
On Learning Wire-Length Efficient Neural Networks

Christopher G. Blake Luyu Wang Giuseppe Castiglione

Christopher Srinivasa Marcus A. Brubaker

Borealis AI
{chris.blake, luyu.wang, giuseppe.castiglione,

christopher.srinivasa, marcus.brubaker}@borealisai.com

Much recent work on computationally efficient image recognition has focused on minimizing the
number of non-zero weights in the neural network [1–8]. This is a good energy measure for
computation on a general purpose processor, however, as transistor sizes are approaching fundamental
limitations, it may be more sensible to construct specialized neural network circuits [9, 10]. In
specialized circuits, unlike in general purpose processors, energy consumption is often dominated
by wiring length, and not number of memory accesses [11–15]. Moreover, wiring length is also
optimized for in biological systems [16, 17], it correlates in practice to actual specialized circuit
energy consumption [18], and is a fundamental engineering limitation for computation in the non-
frictionless environments of the physical world [19, Chapter 8]. Inspired by this, in this paper we
consider pruning algorithms to optimize for this wiring length measure using three techniques, each
of which are used in different steps of the training-pruning process: weight-distance nested rank
pruning, weight-distance based regularization, and layer-by-layer bipartite matching.

First, consider the neural network as a graph in the natural way, in which each neuron is a node and
edges connect neurons associated with non-zero weights. A placement of nodes is a set of positions
for each node of the neural network such that the distance between each node is at least 1 unit distance.
The wiring length of an edge is the Manhattan distance between the nodes that it connects. The
energy of the neural network is the total wiring length of all the edges that are not pruned.

The algorithm starts with a large neural network with a fixed number of nodes and some labeled
training data. First, place the nodes in a stretched-square grid layout. In such a layout, we conceptually
place the nodes of the neural network, layer by layer, within a square prism, which we call the optical
channel. We let the width of the prism be just big enough to hold the nodes of the biggest layer in a
single plane. Every other layer is placed consecutively on a square grid stretched out over the width
of the optical channel, in a plane at unit distance away from the nodes of the previous layer. This
ensures that all nodes are at least unit distance apart and that consecutive layers are adjacent. We list
the three steps of our algorithm below, and provide a rough outline of the technique.

1. Train the neural network using stochastic gradient descent and weight-distance regularization. This
involves using a cross-entropy cost function and a term defined as:

Ω = α
∑
i

dpi |wi|2 (1)

In this notation, di denotes the length of the wire i and the wi denotes it associated weight. Note
that the dis are fixed during this procedure, but the wis are variables that are to be trained. The
variables p and α are hyperparameters to search over. When p is non-zero, the regularization term
is meant to bias the circuit to make long wires have lower weight.

2. Prune the edges of the neural network using a pruning criteria called weight-distance nested rank
pruning. To do this, first sort the edges by weight and select all ds fraction of lowest-weight
edges. Then, sort these lowest-weight edges by distance, and prune a fixed number of the longest
remaining wires. The parameter ds is called distance sensitivity, when it is equal to the fraction of
the wires that are pruned, this algorithm is equivalent to pure weight based pruning; when it is 1
this corresponds to pure distance-based pruning.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

3. After iterating between the previous two steps a sufficient number of times, apply layer-by-layer
bipartite matching to further optimize the energy of the layouts. The algorithm uses the realization
that finding the optimal permutation of nodes in one layer that minimizes the wiring length to
the nodes of other layers assuming their positions are fixed is equivalent to the weighted bipartite
matching problem, for which the Hungarian algorithm is polynomial-time and exact [20]. Apply
this optimization algorithm layer by layer to the nodes of the pruned network.

Experiments

We run pruning experiments on a fully-connected neural network for MNIST, which contains two
hidden layers of 300 and 100 units, respectively (this is the standard LeNet-300-100 architecture that
has been widely studied in the pruning literature). We also try pruning the fully connected layers of
a 10-layer convolutional network trained on the street-view house numbers dataset [21]. We show
energy-accuracy curves for one setting of hyperparameters for each of these datasets in Figure 1.

In Tables 1 and 2 we show a subset of the results of a hyperparameter grid search for these two
datasets. We record the accuracy and energy after each pruning iteration, and then for each set of
hyperparameters choose the model with the lowest energy greater than some threshold accuracy. For
each target accuracy we show the weight-based result (which is comparable to the technique of [3]
and forms a baseline) and the results on the distance-based regularization technique. We found that
nested rank pruning can perform better than pure weight based pruning, however distance-based
regularization tends to outperform techniques that use nested-rank pruning, although sometimes
distance-based regularization with nested-rank pruning performs best in the lower accuracy, low
energy regime as can be seen in the right graph of Figure 1. In these tables we obtain a wide range of
values at the highest accuracy (which we suspect is due to randomness in initial accuracy) but more
consistency at the lower accuracies. For MNIST, our best performing set of hyperparameters results
in a compression ratio of 1.64 percent at 98%, comparable to state-of-the art results for this initial
architecture and dataset [22].

Figure 1: (left) Energy-accuracy curve for MNIST with α = 10−4 while varying distance sensitivity
(ds) and p as labeled in legend. The black dashed line serves as a baseline weight-based technique;
the other curves represent the introduction of nested-rank pruning and distance-based regularization.
(right) Pruning of the fully connected layers of a 10-layer ConvNet for SVHN, with distance-based
(p = 5 and α = 10−4, solid lines) or just L2 regularization (p = 0 and α = 10−3, dash lines).

In Table 3 we apply the bipartite matching heuristic to the best performing network obtained using
weight-based regularization and the best performing network using weight-distance based regular-
ization for each target accuracy. Across both datasets the distance-based regularization outperforms
weight-based regularization on average across four trials, in some cases by close to 70%.
Conclusion
In this paper we consider the novel problem of learning accurate neural networks that have low total
wiring length because this corresponds to energy consumption in the fundamental limit. We introduce
weight-distance regularization, nested rank pruning, and layer-by-layer bipartite matching and show
through ablation studies that all of these algorithms are effective, and can even reach state-of-the-art
compression ratios. The results suggests that these techniques may be worth the computational
effort if the neural network is to be widely deployed, if significantly lower energy is worth the slight
decrease in accuracy, or if the application is to be deployed on either a specialized circuit or general
purpose processor.

2

α p
pretrain @98% @97% @95% @90%accuracy

5 × 10−6

0 97.9% energy 117791 ± 28816 28412 ± 660 13594 ± 779 6831 ± 426
edges 6831 ± 1649 1672 ± 43 787 ± 52 380 ± 25

1 98.0% energy 122322 ± 34712 28108 ± 2365 13986 ± 381 6964 ± 325
edges 6815 ± 1929 1549 ± 130 766 ± 16 376 ± 17

2 98.0% energy 73878 ± 9034 22044 ± 1814 10373 ± 264 4893 ± 201
edges 5087 ± 628 1518 ± 122 712 ± 17 337 ± 9

3 98.1% energy 107889 ± 12345 20474 ± 477 7370 ± 135 3613 ± 65
edges 9920 ± 1053 2041 ± 53 744 ± 12 378 ± 5

4 98.0% energy 120307 ± 30421 14393 ± 696 6247 ± 292 2901 ± 149
edges 13502 ± 3121 1895 ± 88 850 ± 42 412 ± 18

5 98.0% energy 205873 ± 68252 15744 ± 347 6348 ± 503 3004 ± 270
edges 23414 ± 6433 2516 ± 42 1079 ± 82 530 ± 47

5 × 10−5

0 97.8% energy 93389 ± 5535 26777 ± 2105 13563 ± 401 6997 ± 202
edges 5215 ± 307 1480 ± 113 737 ± 23 369 ± 14

1 98.1% energy 88241 ± 4613 20638 ± 2610 10141 ± 758 4559 ± 290
edges 5971 ± 306 1430 ± 179 718 ± 53 328 ± 16

2 98.1% energy 47026 ± 3198 15354 ± 1800 7460 ± 775 3166 ± 244
edges 4668 ± 282 1633 ± 185 813 ± 81 350 ± 29

3 98.0% energy 65236 ± 11137 14031 ± 702 7513 ± 658 3154 ± 373
edges 7554 ± 1086 1934 ± 101 1075 ± 96 465 ± 55

4 97.4% energy − 32258 ± 2307 12316 ± 693 5195 ± 588
edges − 4395 ± 283 1858 ± 96 802 ± 83

5 96.1% energy − − 16276 ± 1527 4742 ± 275
edges − − 2307 ± 189 717 ± 42

Table 1: Results for MNIST task. Average and standard deviation of total wiring length (energy) and
number of remaining weights (edges) over 4 random trials presented. Note that especially at lower
target accuracies the distance-based techniques outperform the baseline, while number of remaining
edges is comparable to weight based techniques (that is, when p = 0).

α p
pretrain @94% @92% @90% @85%accuracy

5 × 10−5

0 94.3% energy 17759 ± 2107 6363 ± 62 4726 ± 267 3222 ± 203
edges 1525 ± 187 538 ± 13 398 ± 23 271 ± 13

1 93.5% energy − 5722 ± 379 3875 ± 260 2605 ± 241
edges − 558 ± 41 376 ± 26 249 ± 24

2 93.1% energy − 3769 ± 461 2281 ± 159 1296 ± 63
edges − 561 ± 52 340 ± 19 200 ± 13

3 94.1% energy 7000 ± 794 1536 ± 95 1099 ± 71 717 ± 56
edges 1616 ± 165 396 ± 22 290 ± 21 192 ± 13

4 93.7% energy 22718 ± 12008 1517 ± 133 1028 ± 34 718 ± 76
edges 5215 ± 2259 516 ± 35 362 ± 6 262 ± 24

5 94.4% energy 3021 ± 217 748 ± 27 551 ± 43 416 ± 47
edges 1163 ± 78 326 ± 15 242 ± 24 186 ± 28

5 × 10−4

0 94.3% energy 15155 ± 796 4975 ± 424 3215 ± 223 2113 ± 293
edges 1294 ± 64 425 ± 40 275 ± 19 178 ± 25

1 94.5% energy 4883 ± 722 1853 ± 82 1130 ± 107 724 ± 15
edges 666 ± 91 251 ± 17 151 ± 16 94 ± 3

2 94.2% energy 4329 ± 1360 1035 ± 106 651 ± 56 449 ± 56
edges 1004 ± 279 270 ± 20 163 ± 14 115 ± 22

3 94.0% energy 5609 ± 337 616 ± 44 449 ± 26 350 ± 26
edges 1683 ± 78 226 ± 12 163 ± 11 120 ± 11

4 94.6% energy 1616 ± 74 610 ± 32 520 ± 33 373 ± 69
edges 673 ± 30 302 ± 14 265 ± 10 192 ± 35

5 94.6% energy 1444 ± 84 483 ± 12 348 ± 33 275 ± 52
edges 654 ± 32 262 ± 7 194 ± 18 156 ± 29

Table 2: Average and standard deviation over four trials for Street View House Numbers task on
both the wiring length metric (energy) and remaining edges metric (edges). We note that with the
appropriate hyperparameter setting our algorithm outperforms the baseline weight based techniques
(p=0) often on both the energy and number of remaining edges metric.

Task p α bipartite energy@97% energy@95% energy@90%
matching

MNIST 0 (weight based) 5 × 10−4 No 21403.6 ± 1092.5 10532.0 ± 204.4 4919.2 ± 348.2

0 (weight based) 5 × 10−4 Yes 8655.2 ± 545.8 3941.1 ± 119.0 1716.4 ± 134.3

1 (distance based) 5 × 10−4 No 12578.1 ± 586.7 5221.0 ± 272.0 2431.8 ± 230.2

1(distance based) 5 × 10−4 Yes 8561.9 ± 428.3 3253.7 ± 233.4 1460.7 ± 105.1
p α bipartite energy@92% energy@90% energy@85%

matching
SVHN 0 (weight based) 5 × 10−3 No 4957.8 ± 571.6 1963.7 ± 240.4 1034.2 ± 98.0

0 (weight based) 5 × 10−3 Yes 2929.8 ± 289.2 1111.9 ± 136.6 568.2 ± 47.1

SVHN 5 (distance based) 5 × 10−4 No 483.3 ± 11.6 348.4 ± 33.3 275.1 ± 51.7

5 (distance based) 5 × 10−4 Yes 478.7 ± 10.8 343.6 ± 32.2 271.0 ± 53.2

Table 3: Results of applying the bipartite matching algorithm on the best performing weight-based
pruning network and best performing distance-based regularization method before and after applying
layer-by-layer bipartite matching. Average and standard deviation over 4 trials presented.

3

References
[1] Y. L. Cun, J. S. Denker, and S. A. Solla. Advances in neural information processing systems

2. chapter Optimal Brain Damage, pages 598–605. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1990.

[2] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in deep neural
networks. In Advances in Neural Information Processing Systems, pages 2074–2082, 2016.

[3] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient
neural network. In Advances in neural information processing systems, pages 1135–1143, 2015.

[4] G. Bellec, D. Kappel, W. Maass, and R. Legenstein. Deep rewiring: Training very sparse deep
networks. arXiv preprint arXiv:1711.05136, 2017.

[5] A. Torfi and R. A. Shirvani. Attention-based guided structured sparsity of deep neural networks.
CoRR, abs/1802.09902, 2018.

[6] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning convolutional neural networks
for resource efficient transfer learning. CoRR, abs/1611.06440, 2016.

[7] W. Wang, Y. Sun, B. Eriksson, W. Wang, and V. Aggarwal. Wide compression: Tensor ring
nets. CoRR, abs/1802.09052, 2018.

[8] A. Gordon, E. Eban, O. Nachum, B. Chen, T.-J. Yang, and E. Choi. Morphnet: Fast and simple
resource-constrained structure learning of deep networks. CoRR, abs/1711.06798, 2017.

[9] O. Temam. Hardware neural networks: From inflated expectations to plateau of productivity. In
Federated Computing Research Conference, FCRC ’15, pages 4–, New York, NY, USA, 2015.
ACM.

[10] Y. H. Chen, J. Emer, and V. Sze. Eyeriss: A spatial architecture for energy-efficient dataflow for
convolutional neural networks. In ACM/IEEE Int. Symp. on Comp. Arch., pages 367–379, June
2016.

[11] C. D. Thompson. A Complexity Theory for VLSI. Ph.D. thesis, Carnegie-Mellon, 1980.

[12] P. Grover. Information friction and its implications on minimum energy required for communi-
cation. IEEE Trans. Info. Theory, 61(2), February 2015.

[13] C. G. Blake and F. R. Kschischang. Energy consumption of VLSI decoders. IEEE Trans. Info.
Theory, 61(6):3185–3198, June 2015.

[14] R. A. Legenstein and W. Maass. Wire length as a circuit complexity measure. Journal of
Computer and System Sciences, 70(1):53 – 72, 2005.

[15] K. Ganesan, P. Grover, and A. Goldsmith. How far are LDPC codes from fundamental limits on
total power consumption? In Allerton Conf. Commun., Control, and Comput., pages 671–678,
Monticello, IL, 2012.

[16] D. Chklovskii and C. Stevens. Wiring optimization in the brain. Adv. Neurol., 12:103–107, 01
1999.

[17] Schikorski T. Stevens C. F. Chklovskii, D. B. Wiring optimization in cortical circuits. Neuron,
34(3):341, 2002.

[18] K. Ganesan, P. Grover, and J. Rabaey. The power cost of over-designing codes. In Proc. 2011
IEEE Workshop Signal Proc. Sys., pages 128–133, October 2011.

[19] C. G. Blake. Energy Consumption of Error Control Coding Circuits. PhD thesis, University of
Toronto, Toronto, June 2017.

[20] H. Kuhn. The Hungarian Method for the assignment problem. Naval Research Logistics
Quarterly, 2:83–97, 1955.

4

[21] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural im-
ages with unsupervised feature learning. In NIPS workshop on deep learning and unsupervised
feature learning, volume 2011, page 5, 2011.

[22] J. Frankle and M. Carbin. The lottery ticket hypothesis: Training pruned neural networks.
CoRR, abs/1803.03635, 2018.

5

