see Table ). Except for the Operand task, CuBERT outperforms BiLSTM within 2 fine-
tuning epochs. On the Operand task, the performance difference between CuBERT with 2 or 10
finetuning epochs and BiLSTM is about 1%. For the rest of the tasks, CuBERT with only 2 finetun-
ing epochs outperforms BiLSTM (with the best task-wise Word2Vec configuration) by a margin of
0.7-12%. This shows that CuBERT can reach accuracies that are comparable to or better than those
of BiLSTMs trained with Word2Vec embeddings within only a few epochs.

We also trained the BILSTM models from scratch, that is, without using the Word2Vec embeddings.
The results are shown in the first row of Table[2] Compared to those, the use of Word2Vec embed-
dings performs better by a margin of 1.5-10.5%. Though no single Word2Vec configuration is the
best, CBOW trained with negative sampling gives the most consistent results overall.

4.4 1Is TRANSFORMER ALL YOU NEED?

One may wonder if CuBERT’s promising results derive more from using a Transformer-based model
for its classification tasks, and less from the actual, unsupervised pre-training. Here we compare our
results on the classification tasks to a Transformer-based model trained from scratch, i.e., without
the benefit of a pre-trained embedding. All the models were trained for 100 epochs during which
their performance stopped improving. We selected the best model per task using least validation
loss. As seen from the last row of Table 2] the performance of CuBERT is substantially higher than
the Transformer models trained from scratch. We therefore conclude that pre-training is crucial to
CuBERT’s success.

4.5 THE EFFECTS OF LITTLE SUPERVISION

The big draw of unsupervised pre-training followed by finetuning is that some tasks have small
labeled datasets. We study here how CuBERT fares when the size of its training split is reduced.
We sampled uniformly the training split of ETH Py150 down to 2/3rds and 1/3rd of its original
size, and produced training datasets for each of the classification tasks from each sub-split. We then
finetuned the pre-trained CuBERT model with each of the 3 different training splits. Validation and
testing were done with the same original datasets. Table 3] shows the results.

The Function Docstring task seems robust to the reduction of the training dataset, both early and late
in the finetuning process (that is, within 2 vs. 20 epochs), whereas the Exception Classification task
is heavily impacted by the dataset reduction, given that it has relatively few training examples to
begin with. Interestingly enough, for some tasks, even finetuning for only 2 epochs and only using
a third of the training data outperforms the baselines. For example, for both Variable Misuse and
Function Docstring, CuBERT at 2 epochs and 1/3rd training data outperforms the BiLSTM with
Word2Vec and the Transformer baselines.
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Length Misuse Operator Operand Docstring Exception

128 85.89%  77.92% 77.17% 97.10% 55.95%
256 92.69%  86.52% 87.26% 97.08% 65.38%
512 94.61%  90.24% 92.56% 96.85% 71.74%

Table 4: Best out of 20 epochs of finetuning, for three example lengths, on the classification tasks.

Model Setting True Classification | Localization | Loc+Repair
Positive Accuracy Accuracy Accuracy
LSTM-+pointer | 100 epochs | 81.63% | 78.76% | 63.83% | 56.37%
2 epochs | 97.18% 89.37% 79.05% 75.84%
CuBERT+pointer | 10 epochs | 94.94% 93.05% 88.52% 85.91%
20 epochs | 96.83% 94.85 % 91.11% 89.35%

Table 5: Comparison of the finetuned CuBERT+pointer model and the LSTM-+pointer model
from [Vasic et al.|(2019) on the variable misuse localization and repair task.

4.6 THE EFFECTS OF REDUCING CONTEXT

Context size is especially useful in code tasks, given that some relevant information may lie many
“sentences” away from its locus of interest. Here we study how reducing the context length (i.e., the
length of the examples used to pre-train and finetune) affects performance. We produce data with
shorter example lengths by following the standard BERT mechanism. Table 4] shows the results.

Although context seems to be important to most tasks, the Function Docstring task seems to improve
with reduced context. This may be because the task primarily depends on comparison between the
docstring and the function signature, and including more context dilutes the model’s focus.

For comparison, we also evaluated the BiLSTM model on sequences of length 128 and 256 for
the Variable Misuse task. We obtained accuracies of 71.34% and 73.63% respectively, which are
lower than the best BILSTM accuracy on sequence length 512 and also lower than the accuracies of
CuBERT for the corresponding lengths (see Table [).

4.7 EVALUATION ON A MULTI-HEADED POINTER PREDICTION TASK

We now discuss the results of finetuning CuBERT to predict the localization and repair pointers for
the variable misuse task. For this task, we implement the multi-headed pointer model from [Vasic
et al.| (2019) on top of CuBERT. The baseline consists of the same pointer model on a unidirec-
tional LSTM as used in |Vasic et al.[(2019). We refer to these respectively as CuBERT+pointer and
LSTM-+pointer models, respectively. Due to limitations of space, we omit the details of the pointer
model and refer the reader to the above paper. As reported in Section 4 of |Vasic et al.| (2019), to
enable comparison with an enumerative approach, the evaluation was performed only on 12K test
examples. In comparison, we report the numbers on all 430K test examples (Table [I)) for both the
models.

Similar to other tasks, we trained the baseline model for 100 epochs and finetuned CuBERT for up
to 20 epochs. Table[5]gives the results along the same metrics as [Vasic et al|(2019). The metrics are
defined as follows: 1) True Positive is the percentage of bug-free functions classified as bug-free.
2) Classification Accuracy is the percentage of correctly classified examples (between bug-free and
buggy). 3) Localization Accuracy is the percentage of buggy examples for which the localization
pointer correctly identifies the bug location. 4) Localization+Repair Accuracy is the precentage of
buggy examples for which both the localization and repair pointers make correct predictions. As
seen from Table[5] the CuBERT+pointer model outperforms the LSTM+pointer model consistently
across all the metrics, and even within 2 and 10 epochs.
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5 CONCLUSIONS AND FUTURE WORK

We present the first attempt at pre-trained contextual embedding of source code by training a BERT
model, called CaBERT, which we finetuned on five classification tasks and compared against BilL-
STM with Word2Vec embeddings and Transformer models. As a more challenging task, we also
evaluated CuBERT on a multi-headed pointer prediction task. CuBERT outperformed the baseline
models consistently. We evaluated CuBERT with less data and fewer epochs, highlighting the bene-
fits of pre-training on a massive, unsupervised code corpus. We see this as a promising step towards
source-code understanding, and plan to explore its utility on other programming languages and tasks.
We use a tokenized representation of source code and leave it to the underlying Transformer model
to infer any structural interactions between the input tokens through its self-attention mechanism.
However, the literature on deep learning for source code also demonstrates the utility of encoding
explicit structural information such as data-flow information (Allamanis et al.| 2018)). The Trans-
former model has been extended to incorporate explicitly provided structural information (Shaw
et al., 2018)). Using such relation-aware Transformers for pre-training source code representations
will be an important direction to explore in future.
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. . Train

Exception Type Test | Validation 100%  66% 33%
ValueError 2324 477 | 4058 2715 1344
KeyError 2240 453 | 4009 2566 1271
AttributeError 1657 311 | 2895 1896 876
TypeError 913 187 | 1747 1175 564
OSError 891 164 | 1641 1106 543
IOError 865 168 | 1560 1046 560
ImportError 776 202 | 1372 935 471
IndexError 694 153 | 1197 813 408
DoesNotExist 6 2 3 0 0
KeyboardInterrupr 287 67 590 408 223
StopIlteration 307 69 488 302 155
AssertionError 177 32 397 276 158
SystemExit 139 23 264 173 101
RuntimeError 128 36 299 203 104
HTTPError 59 13 119 80 35
UnicodeDecodeError 151 24 251 173 82
NotImplementedError 127 27 222 136 52
ValidationError 95 15 172 121 58
ObjectDoesNotExist 105 17 213 142 64
NameError 95 19 197 124 56

Table 6: Example counts per class for the Exception Type task, broken down into the dataset splits.
We show separately the 100% train dataset, as well as its 33% and 66% subsamples used in the
ablations.

A DATA PREPARATION FOR FINETUNING TASKS

A.1 LABEL FREQUENCIES

All four of our binary-classification finetuning tasks had an equal number of buggy and bug-free
examples. The Exception task, which is a multi-class classification task, had a different number of
examples per class (i.e., exception types). We show the breakdown of example counts per label for
our finetuning dataset splits in Table 6]

A.2 FINETUNING TASK DATASETS

In this section, we describe in detail how we produced our finetuning datasets (Section [3.4).

A common primitive in all our data generation is splitting a Python module into functions. We
do this by parsing the Python file and identifying function definitions in the Abstract Syntax Tree
that have no other function definition between themselves and the root of the tree. The resulting
functions include functions defined at module scope, but also methods of classes and subclasses.
Not included are functions defined within other function and method bodies, or methods of classes
that are, themselves, defined within other function or methods bodies.

We do not filter functions by length, although task-specific data generation may filter out some func-
tions (see below). When generating examples for a fixed-length pre-training or finetuning model, we
prune all examples to the maximum target sequence length (in this paper we consider 128, 256, and
512 subtokenized sequence lengths). Note that if a synthetically generated buggy/bug-free example
pair differs only at a location beyond the target length (say on the 600-th subtoken), we still retain
both examples. For instance, for the Variable Misuse Localization and Repair task, we retain both
buggy and bug-free examples, even if the error and/or repair locations lie beyond the end of the
maximum target length.
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Commutative | Non-Commutative
Arithmetic +, * -/, %
Comparison | ==, !=, is, is not <, <=, >, >=
Membership in, not in
Boolean and, or

Table 7: Binary operators.

A.2.1 REPRODUCIBLE DATA GENERATION

We make pseudorandom choices at various stages in finetuning data generation. It was impor-
tant to design a pseudorandomness mechanism that gave (a) reproducible data generation, (b) non-
deterministic choices drawn from the uniform distribution, and (c) order independence. Order in-
dependence is important because our data generation is done in a distributed fashion (using Apache
Beam), so different pseudorandom number generator state machines are used by each distributed
worker.

More specifically, pseudorandomness is computed based on an experiment-wide seed, but is inde-
pendent of the order in which examples are generated. Specifically, to make a pseudorandom choice
about a function, we hash (using MDS5) the seed and the function data (its source code and metadata
about its provenance), and use the resulting hash as a uniform pseudorandom value from the func-
tion, for whatever needs the data generator has (e.g., in choosing one of multiple choices). In that
way, the same function will always result in the same choices given a seed, regardless of the order
in which each function is processed, resulting in reproducible dataset generation.

To choose among multiple choices, we hash the function’s pseudorandom value along with all
choices (sorted in a canonical order) and use the digest to compute an index within the list of choice.
Note that given two choices over different candidates but for the same function, independent de-
cisions will be drawn. We also use such order-independent pseudorandomness when subsampling
datasets (e.g., to generate the validation datasets). In those cases, we hash a sample with the seed,
as above, and turn the resulting digest into a pseudorandom number in [0, 1], which can be used to
decide given a target sampling rate.

A.2.2 VARIABLE MISUSE CLASSIFICATION

A variable use is any mention of a variable in a load scope. This includes a variable that appears
in the right-hand side of an assignment, or a field dereference. We regard as defined all variables
mentioned either in the formal arguments of a function definition, or on the right-hand side of an
assignment. We do not include in our defined variables those declared in module scope (i.e., globals).

To decide whether to generate examples from a function, we parse it, and collect all variable-use
locations, and all define variables, as described above. We discard the function if it has no variable
uses, or if it defines fewer than two variables; if there is only one variable defined, the problem of
detecting variable misuse is moot. For any function that we do not discard, we generate a buggy and
a bug-free example, as described next.

To generate a buggy example from a function, we choose one variable use pseudorandomly (see
above how multiple-choice decisions are done), and replace its current occupant with a different
pseudorandomly-chosen variable defined in the function (with a separate multiple-choice decision).

A.2.3 WRONG BINARY OPERATOR

This task considers both commutative and non-commutative binary operators (unlike the Swapped-
Argument Classification task). See Tablefor the full list, and note that we have excluded relatively
infrequent operators, e.g., the Python integer division operator / /.

If a function has no binary operators, it is discarded. Otherwise, it is used to generate a bug-free
example, and a single buggy example as follows: one of the operators is chosen pseudorandomly (as
described above), and a different operator chosen to replace it in the same row of the Table[/| So,
for instance, a buggy example would only swap == with is, but not with not in, which would
not type-check if we performed static type inference on Python.
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We take appropriate care to ensure the code parses after a bug is introduced. For instance, if we
swap the operator in the expression 1==2 with i s, we ensure that there is space between the tokens
(i.e., 1 is 2 rather than the incorrect 11s2), even though it was not needed before.

A.2.4 SWAPPED OPERAND

Since this task targets swapping the arguments of binary operators, we only consider non-
commutative operators from Table 7]

Functions without eligible operators are discarded, and the choice of the operator to mutate in a
function, as well as the choice of buggy operator to use, are done as above, but limiting choices only
on non-commutative operators.

To avoid complications due to format changes, we only consider expressions that fit in a single line
(in contrast to the Wrong Binary Operator Classification task). We also do not consider expressions
that look the same after swapping (e.g., a — a).

A.2.5 FUNCTION-DOCSTRING MISMATCH

In Python, a function docstring is a string literal that directly follows the function signature and
before the main function body. Whereas in other common programming languages, the function
documentation is a comment, in Python it is an actual, semantically meaningful string literal.

We discard functions that have no docstring from this dataset, or functions that have an empty
docstring. We split the rest into the function definition without the docstring, and the docstring
summary (i.e., the first line of text from its docstring), discarding the rest of the docstring.

We create bug-free examples by pairing a function with its own docstring summary.

To create buggy examples, we pair every function with another function’s docstring summary, ac-
cording to a global pseudorandom permutation of all functions: for all ¢, we combine the ¢-th func-
tion (without its docstring) with the P;-th function’s docstring summary, where P is a pseudorandom
permutation, under a given seed. We discard pairings in which ¢ == P[], but for the seeds we chose,
no such pathological permuted pairings occurred.

A.2.6 EXCEPTION TYPE

Note that, unlike all other tasks, this task has no notion of buggy or bug-free examples.
We discard functions that do not have any except clauses in them.

For the rest, we collect all locations holding exception types within except clauses, and choose
one of those locations to query the model for classification. Note that a single except clause may
hold a comma-separated list of exception types, and the same type may appear in multiple locations
within a function. Once a location is chosen, we replace it with a special __HOLE__ token, and create
a classification example that pairs the function (with the masked exception location) with the true
label (the removed exception type).

The count of examples per exception type can be found in Table[6]

A.2.7 VARIABLE MISUSE LOCALIZATION AND REPAIR

The dataset for this task is identical to that for the Variable Misuse Classification task (Sec-
tion . However, unlike the classification task, examples contain more features relevant to
localization and repair. Specifically, in addition to the token sequence describing the program, we
also extract a number of boolean input masks:

e A candidates mask, which marks as True all tokens holding a variable, which can therefore
be either the location of a bug, or the location of a repair. The first position is always a
candidate, since it may be used to indicate a bug-free program.

o A targets mask, which marks as True all tokens holding the correct variable, for buggy
examples. Note that the correct variable may appear in multiple locations in a function,
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[SEP] |
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[SEP] -
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DEDENT
NEWLINE

def on_resize(self, event):
event .apply_zoom/()

Figure 1: Variable Misuse Example. In the code snippet, ‘event .apply-zoom’ should actually
be ‘self.apply_zoom’. The CuBERT variable-misuse model correctly predicts that the code has
an error. As seen from the attention map, the query tokens are attending to the second occurrence of
the ‘event’ token in the snippet, which corresponds to the incorrect variable usage.

therefore this mask may have multiple True positions. Bug-free examples have an all-False
targets mask.

e An error-location mask, which marks as True the location where the bug occurs (for buggy
examples) or the first location (for bug-free examples).

All the masks mark as True some of the locations that hold variables. Because many variables are
subtokenized into multiple tokens, if a variable is to be marked as True in the corresponding mask,
we only mark as True its first subtoken, keeping trailing subtokens as False.

B ATTENTION VISUALIZATIONS

In this section, we provide sample code snippets used to test the different classification tasks. Fur-
ther, Figures [TH3| show visualizations of the attention matrix of the last layer of the finetuned Cu-
BERT model (Coenen et al.,[2019) for the code snippets. In the visualization, the Y-axis shows the
query tokens and X-axis shows the tokens being attended to. The attention weight between a pair of
tokens is the maximum of the weights assigned by the multi-head attention mechanism. The color
changes from dark to light as weight changes from 0 to 1.
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[SEP] -

def__gt__ (self,other):
if isinstance (other, int)and other==0:
return self.get_value()>0
return other is not self

Figure 2: Wrong Operator Example. In this code snippet, ‘other is not self’ should actu-
ally be ‘other < self’. The CuBERT wrong-binary-operator model correctly predicts that the
code snippet has an error. As seen from the attention map, the query tokens are all attending to the
incorrect operator ‘is’.
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def_ _contains__ (cls,model) :
return cls._registry in model

Figure 3: Swapped Operand Example. In this code snippet, the return statement should be ‘model
in cls._registry’. The swapped-operand model correctly predicts that the code snippet has
an error. The query tokens are paying substantial attention to ‘in’ and the second occurrence of
‘model’ in the snippet.
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Docstring: ’"Get form initial data.’
Function:
def_ _add__ (self,cov):

return SumOfKernel (self, cov)

Figure 4: Function Docstring Example. The CuBERT function-docstring model correctly predicts
that the docstring is wrong for this code snippet. Note that most of the query tokens are attending to
the tokens in the docstring.
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try:

subprocess.call (hook_value)
return Jjsonify (success=True), 200
except __ _HOLE__ as e:
return jsonify (success=False,
error=str(e)), 400

Figure 5: Exception Classification Example. For this code snippet, the CuBERT exception-
classification model correctly predicts *__HOLE__" as ‘OSError’. The model’s attention matrix
also shows that ‘*_HOLE__’ is attending to ‘subprocess’, which is indicative of an OS-related
error.
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