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ABSTRACT

An important goal in deep learning is to learn versatile, high-level feature rep-
resentations of input data. However, standard networks’ representations seem to
possess shortcomings that, as we illustrate, prevent them from fully realizing this
goal. In this work, we show that robust optimization can be re-cast as a tool for
enforcing priors on the features learned by deep neural networks. It turns out
that representations learned by robust models address the aforementioned short-
comings and make significant progress towards learning a high-level encoding of
inputs. In particular, these representations are approximately invertible, while al-
lowing for direct visualization and manipulation of salient input features. More
broadly, our results indicate adversarial robustness as a promising avenue for im-
proving learned representations. 1

1 INTRODUCTION

Beyond achieving remarkably high accuracy on a variety of tasks (Krizhevsky et al., 2012; He
et al., 2015; Collobert & Weston, 2008), a major appeal of deep learning is the ability to learn
effective feature representations of data. Specifically, deep neural networks can be thought of as
linear classifiers acting on learned feature representations (also known as feature embeddings). A
major goal in representation learning is for these embeddings to encode high-level, interpretable
features of any given input (Goodfellow et al., 2016; Bengio et al., 2013; Bengio, 2019). Indeed,
learned representations turn out to be quite versatile—in computer vision, for example, they are
the driving force behind transfer learning Girshick et al. (2014); Donahue et al. (2014), and image
similarity metrics such as VGG distance Dosovitskiy & Brox (2016a); Johnson et al. (2016); Zhang
et al. (2018).

These successes and others clearly illustrate the utility of learned feature representations. Still, deep
networks and their embeddings exhibit some shortcomings that are at odds with our idealized model
of a linear classifier on top of interpretable high-level features. For example, the existence of adver-
sarial examples (Biggio et al., 2013; Szegedy et al., 2014)—and the fact that they may correspond to
flipping predictive features Ilyas et al. (2019)—suggests that deep neural networks make predictions
based on features that are vastly different from what humans use, or even recognize. (This message
has been also corroborated by several recent works (Brendel & Bethge, 2019; Geirhos et al., 2019;
Jetley et al., 2018; Zhang & Zhu, 2019).) In fact, we show a more direct example of such a short-
coming (c.f. Section 2), wherein one can construct pairs of images that appear completely different
to a human but are nearly identical in terms of their learned feature representations.

Our contributions. Motivated by the limitations of standard representations, we propose using the
robust optimization framework as a tool to enforce (user-specified) priors on features that models
should learn (and thus on their learned feature representations). We demonstrate that the result-
ing learned “robust representations” (the embeddings learned by adversarially robust neural net-
works Goodfellow et al. (2015); Madry et al. (2018)) address many of the shortcomings affecting
standard learned representations and thereby enable new modes of interaction with inputs via manip-
ulation of salient features. These findings are summarized below (c.f. Figure 1 for an illustration):

1Our code and models for reproducing these results is available at https://github.com/snappymanatee/robust-
learned-representations
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Figure 1: Sample images highlighting the properties and applications of “robust representations”
studied in this work. All of these manipulations use only gradient descent on simple, unregularized,
direct functions of the representations of adversarially robust neural networks Goodfellow et al.
(2015); Madry et al. (2018).

• Representation inversion (Section 4.1): In stark contrast to standard representations, ro-
bust representations are approximately invertible—that is, they provide a high-level em-
bedding of the input such that images with similar robust representations are semantically
similar, and the salient features of an image are easily recoverable from its robust feature
representation. This property also naturally enables feature interpolation between arbitrary
inputs.

• Simple feature visualization (Section 4.2): Direct maximization of the coordinates of
robust representations suffices to visualize easily recognizable features of the model. This is
again a significant departure from standard models where (a) without explicit regularization
at visualization time, feature visualization often produces unintelligible results; and (b)
even with regularization, visualized features in the representation layer are scarcely human-
recognizeable Olah et al. (2017).

• Feature manipulation (Section 4.2.1): Through the aforementioned direct feature visual-
ization property, robust representations enable the addition of specific features to images
through direct first-order optimization.

Broadly, our results indicate that robust optimization is a promising avenue for learning represen-
tations that are more “aligned” with our notion of perception. Furthermore, our findings highlight
the the desirability of adversarial robustness as a goal beyond the standard security and reliability
context.

2 LIMITATIONS OF STANDARD REPRESENTATIONS

Following standard convention, for a given deep network we define the representation R(x) ∈ Rk
of a given input x ∈ Rd as the activations of the penultimate layer of the network (where usually
k � d). The prediction of the network can thus be viewed as the output of a linear classifier on the
representation R(x). We refer to the distance in representation space between two inputs (x1, x2)
as the `2 distance between their representations (R(x1), R(x2)), i.e., ‖R(x1)−R(x2)‖2.

A common aspiration in representation learning is to have that for any pixel-space input x, R(x)
is a vector encoding a set of “human-meaningful” features of x Bengio (2019); Goodfellow et al.
(2016); Bengio et al. (2013). These high-level features would be linearly separable with respect to
the classification task, allowing the classifier to attain high accuracy.

Running somewhat counter to this intuition, however, we find that it is straightforward to construct
pairs of images with nearly identical representations yet drastically different content, as shown in
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Figure 2. Finding such pairs turns out to be as simple as sampling two images x1, x2 ∼ D, then
optimizing one of them to minimize distance in representation space to the other:

x′1 = x1 + arg min
δ
‖R(x1 + δ)−R(x2)‖2. (1)

Indeed, solving objective (1) yields images that have similar representations, but share no qualitative
resemblance (in fact, x′1 tends to look nearly identical to x1). An example of such a pair is given in
Figure 2.

Note that if representations truly provided an encoding of any image into high-level features, finding
images with similar representations should necessitate finding images with similar high-level fea-
tures. Thus, the existence of these image pairs (and similar phenomena observed by prior work Ja-
cobsen et al. (2019)) lays bare a misalignment between the notion of distance induced via the features
learned by current deep networks, and the notion of distance as perceived by humans.

x′�1 x2

R(x′�1) ≈ R(x2)

Figure 2: A limitation of standard neural network representations: it is straightforward to construct
pairs of images (x′1, x2) that appear completely different yet map to similar representations.

3 ADVERSARIAL ROBUSTNESS AS A PRIOR

Our analysis in Section 2 and prior work (Jacobsen et al., 2019) prompt the question:

How can we learn better-behaved representations?

In this work, we demonstrate that the representations learned by adversarially robust neural net-
works seem to address many identified limitations of standard representations, and make significant
progress towards the broader goal of learning high-level, human-understandable encodings.

Adversarially robust deep networks and robust optimization. In standard settings, supervised
machine learning models are trained by minimizing the expected loss with respect to a set of param-
eters θ, i.e., by solving an optimization problem of the form:

θ∗ = min
θ

E(x,y)∼D [Lθ(x, y)] . (2)

We refer to (2) as the standard training objective—finding the optimum of this objective should
guarantee high performance on unseen data from the distribution. It turns out, however, that deep
neural networks trained with this standard objective are extraordinarily vulnerable to adversarial
examples (Biggio et al., 2013; Szegedy et al., 2014)—by changing a natural input imperceptibly,
one can easily manipulate the predictions of a deep network to be arbitrarily incorrect.

A natural approach (and one of the most successful) for defending against these adversarial ex-
amples is to use the robust optimization framework: a classical framework for optimization in the
presence of uncertainty (Wald, 1945; Danskin, 1967). In particular, instead of just finding parame-
ters which minimize the expected loss (as in the standard objective), a robust optimization objective
also requires that the model induced by the parameters θ be robust to worst-case perturbation of the
input:

θ∗ = arg min
θ

E(x,y)∼D

[
max
δ∈∆
Lθ(x+ δ, y)

]
. (3)
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This robust objective is in fact common in the context of machine learning security, where ∆ is
usually chosen to be a simple convex set, e.g., an `p-ball. Canonical instantiations of robust op-
timization such as adversarial training (Goodfellow et al., 2015; Madry et al., 2018)) have arisen
as practical ways of obtaining networks that are invariant to small `p-bounded changes in the input
while maintaining high accuracy (though a small tradeoff between robustness and accuracy has been
noted by prior work Tsipras et al. (2019); Su et al. (2018)(also cf. Appendix Tables 4 and 5 for a
comparison of accuracies of standard and robust classifiers)).

Robust optimization as a feature prior. Traditionally, adversarial robustness in the deep learning
setting has been explored as a goal predominantly in the context of ML security and reliability (Big-
gio & Roli, 2018).

In this work, we consider an alternative perspective on adversarial robustness—we cast it as a prior
on the features that can be learned by a model. Specifically, models trained with objective (3) must
be invariant to a set of perturbations ∆. Thus, selecting ∆ to be a set of perturbations that hu-
mans are robust to (e.g., small `p-norm perturbations) results in models that share more invariances
with (and thus are encouraged to use similar features to) human perception. Note that incorpo-
rating human-selected priors and invariances in this fashion has a long history in the design of ML
models—convolutional layers, for instance, were introduced as a means of introducing an invariance
to translations of the input (Fukushima, 1980).

In what follows, we will explore the effect of the prior induced by adversarial robustness on models’
learned representations, and demonstrate that representations learned by adversarially robust models
are better behaved, and do in fact seem to use features that are more human-understandable.

4 PROPERTIES AND APPLICATIONS OF ROBUST REPRESENTATIONS

In the previous section, we proposed using robust optimization as a way of enforcing user-specified
priors during model training. Our goal was to mitigate the issues with standard representations
identified in Section 2. We now demonstrate that the learned representations resulting from training
with this prior indeed exhibit several advantages over standard representations.

Recall that we define a representation R(·) as a function induced by a neural network which maps
inputs x ∈ Rn to vectors R(x) ∈ Rk in the representation layer of that network (the penulti-
mate layer). In what follows, we refer to “standard representations” as the representation functions
induced by standard (non-robust) networks, trained with the objective (2)—analogously, “robust
representations” refer to the representation functions induced by `2-adversarially robust networks,
i.e. networks trained with the objective (3) with ∆ being the `2 ball:

θ∗robust = arg min
θ

E(x,y)∼D

[
max
‖δ‖2≤ε

Lθ(x+ δ, y)

]
.

It is worth noting that despite the value of ε used for training being quite small, we find that robust
optimization globally affects the behavior of learned representations. As we demonstrate in this
section, the benefits of robust representations extend to out-of-distribution inputs and far beyond
ε-balls around the training distribution.

Experimental setup. We train robust and standard ResNet-50 (He et al., 2016) networks on
the Restricted ImageNet (Tsipras et al., 2019) and ImageNet (Russakovsky et al., 2015) datasets.
Datasets specifics are in in Appendix A.1, training details are in in Appendices A.2 and A.3, and
the performance of each model is reported in Appendix A.4. In the main text, we present results for
Restricted ImageNet, and link to (nearly identical) results for ImageNet present in the appendices
(B.1.4,B.3.2).

Unless explicitly noted otherwise, our optimization method of choice for any objective function will
be (projected) gradient descent (PGD), a first-order method which is known to be highly effective
for minimizing neural network-based loss functions for both standard and adversarially robust neural
networks (Athalye et al., 2018a; Madry et al., 2018).

Code for reproducing our results is available at https://github.com/snappymanatee/
robust-learned-representations.
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4.1 INVERTING ROBUST REPRESENTATIONS

As discussed in Section 2, for standard deep networks, given any input x, it is straightforward to
find another input that looks entirely different but has nearly the same representation (c.f. Figure 2).
We noted that this finding runs somewhat counter to the idea that these learned representations ef-
fectively capture relevant input features. After all, if the representation function was truly extracting
“high-level” features of the input as we conceptualize them, semantically dissimilar images should
(by definition) have different representations. We now show that the state of affairs is greatly im-
proved for robust representations.

Robust representations are (approximately) invertible out of the box. We begin by recalling
the optimization objective (1) used in Section 2 to find pairs of images with similar representations,
a simple minimization of `2 distance in representation space from a source image x1 to a target
image x2:

x′1 = x1 + arg min
δ
‖R(x1 + δ)−R(x2)‖2. (4)

This process can be seen as recovering an image that maps to the desired target representation, and
hence is commonly referred to as representation inversion (Dosovitskiy & Brox, 2016b; Mahendran
& Vedaldi, 2015; Ulyanov et al., 2017). It turns out that in sharp contrast to what we observe for
standard models, the images resulting from minimizing (4) for robust models are actually semanti-
cally similar to the original (target) images whose representation is being matched, and this behavior
is consistent across multiple samplings of the starting point (source image) x1 (cf. Figure 3).
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Figure 3: Visualization of inputs that are mapped to similar representations by models trained on
the Restricted ImageNet dataset. Target (x2) & Source (x1): random examples image from the
test set; Robust and Standard (x′1): result of minimizing the objective (4) to match (in `2-distance)
the representation of the target image starting from the corresponding source image for (top): a
robust (adversarially trained) and (bottom): a standard model respectively. For the robust model, we
observe that the resulting images are perceptually similar to the target image in terms of high-level
features (even though they do not match it exactly), while for the standard model they often look
more similar to the source image which is the seed for the optimization process. Additional results
in Appendix B.1, and similar results for ImageNet are in Appendix B.1.4.

Representation proximity seems to entail semantic similarity. In fact, the contrast between
the invertibility of standard and robust representations is even stronger. To illustrate this, we will
attempt to match the representation of a target image while staying close to the starting image of the
optimization in pixel-wise `2-norm (this is equivalent to putting a norm bound on δ in objective (4)).
With standard models, we can consistently get close to the target image in representation space,
without moving far from the source image x1. On the other hand, for robust models, we cannot
get close to the target representation while staying close to the source image—this is illustrated
quantitatively in Figure 4. This indicates that for robust models, semantic similarity may in fact
be necessary for representation similarity (and is not, for instance, merely an artifact of the local
robustness induced by robust optimization).
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Figure 4: Optimizing objective (4) with PGD and an `2-norm constraint around the source image. On
the x-axis is the radius of the constraint set, and on the y-axis is the distance in representation space
between the minimizer of objective (4) within the constraint set and the target image, normalized by
the norm of the representation of the target image: i.e., a point (xi, yi) on the graph corresponds to
yi = min‖δ‖2≤xi

‖R(x + δ) − R(xtarg)‖2/‖R(xtarg)‖2. Notably, we are unable to closely match
the representation of the target image for the robust network until the norm constraint grows very
large, and in particular much larger than the norm of the perturbation that the model is trained to
be robust against (ε in objective (3)). Shown are 95% confidence intervals over random choice of
source and target images.

Constraint = 2 Constraint = 8 Constraint = 32 Constraint = 128 Target image

Figure 5: A visualization of the final solutions to the optimizing objective (4) with PGD when
constraining the solution to lie in an `2 ball around the source image for an adversarially robust
neural network. We note that even the radius of the constraint set is small and we cannot match the
representation very well, salient features of the target image still arise.

We also find that even when δ is highly constrained (i.e. when we are forced to stay very close to
the source image and thus cannot match the representation of the target well), the solution to the
inversion problem still displays some salient features of the target image (c.f. Figure 5). Both of
these observations suggest that the representations of robust networks function much more like we
would expect high-level feature representations to behave.

Inversion of out-of-distribution inputs. We find that the inversion properties uncovered above
hold even for out-of-distribution inputs, demonstrating that robust representations capture general
features as opposed to features only relevant for the specific classification task. In particular, we
repeat the inversion experiment (simple minimization of distance in representation space) using
images from classes not present in the original dataset used during training (Figure 6 right) and
structured random patterns (Figure 14 in Appendix B.1): the reconstructed images consistently
resemble the targets.

Interpolation between arbitrary inputs. Note that this ability to consistently invert representa-
tions into corresponding inputs also translates into the ability to semantically interpolate between
any two inputs. For any two inputs x1 and x2, one can (linearly) interpolate between R(x1) and
R(x2) in representation space, then use the inversion procedure to get images corresponding to the
interpolate representations. The resulting inputs interpolate between the two endpoints in a percep-
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Figure 6: Robust representations yield semantically meaningful embeddings. Target: random im-
ages from the test set (col. 1-5) and from outside of the training distribution (6-10); Result: images
obtained from optimizing inputs (using Gaussian noise as the source image) to minimize `2-distance
to the representations of the corresponding image in the top row. (More examples appear in Ap-
pendix B.1.)

tually plausible manner without any of the “ghosting” artifacts present in input-space interpolation.
We show examples of this inversion as well as experimental details in Appendix A.5.

4.2 DIRECT FEATURE VISUALIZATION

A common technique for visualizing and understanding the representation function R(·) of a given
network is optimization-based feature visualization (Olah et al., 2017), a process in which we maxi-
mize a specific feature (component) in the representation with respect to the input, in order to obtain
insight into the role of the feature in classification. Concretely, given some i ∈ [k] denoting a
component of the representation vector, we use gradient descent to find an input x′ that maximally
activates it, i.e., we solve:

x′ = x0 + arg max
δ
R(x0 + δ)i (5)

for various starting points x0 which might be random images from D or even random noise.

Visualization “fails” for standard networks. For standard networks, optimizing the objective (5)
often yields unsatisfying results. While we can easily find images for which the ith component of
R(·) is large (and thus the optimization problem is tractable), these images tends to look meaningless
to humans, often resembling the starting point of the optimization. Even when these images are
non-trivial, they tend to contain abstract, hard-to-discern patterns (c.f. Figure 7 (bottom)). As we
discuss later in this section, regularization/post-processing of visualizations does improve this state
of affairs, though not very significantly and potentially at the cost of suppressing useful features
present in the representation post-hoc.

Robust representations allow for direct visualization of human-recognizable features. For
robust representations, however, we find that easily recognizable high-level features emerge from
optimizing objective (5) directly, without any regularization or post-processing. We present the
results of this maximization in Figure 7 (top): coordinates consistently represent the same concepts
across different choice of starting input x0 (both in and out of distribution). Furthermore, these
concepts are not merely an artifact of our visualization process, as they consistently appear in the
test-set inputs that most strongly activate their corresponding coordinates (Figure 8).

The limitations of regularization for visualization in standard networks. Given that directly
optimizing objective (5) does not produce human-meaningful images, prior work on visualization
usually tries to regularize objective (5) through a variety of methods. These methods include ap-
plying random transformations during the optimization process (Mordvintsev et al., 2015; Olah
et al., 2017), restricting the space of possible solutions (Nguyen et al., 2015; 2016; 2017), or post-
processing the input or gradients (Oygard, 2015; Tyka, 2016). While regularization does in gen-
eral produce better results qualitatively, it comes with a few notable disadvantages that are well-
recognized in the domain of feature visualization. First, when one introduces prior information
about what makes images visually appealing into the optimization process, it becomes difficult
to disentangle the effects of the actual model from the effect of the prior information introduced
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Figure 7: Correspondence between image-level patterns and activations learned by standard and
robust models on the Restricted ImageNet dataset. Starting from randomly chosen seed inputs
(noise/images), we use PGD to find inputs that (locally) maximally activate a given component
of the representation vector (cf. Appendix A.6.1 for details). In the left column we have the seed
inputs x0 (selected randomly), and in subsequent columns we visualize the result of the optimiza-
tion (5), i.e., x′, for different activations, with each row starting from the same (far left) input x0 for
(top): a robust (adversarially trained) and (bottom): a standard model. Additional visualizations in
Appendix B.3, and similar results for ImageNet in B.3.2.

Activation 444
(“long fish”)

Activation 939 
(“insect legs”)

Maximized from noise

Most activated

Least activated Maximized from noise

Most activated

Least activated

Figure 8: Maximizing inputs x′ (found by solving (5) with x0 being a gray image) and most or least
activating images (from the test set) for two random activations of a robust model trained on the
Restricted ImageNet dataset. For each activation, we plot the three images from the validation set
that had the highest or lowest activation value sorted by the magnitude of the selected activation.

through regularization2. Furthermore, while adding regularization does improve the visual quality
of the visualizations, the components of the representation still cannot be shown to correspond to
any recognizable high-level feature. Indeed, Olah et al. (2017) note that in the representation layer
of a standard GoogLeNet, “Neurons do not seem to correspond to particularly meaningful semantic
ideas”—the corresponding feature visualizations are reproduced in Figure 9. We also provide ex-
amples of representation-layer visualizations for VGG16 (which we found qualitatively best among
modern architectures) regularized with jittering and random rotations in Figure 10. While these
visualizations certainly look better qualitatively than their unregularized counterparts in Figure 7
(bottom), there remains a significantly large gap in quality and discernability between these regular-
ized visualizations and those of the robust network in Figure 7 (top).

2In fact, model explanations that enforce priors for purposes of visual appeal have been often found to have
little to do with the data or the model itself (Adebayo et al., 2018).
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Figure 9: Figure reproduced from (Olah et al.,
2017)—a visualization of a few components of
the representation layer of GoogLeNet. While
regularization (as well as Fourier parameteriza-
tion and colorspace decorrelation) yields visu-
ally appealing results, the visualization does not
reveal consistent semantic concepts.

Figure 10: A visualization of the first four com-
ponents of the representation layer of VGG16
when regularization via random jittering and ro-
tation is applied. Figure produced using the Lu-
cida visualization library.

ahttps://github.com/tensorflow/
lucid/

“Stripes” (selected) “Red limbs” (random)

Figure 11: Visualization of the results from maximizing a chosen (left) and a random (right) rep-
resentation coordinate starting from random images for the Restricted ImageNet dataset. In each
figure, the top row has the initial images, and the bottom row has a feature added. Additional exam-
ples in Appendix B.4.

4.2.1 NATURAL CONSEQUENCE: FEATURE MANIPULATION

The ability to directly visualize high-level, recognizable features reveals another application of ro-
bust representations, which we refer to as feature manipulation. Consider the visualization objec-
tive (5) shown in the previous section. Starting from some original image, optimizing this objective
results in the corresponding feature being introduced in a continuous manner. It is hence possible to
stop this process relatively early to ensure that the content of the original image is preserved. As a
heuristic, we stop the optimization process as soon as the desired feature attains a larger value than
all the other coordinates of the representation. We visualize the result of this process for a variety
of input images in Figure 11, where “stripes” or “red limbs” are introduced seamlessly into images
without any processing or regularization 3.

5 RELATED WORK

Adversarial Robustness Our work studies the feature representations of adversarially robust net-
works. As discussed in Section 3, these are networks trained with the robust optimization frame-
work (Wald, 1945; Goodfellow et al., 2015; Madry et al., 2018) and were originally proposed in the
context of defending against adversarial perturbations (Biggio et al., 2013; Szegedy et al., 2014).
Adversarial robustness has been studied extensively in the context of machine learning security (see
e.g., Carlini & Wagner (2017); Athalye et al. (2018b;a); Papernot et al. (2017)), and as an indepen-
dent phenomenon (see e.g., Gilmer et al. (2018); Schmidt et al. (2018); Jacobsen et al. (2019); Ilyas
et al. (2019); Tsipras et al. (2019); Su et al. (2018). Recent work also uses robust models for input
manipulation: Tsipras et al. (2019) observe that large adversarial perturbation constructed for robust
networks actually resemble instances of the target class, and Anon. (2019)4 demonstrates that robust
classifiers can be used for a wide array of image synthesis tasks. While our work also manipulates
inputs with robust classifiers, we focus on understanding properties of robust representations (via
inversion and component visualization), rather than perform any downstream tasks.

3We repeat this process with many additional random images and random features in Appendix B.4.
4Anonymized for the rebuttal stage.
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Inverting representations. Previous methods for inverting learned representations typically ei-
ther solve an optimization problem similar to (1) while imposing a “natural image” prior on the
input Mahendran & Vedaldi (2015); Yosinski et al. (2015); Ulyanov et al. (2017) or train a separate
model to perform the inversion Kingma & Welling (2015); Dosovitskiy & Brox (2016b;a). Note
that since these methods introduce priors or additional components into the inversion process, their
results are not fully faithful to the model. In an orthogonal direction, it is possible to construct mod-
els that are analytically invertible by construction Dinh et al. (2014; 2017); Jacobsen et al. (2018);
Behrmann et al. (2018). However, the representations learned by these models do not seem to be
perceptually meaningful (for instance, interpolating between points in the representation space does
not lead to perceptual input space interpolations Jacobsen et al. (2018)). Another notable distinction
between the inversions shown here and invertible networks is that the latter are an exactly invertible
map from Rd → Rd, while the former shows that we can approximately recover the original input
in Rd from a representation in Rk for k � d.

Feature visualization. Typical methods for visualizing features or classes learned by deep net-
works follow an optimization-based approach, optimizing objectives similar to objective (5). Since
this optimization does not lead to meaningful visualizations directly, these methods incorporate
domain-specific input priors (either hand-crafted Nguyen et al. (2015) or learned Nguyen et al.
(2016; 2017)) and regularizers Simonyan et al. (2013); Mordvintsev et al. (2015); Oygard (2015);
Yosinski et al. (2015); Tyka (2016); Olah et al. (2017) to produce human-discernible visualizations.
The key difference of our work is that we avoid the use of such priors or regularizers altogether,
hence producing visualizations that are fully based on the model itself without introducing any ad-
ditional bias.

Semantic feature manipulation. The latent space of generative adversarial networks
(GANs) Goodfellow et al. (2014) tends to allow for “semantic feature arithmetic” Radford et al.
(2016); Larsen et al. (2016) (similar to that in word2vec embeddings Mikolov et al. (2013)) where
one can manipulate salient input features using latent space manipulations. In a similar vein, one
can utilize an image-to-image translation framework to perform such manipulation (e.g. transform-
ing horses to zebras), although this requires a task-specific dataset and model Zhu et al. (2017).
Somewhat orthogonally, it is possible to utilize the deep representations of standard models to per-
form semantic feature manipulations; however such methods tend to either only perform well on
datasets where the inputs are center-aligned Upchurch et al. (2017), or are restricted to a small set
of manipulations Gatys et al. (2016).

6 CONCLUSION

We show that the learned representations of robustly trained models align much more closely with
our idealized view of neural network embeddings as extractors of human-meaningful, high-level
features. After highlighting certain shortcomings of standard deep networks and their representa-
tions, we demonstrate that robust optimization can actually be viewed as inducing a human prior
over the features that models are able to learn. In this way, one can view the robust representations
that result from this prior as feature extractors that are more aligned with human perception.

In support of this view, we demonstrate that robust representations overcome the challenges identi-
fied for standard representations: they are approximately invertible, and moving towards an image in
representation space seems to entail recovering salient features of that image in pixel space. Further-
more, we show that robust representations can be directly visualized with first-order methods with-
out the need for post-processing or regularization, and also yield much more human-understandable
features than standard models (even when they are visualized with regularization). These two prop-
erties (inversion and direct feature visualization), in addition to serving as illustrations of the benefits
of robust representations, also enable direct modes of input manipulation (interpolation and feature
manipulation, respectively).

Overall, our findings highlight robust optimization as a framework to enforce feature priors on
learned models. We believe that further exploring this paradigm will lead to models that are sig-
nificantly more human-aligned while enabling a wide range of new modes of interactions.
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A EXPERIMENTAL SETUP

A.1 DATASETS

In the main text, we perform all our experimental analysis on the Restricted ImageNet dataset Tsipras
et al. (2019) which is obtained by grouping together semantically similar classes from ImageNet
into 9 super-classes shown in Table 1. Attaining robust models for the complete ImageNet dataset
is known to be challenging, both due to the hardness of the learning problem itself, as well as the
computational complexity.

For the sake of completeness, we also replicate our experiments feature visualization and represen-
tation inversion on the complete ImageNet dataset Russakovsky et al. (2015) in Appendices B.3.2
and B.1.4—in particular, cf. Figures 22 and 16.

Table 1: Classes used in the Restricted ImageNet model. The class ranges are inclusive.

Class Corresponding ImageNet Classes
“Dog” 151 to 268
“Cat” 281 to 285

“Frog” 30 to 32
“Turtle” 33 to 37
“Bird” 80 to 100

“Primate” 365 to 382
“Fish” 389 to 397
“Crab” 118 to 121
“Insect” 300 to 319

A.2 MODELS

We use the ResNet-50 architecture He et al. (2016) for our adversarially trained classifiers on all
datasets. Unless otherwise specified, we use standard ResNet-50 classifiers trained using empir-
ical risk minimization as a baseline in our experiments. Additionally, it has been noted in prior
work that among standard classifiers, VGG networks Simonyan & Zisserman (2015) tend to have
better-behaved representations and feature visualizations Mordvintsev et al. (2018). Thus, we also
compare against standard VGG16 networks in the subsequent appendices. All models are trained
with data augmentation, momentum 0.9 and weight decay 5e−4. Other hyperparameters are pro-
vided in Tables 2 and 3.

The exact procedure used to train robust models along with the corresponding hyperparameters are
described in Section A.3. For standard (not adversarially trained) classifiers on the complete 1k-class
ImageNet dataset, we use pre-trained models provided in the PyTorch repository5.

Table 2: Standard hyperparameters for the models trained in the main paper.

Dataset Model Arch. Epochs LR Batch Size LR Schedule

Restricted ImageNet standard ResNet-50 110 0.1 256 Drop by 10 at epochs ∈ [30, 60]
Restricted ImageNet robust ResNet-50 110 0.1 256 Drop by 10 at epochs ∈ [30, 60]
ImageNet robust ResNet-50 110 0.1 256 Drop by 10 at epochs ∈ [100]

Test performance of all the classifiers can be found in Section A.4. Specific parameters used to study
the properties of learned representations are described in Section A.6.

5https://pytorch.org/docs/stable/torchvision/models.html
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A.3 ADVERSARIAL TRAINING

To obtain robust classifiers, we employ the adversarial training methodology proposed in Madry
et al. (2018). Specifically, we train against a projected gradient descent (PGD) adversary with a
normalized step size, starting from a random initial perturbation of the training data. We consider
adversarial perturbations in `2-norm. Unless otherwise specified, we use the values of ε provided in
Table 3 to train/evaluate our models (the images themselves lie in the range [0, 1]).

Table 3: Hyperparameters used for adversarial training.

Dataset ε # steps Step size

Restricted ImageNet 3.0 7 0.5
ImageNet 3.0 7 0.5

A.4 MODEL PERFORMANCE

Standard test performance for the models used in the paper are presented in Table 4 for the Restricted
ImageNet dataset and in Table 5 for the complete ImageNet dataset.

Additionally, we report adversarial accuracy of both standard and robust models. Here, adversarial
accuracies are computed against a PGD adversary with 20 steps and step size of 0.375. (We also
evaluated against a stronger adversary using more steps (100) of PGD, however this had a marginal
effect on the adversarial accuracy of the models.)

Table 4: Test accuracy for standard and robust models on the Restricted ImageNet dataset.

Model Standard Adversarial (eps=3.0)

Standard VGG16 98.22% 2.17%
Standard ResNet-50 98.01% 4.74%
Robust ResNet-50 92.39% 81.91%

Table 5: Top-1 accuracy for standard and robust models on the ImageNet dataset.

Model Standard Adversarial (eps=3.0)

Standard VGG16 73.36% 0.35%
Standard ResNet-50 76.13% 0.13%
Robust ResNet-50 57.90% 35.16%

A.5 IMAGE INTERPOLATIONS

A natural consequence of the “natural invertibility” property of robust representations is the ability
to synthesize natural interpolations between any two inputs x1, x2 ∈ Rn. In particular, given two
images x1 and x2, we define the λ-interpolate between them as

xλ = min
x
‖ (λ ·R(x1) + (1− λ) ·R(x2))−R(x)‖2. (6)

where, for a given λ, we find xλ by solving (6) with projected gradient descent. Intuitively, this
corresponds to linearly interpolating between the points in representation space and then finding a
point in image space that has a similar representation. To construct a length-(T + 1) interpolation,
we choose λ = {0, 1

T ,
2
T , . . . 1}. The resulting interpolations, shown in Figure 12, demonstrate

that the λ-interpolates of robust representations correspond to a meaningful feature interpolation
between images. (For standard models constructing meaningful interpolations is impossible due to
the brittleness identified in Section 2—see Appendix B.1.3 for details.)
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Figure 12: Image interpolation using robust representations compared to their image-space coun-
terparts. The former appear perceptually plausible while the latter exhibit ghosting artifacts. For
pairs of images from the Restricted ImageNet test set, we solve (6) for λ varying between zero
and one, i.e., we match linear interpolates in representation space. Additional interpolations appear
in Appendix B.2.1 Figure 17. We demonstrate the ineffectiveness of interpolation with standard
representations in Appendix B.2.2 Figure 18.

Relation to other interpolation methods. We emphasize that linearly interpolating in robust rep-
resentation space works for any two images. This generality is in contrast to interpolations induced
by GANs (e.g. (Radford et al., 2016; Brock et al., 2019)), which can only interpolate between im-
ages generated by the generator. (Reconstructions of out-of-range images tend to be decipherable
but rather different from the originals Bau et al. (2019).) It is worth noting that even for models with
analytically invertible representations, interpolating in representation space does not yield semantic
interpolations Jacobsen et al. (2018).

A.6 PARAMETERS USED IN STUDIES OF ROBUST/STANDARD REPRESENTATIONS

A.6.1 FINDING REPRESENTATION-FEATURE CORRESPONDENCE

Dataset ε # steps Step size

Restricted ImageNet/ImageNet 1000 200 1

A.6.2 INVERTING REPRESENTATIONS AND INTERPOLATIONS

Dataset ε # steps Step size

Restricted ImageNet/ImageNet 1000 10000 1
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B OMITTED FIGURES

B.1 INVERTING REPRESENTATIONS

B.1.1 RECOVERING TEST SET IMAGES USING ROBUST REPRESENTATIONS

(a)

(b)

Figure 13: Robust representations yield semantically meaningful inverses: Original: randomly cho-
sen test set images from the Restricted ImageNet dataset; Inverse: images obtained by inverting the
representation of the corresponding image in the top row by solving the optimization problem (1)
starting from: (a) different test images and (b) Gaussian noise.
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B.1.2 RECOVERING OUT-OF-DISTRIBUTION INPUTS USING ROBUST REPRESENTATIONS

(a) Random kaleidoscope patterns.

(b) Samples from other ImageNet classes outside what the model is trained on.

Figure 14: Robust representations yield semantically meaningful inverses: (Original): randomly
chosen out-of-distribution inputs; (Inverse): images obtained by inverting the representation of the
corresponding image in the top row by solving the optimization problem (1) starting from Gaussian
noise.

B.1.3 INVERTING STANDARD REPRESENTATIONS

Figure 15: Standard representations do not yield semantically meaningful inverses: (Original): ran-
domly chosen test set images from the Restricted ImageNet dataset; (Inverse): images obtained by
inverting the representation of the corresponding image in the top row by solving the optimization
problem (1) starting from Gaussian noise.

19



Under review as a conference paper at ICLR 2020

B.1.4 REPRESENTATION INVERSION ON THE IMAGENET DATASET
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Figure 16: Visualization of inputs that are mapped to similar representations by models trained on
the ImageNet dataset. Target (x2) & Source (x1): random examples image from the test set; Robust
and Standard (x′1): result of minimizing the objective (4) to match (in `2-distance) the representation
of the target image starting from the corresponding source image for (top): a robust (adversarially
trained) and (bottom): a standard model respectively. For the robust model, we observe that the
resulting images are perceptually similar to the target image in terms of high-level features, while
for the standard model they often look more similar to the source image which is the seed for the
optimization process.

20



Under review as a conference paper at ICLR 2020

B.2 IMAGE INTERPOLATIONS

B.2.1 ADDITIONAL INTERPOLATIONS FOR ROBUST MODELS

Figure 17: Additional image interpolation using robust representations. To find the interpolation
in input space, we construct images that map to linear interpolations of the endpoints in robust
representation space. Concretely, for randomly selected pairs from the Restricted ImageNet test set,
we use (1) to find images that match to the linear interpolates in representation space (6).
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B.2.2 INTERPOLATIONS FOR STANDARD MODELS

Figure 18: Image interpolation using standard representations. To find the interpolation in input
space, we construct images that map to linear interpolations of the endpoints in standard represen-
tation space. Concretely, for randomly selected pairs from the Restricted ImageNet test set, we
use (1) to find images that match to the linear interpolates in representation space (6). Image space
interpolations from the standard model appear to be significantly less meaningful than their robust
counterparts. They are visibly similar to linear interpolation directly in the input space, which is in
fact used to seed the optimization process.
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B.3 DIRECT FEATURE VISUALIZATIONS FOR STANDARD AND ROBUST MODELS

B.3.1 ADDITIONAL FEATURE VISUALIZATIONS FOR THE RESTRICTED IMAGENET DATASET

Figure 19: Correspondence between image-level features and representations learned by a ro-
bust model on the Restricted ImageNet dataset. Starting from randomly chosen seed inputs
(noise/images), we use a constrained optimization process to identify input features that maximally
activate a given component of the representation vector (cf. Appendix A.6.1 for details). Specif-
ically, (left column): inputs to the optimization process, and (subsequent columns): features that
activate randomly chosen representation components, along with the predicted class of the feature.

Figure 20: Correspondence between image-level features and representations learned by a ro-
bust model on the Restricted ImageNet dataset. Starting from randomly chosen seed inputs
(noise/images), we use a constrained optimization process to identify input features that maximally
activate a given component of the representation vector (cf. Appendix A.6.1 for details). Specif-
ically, (left column): inputs to the optimization process, and (subsequent columns): features that
activate select representation components, along with the predicted class of the feature.
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Figure 21: Correspondence between image-level patterns and activations learned by standard and
robust models on the Restricted ImageNet dataset. Starting from randomly chosen seed inputs
(noise/images), we use PGD to find inputs that (locally) maximally activate a given component of
the representation vector (cf. Appendix A.6.1 for details). In the left column we have the original in-
puts (selected randomly), and in subsequent columns we visualize the result of the optimization (5)
for different activations, with each row starting from the same (far left) input for (top): a robust
(adversarially trained) ResNet-50 model, (middle): a standard ResNet-50 model and (bottom): a
standard VGG16 model.
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B.3.2 FEATURE VISUALIZATIONS FOR THE IMAGENET DATASET
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Figure 22: Correspondence between image-level patterns and activations learned by standard and
robust models on the complete ImageNet dataset. Starting from randomly chosen seed inputs
(noise/images), we use PGD to find inputs that (locally) maximally activate a given component of
the representation vector (cf. Appendix A.6.1 for details). In the left column we have the original in-
puts (selected randomly), and in subsequent columns we visualize the result of the optimization (5)
for different activations, with each row starting from the same (far left) input for (top): a robust
(adversarially trained) ResNet-50 model, (middle): a standard ResNet-50 model and (bottom): a
standard VGG16 model.
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B.4 ADDITIONAL EXAMPLES OF FEATURE MANIPULATION

Figure 23: Visualization of the results adding various neurons, labelled on the left, to randomly
chosen test images. The rows alternate between the original test images, and those same images
with an additional feature arising from maximizing the corresponding neuron.
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