
Training Structured Efficient Convolutional Layers

Anonymous Author(s)
Affiliation
Address
email

Abstract

Typical recent neural network designs are primarily convolutional layers, but1

the tricks enabling structured efficient linear layers (SELLs) have not yet been2

adapted to the convolutional setting. We present a method to express the weight3

tensor in a convolutional layer using diagonal matrices, discrete cosine transforms4

(DCTs) and permutations that can be optimised using standard stochastic gradient5

methods. A network composed of such structured efficient convolutional layers6

(SECL) outperforms existing low-rank networks and demonstrates competitive7

computational efficiency.8

1 Introduction9

Deep neural networks have evolved, and no longer contain the gigantic linear layers seen in Si-10

monyan & Zisserman (2015), instead opting for large convolutional feature maps and increased11

depth (Springenberg et al., 2014; He et al., 2016; Hu et al., 2018). This means that most of the12

network’s parameters and multiply-add (Mult-Add) operations are used in these convolutions. We13

present a method to reduce both, while keeping the network structure the same.14

SELLs provide a framework to approximate linear layers that we adapt to make convolutions more15

efficient. A convolution can be viewed as a matrix multiplication between the extracted patches from16

the input tensor and the weights of the filters passed over the image. In this work, we show that this17

matrix multiplication can be replaced with a structured efficient transformation based on the ACDC18

layer (Moczulski et al., 2016). In practice, this gives us a specific parameterisation at training time,19

which we describe in Section 3.20

This structured efficient parameterisation of a convolutional layer consumes far fewer parameters21

than a full convolutional layer, scaling as O(N) versus O(N2) in the number of channels N . At22

the same time, it can be implemented efficiently at test time using a fast DCT. In our experiments,23

detailed in Section 4, we show that, using distillation (Crowley et al., 2018), a network composed of24

primarily this type of convolution can learn to classify CIFAR-10 to 91.43% accuracy, while only25

using 46,442 parameters. For comparison, this is a greater accuracy and fifty times fewer parameters26

than the network presented in Hinton et al. (2016).27

2 Background28

SELLs are aimed at compressing the linear layers of convolutional networks. Typically, they are29

composed as an operator Φ:30

y = xΦ (D,P,S,B) (1)

In which, D are diagonal matrices, P are permutations, S are sparse matrices and B are bases, such31

as Fourier, Cosine (Moczulski et al., 2016) or Hadamard (Yang et al., 2015; Ailon & Chazelle, 2009)32

Submitted to 32nd Conference on Neural Information Processing Systems (NIPS 2018). Do not distribute.



transforms. Using these component transformations, the resulting random projections can approxi-33

mate random matrices used in deep learning. In this work, we build on the ACDC SELL (Moczulski34

et al., 2016).35

Our approach can be viewed as yielding a low-rank tensor to use in the convolutional layers. Previous36

efforts on low-rank convolutional networks have focused on transforming pre-trained networks (Jader-37

berg et al., 2014; Alvarez & Petersson, 2016; Denton et al., 2014; Lebedev et al., 2014) or training38

networks with appropriate regularisers (Alvarez & Salzmann, 2017; Wen et al., 2017).39

Networks with low-rank constraints are markedly more difficult to train. In Garipov et al. (2016)40

the authors train such a network on CIFAR-10, but only achieve a 2× compression rate over a41

convolutional network, and attain less than 90% accuracy. Other papers have focused on similar42

tensor decompositions; Su et al. (2018) obtain 91.28% accuracy compressing a ResNet-34. However,43

neither decomposition affects the number of Mult-Adds used at test time, whereas our method44

achieves a substantial reduction.45

3 Structured Efficient Convolutional Layers46

If we define a function to map the patches over which a convolution passes on an input tensor to47

rows of a matrix as F, we can express convolution using a kernel matrix W as y = F−1(F(x)W).48

This is the common algorithm known as im2col-gemm (Chetlur et al., 2014). From this, we define a49

Structured Efficient Convolutional Layer (SECL) with the following parameterisation for W:50

W =

L∏
l=1

AlCDlC
−1P (2)

Where A and D are diagonal matrices, C and C−1 are the forward and inverse DCTs and P is a51

riffle shuffle.52

Using the weight matrix in Equation 2 is equivalent to a stack of ACDC layers (Moczulski et al.,53

2016); the permutation being implemented by a riffle shuffle. A riffle shuffle is a fixed permutation,54

splitting the input in half and then interleaving the two halves; equivalent to a perfect riffle shuffle55

with a deck of cards (Gilbert, 1955). As described in Section 4, this was found to work as well as a56

fixed random permutation and can be evaluated much faster (Zhang et al., 2018).57

Substituting this parameterisation into convolutional layers presents a problem: most kernel matrices58

are not square, with one exception. Kernel matrices in pointwise convolutions are square when the59

number of input channels matches the output. To increase the number of channels, we repeat the60

input along the channel dimension. As channels commonly increase in integer steps, this allows us to61

implement almost all pointwise convolutions.62

Given a pointwise convolution, we can now implement a convolution with any kernel size by preceding63

the pointwise with a grouped convolution. This is known as a depthwise separable convolution and64

has been demonstrated as a substitute for convolution (Chollet, 2016). This can also be implemented65

using an ACDC parameterisation for each filter, but there is not much benefit, as shown in Section 4.66

The motivation underlying ACDC layers comes from their complex equivalent; using Fourier trans-67

forms, F, it is possible to show (Moczulski et al., 2016; Huhtanen, 2008) almost all matrices M can68

be factored as:69

M =

[
N−1∏
i=1

D2i−1R2i

]
D2N−1 (3)

Where D2i−1 is a diagonal and R2i is composed of FDF−1.70

However, machine learning systems typically operate using real numbers, leading to the decision to71

use the DCT. Despite the break in theory, the ACDC layer was found to work well as a replacement72

for the fully connected layers in CaffeNet (Moczulski et al., 2016).73

2



Table 1: Results of training a Wide ResNet with SECL substituting the convolutional layers. WRN-
SECL refers to a Wide ResNet using full rank grouped 3x3 convolutions, while WRN-SECL-LR
refers to using ACDC-parameterised grouped 3x3 convolutions. Networks trained without distillation
are reported under Scratch, while those trained using any form of distillation are under Distilled.

Scratch Distilled
Model Params Mult-Adds Top 1 Top 1

WRN(40,2) 2.24M 328M 4.8% –
WRN-SECL(40,2) 46.4K 33.2M 10.42% 8.57%
WRN-SECL-LR(40,2) 38.7K 33.2M 13.4% 10.85%
Belagiannis et al. (2018) 0.27M – – 8.08%
Hinton et al. (2016) 0.27M – – 8.88%
Su et al. (2018) 40K – – 8.72%

4 Experiments74

We demonstrate the effectiveness of this compression strategy in Section 4.1 in experiments on75

CIFAR-10. PyTorch (Paszke et al.) was used to implement experiments. All code will be made76

available following the reviewing process.77

Linear Approximation We compared the riffle shuffle to a fixed random permutation on the toy78

synthetic regression problem described in Section 6.1 of Moczulski et al. (2016). Both permutations79

converged to a final mean squared error of 0.02.80

Importance of Weight Decay A small network based on the All Convolutional network (Springen-81

berg et al., 2014) was trained using Hyperband (Li et al., 2017) to tune the weight decay term, learning82

rate and minibatch size on the CIFAR-10 dataset (Krizhevsky, 2009). The networks converging well83

had weight decay around 10−5, prompting us to use 8.8× 10−6 in all experiments.84

4.1 Convolutional Networks85

To compare with contemporary works on compressed networks, we focus on a recent network86

architecture, but SECLs could be effectively substituted into any convolutional network. The network87

used in experiments was a Wide ResNet with depth 40 and width factor 2 (Zagoruyko & Komodakis,88

2016), and we train it on the CIFAR-10 dataset (Krizhevsky, 2009). We use 12 ACDC layers in each89

convolutional layer, to match the original paper (Moczulski et al., 2016).90

The results are shown in Table 1. The results are most comparable to those of Su et al. (2018), in91

which the authors compress a network using a low-rank approximation. We performed distillation92

using attention-transfer (Zagoruyko & Komodakis, 2017) with the method described in Crowley et al.93

(2018). Each other paper reported as distilled in Table 1 implements its own form of distillation,94

detailed in each paper.95

Each ACDC layer is expected to cost 4N + 5N log2(N) Mult-Adds at test time. However, we found96

that the early layers, where the dimension of the effective matrix multiplication is low, the Mult-Adds97

used by the unrolled ACDC layers is greater than just applying the parameterised filter tensor in a98

convolution. In this case, we assume that at test time the implementation of layers would depend on99

which would be cheaper.100

5 Conclusion101

It is well known that deep networks are overparameterised (Denil et al., 2013), but networks with102

low-rank weight matrices have failed to gain traction as they are typically difficult to train. Fortunately,103

for networks with structured efficient parameterisations we can use the same tools we would use104

to train a standard deep network, requiring a minimum of hyperparameter tuning. At test time,105

they can be implemented extremely efficiently using FFT-like algorithms or, as noted in Moczulski106

et al. (2016), by an optical processor (Saade et al., 2015). In this work, we have shown that these107

parameterisations aren’t restricted to linear layers, and can be applied to convolutional layers too;108

resulting in small, efficient neural networks.109

3



References110

Ailon, N. and Chazelle, B. The fast Johnson–Lindenstrauss transform and approximate nearest111

neighbors. SIAM Journal on computing, 39(1):302–322, 2009.112

Alvarez, J. M. and Salzmann, M. Compression-aware training of deep networks. In Advances in113

Neural Information Processing Systems, 2017.114

Alvarez, J. M. and Petersson, L. DecomposeMe: Simplifying convnets for end-to-end learning.115

arXiv:1606.05426, 2016.116

Belagiannis, V., Farshad, A., and Galasso, F. Adversarial network compression. CoRR,117

abs/1803.10750, 2018. URL http://arxiv.org/abs/1803.10750.118

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., and Shelhamer, E.119

cuDNN: Efficient primitives for deep learning. arXiv:1410.0759, 2014.120

Chollet, F. Xception: Deep learning with depthwise separable convolutions. CoRR, abs/1610.02357,121

2016. URL http://arxiv.org/abs/1610.02357.122

Crowley, E. J., Gray, G., and Storkey, A. Moonshine: Distilling with cheap convolutions. In Advances123

in Neural Information Processing Systems, 2018.124

Denil, M., Shakibi, B., Dinh, L., Ranzato, M., and de Freitas, N. Predicting parameters in deep125

learning. In Advances in Neural Information Processing Systems, 2013.126

Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., and Fergus, R. Exploiting linear structure within127

convolutional networks for efficient evaluation. In Advances in Neural Information Processing128

Systems, 2014.129

Garipov, T., Podoprikhin, D., Novikov, A., and Vetrov, D. P. Ultimate tensorization: compressing130

convolutional and FC layers alike. arXiv:1611.03214, 2016.131

Gilbert, E. Theory of shuffling. Technical report, Bell Labs, Murray Hill, New Jersey, U.S., 1955.132

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings133

of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.134

Hinton, G., Vinyals, O., and Dean, J. Distilling the knowledge in a neural network. CoRR,135

abs/1503.02531, 2016. URL http://arxiv.org/abs/1503.02531.136

Hu, J., Shen, L., and Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE137

Conference on Computer Vision and Pattern Recognition, 2018.138

Huhtanen, M. Approximating ideal diffractive optical systems. Journal of Mathematical Analysis139

and Applications, 345(1):53–62, 2008.140

Jaderberg, M., Vedaldi, A., and Zisserman, A. Speeding up Convolutional Neural Networks with141

Low Rank Expansions. In British Machine Vision Conference, 2014.142

Krizhevsky, A. Learning multiple layers of features from tiny images. Master’s thesis, University of143

Toronto, 2009.144

Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., and Lempitsky, V. Speeding-up convolutional145

neural networks using fine-tuned CP-decomposition. arXiv:1412.6553, 2014.146

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. Hyperband: A novel bandit-147

based approach to hyperparameter optimization. The Journal of Machine Learning Research, 18148

(1):6765–6816, 2017.149

Moczulski, M., Denil, M., Appleyard, J., and de Freitas, N. ACDC: a structured efficient linear layer.150

In International Conference on Learning Representations, 2016.151

Paszke, A., Gross, S., Chintala, S., and Chanan, G. PyTorch: Tensors and dynamic neural networks152

in Python with strong GPU acceleration. https://github.com/pytorch/pytorch. Accessed:153

31st October 2017.154

Saade, A., Caltagirone, F., Carron, I., Daudet, L., Drémeau, A., Gigan, S., and Krzakala, F. Random155

projections through multiple optical scattering: Approximating kernels at the speed of light. CoRR,156

abs/1510.06664, 2015. URL http://arxiv.org/abs/1510.06664.157

Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image recognition.158

In International Conference on Learning Representations, 2015.159

4

http://arxiv.org/abs/1803.10750
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1503.02531
https://github.com/pytorch/pytorch
http://arxiv.org/abs/1510.06664


Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. A. Striving for simplicity: The all160

convolutional net. arXiv:1412.6806, 2014.161

Su, J., Li, J., Bhattacharjee, B., and Huang, F. Tensorized Spectrum Preserving Compression for162

Neural Networks. arXiv:1805.10352, 2018.163

Wen, W., Xu, C., Wu, C., Wang, Y., Chen, Y., and Li, H. Coordinating filters for faster deep neural164

networks. In Proceedings of the IEEE International Conference on Computer Vision, 2017.165

Yang, Z., Moczulski, M., Denil, M., de Freitas, N., Smola, A., Song, L., and Wang, Z. Deep fried166

convnets. In Proceedings of the IEEE International Conference on Computer Vision, 2015.167

Zagoruyko, S. and Komodakis, N. Wide residual networks. In British Machine Vision Conference,168

2016.169

Zagoruyko, S. and Komodakis, N. Paying more attention to attention: Improving the performance170

of convolutional neural networks via attention transfer. In International Conference on Learning171

Representations, 2017.172

Zhang, X., Zhou, X., Lin, M., and Sun, J. ShuffleNet: An extremely efficient convolutional neural173

network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and174

Pattern Recognition, 2018.175

5


	Introduction
	Background
	Structured Efficient Convolutional Layers
	Experiments
	Convolutional Networks

	Conclusion

