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ABSTRACT

Regularization and normalization have become indispensable components in
training deep neural networks, resulting in faster training and improved general-
ization performance. We propose the projected error function regularization loss
(PER) that encourages activations to follow the standard normal distribution. PER
randomly projects activations onto one-dimensional space and computes the reg-
ularization loss in the projected space. PER is similar to the Pseudo-Huber loss in
the projected space, thus taking advantage of both L' and L? regularization losses.
Besides, PER can capture the interaction between hidden units by projection vec-
tor drawn from a unit sphere. By doing so, PER minimizes the upper bound of the
Wasserstein distance of order one between an empirical distribution of activations
and the standard normal distribution. To the best of the authors’ knowledge, this is
the first work to regularize activations via distribution matching in the probability
distribution space. We evaluate the proposed method on the image classification
task and the word-level language modeling task.

1 INTRODUCTION

Training of deep neural networks is very challenging due to the vanishing and exploding gradient
problem (Hochreiter; |1998;; |Glorot & Bengiol 2010), the presence of many flat regions and saddle
points (Shalev-Shwartz et al.l [2017), and the shattered gradient problem (Balduzzi et al., 2017). To
remedy these issues, various methods for controlling hidden activations have been proposed such as
normalization (loffe & Szegedy, |2015; |[Huang et al., [2018), regularization (Littwin & Wolf} |2018),
initialization (Mishkin & Matas|, 2016} Zhang et al.,[2019), and architecture design (He et al.,[2016).

Among various techniques of controlling activations, one well-known and successful path is con-
trolling their first and second moments. Back in the 1990s, it has been known that the neural net-
work training can be benefited from normalizing input statistics so that samples have zero mean
and identity covariance matrix (LeCun et al., {1998} [Schraudolph, [1998)). This idea motivated batch
normalization (BN) that considers hidden activations as the input to the next layer and normalizes
scale and shift of the activations (loffe & Szegedy, [2015)).

Recent works show the effectiveness of different sample statistics of activations for normalization
and regularization. Deecke et al.|(2019) and Kalayeh & Shah|(2019) normalize activations to several
modes with different scales and translations. Variance constancy loss (VCL) implicitly normalizes
the fourth moment by minimizing the variance of sample variances, which enables adaptive mode
separation or collapse based on their prior probabilities (Littwin & Wolf],[2018). BN is also extended
to whiten activations (Huang et al., [2018;[2019)), and to normalize general order of central moment
in the sense of L? norm including L' and L (Liao et al., 2016; [Hoffer et al.,[2018).

In this paper, we propose a projected error function regularization (PER) that regularizes activations
in the Wasserstein probability distribution space. Specifically, PER pushes the distribution of acti-
vations to be close to the standard normal distribution. PER shares a similar strategy with previous
approaches that dictates the ideal distribution of activations. Previous approaches, however, deal
with single or few sample statistics of activations. On the contrary, PER regularizes the activations
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Figure 1: Limitation of statistics in terms of representing the probability distribution. In all subplots,
« has zero mean and unit variance and y ~ N(0,1). In(a) (z,y) ~ N(0,I). In(b), z ~ N(0, 1) but
correlated with y. In (c), x follows a skewed distribution. In (d), « follows a bi-modal distribution.
Standardization cannot differentiate (a)-(d) and whitening cannot differentiate (a), (c), and (d).

by matching the probability distributions, which considers different statistics simultaneously, e.g.,
all orders of moments and correlation between hidden units. The extensive experiments on multiple
challenging tasks show the effectiveness of PER.

2 RELATED WORKS

Many modern deep learning architectures employ BN as an essential building block for better per-
formance and stable training even though its theoretical aspects of regularization and optimization
are still actively investigated (Santurkar et al., 2018}; [Kohler et al.| 2018} Bjorck et al., [2018}; [Yang
et al.,[2019). Several studies have applied the idea of BN that normalizes activations via the sample
mean and the sample variance to a wide range of domains such as recurrent neural network (Le1 Ba
et al.| 2016) and small batch size training (Wu & Hel 2018).

Huang et al.| (2018} 2019) propose normalization techniques whitening the activation of each layer.
This additional constraint on the statistical relationship between activations improves the gener-
alization performance of residual networks compared to BN. Although the correlation between
activations are not explicitly considered, dropout prevents activations from being activated at the
same time, called co-adaptation, by randomly dropping the activations (Srivastava et al., 2014), the
weights (Wan et al., 2013)), and the spatially connected activations (Ghiasi et al., 2018]).

Considering BN as the normalization in the L? space, several works extend BN to other spaces, i.e.,
other norms. Streaming normalization (Liao et al.,[2016) explores the normalization of a different
order of central moment with LP norm for general p. Similarly, Hoffer et al.| (2018) explores s
and L°° normalization, which enable low precision computation. [Littwin & Wolf| (2018)) proposes a
regularization loss that reduces the variance of sample variances of activation that is closely related
to the fourth moment.

The idea of controlling activations via statistical characteristics of activations also has motivated
initialization methods. An example includes balancing variances of each layer (Glorot & Bengio,
2010; He et al.,|2015)), bounding scale of activation and gradient (Mishkin & Matas| [2016; |Balduzzi
et al., 2017; |Gehring et al., [2017; [Zhang et al., 2019), and norm preserving (Saxe et al., [2013)).
Although the desired initial state may not be maintained during training, experimental results show
that they can stabilize the learning process as well.

Recently, the Wasserstein metric has gained much popularity in a wide range of applications in deep
learning with some nice properties such as being a metric in a probability distribution space without
requiring common supports of two distributions. For instance, it is successfully applied to a multi-
labeled classification (Frogner et al.,|2015)), gradient flow of policy update in reinforcement learning
(Zhang et al., [2018), training of generative models (Arjovsky et al., |2017; |Gulrajani et al., 2017;
Kolouri et al.,[2019), and capturing long term semantic structure in sequence-to-sequence language
model (Chen et al., 2019).

While the statistics such as mean and (co)variance are useful summaries of a probability distribution,
they cannot fully represent the underlying structure of the distribution (Fig. [I). Therefore, regular-
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izing or normalizing activation to follow the target distribution via statistics can be ineffective in
some cases. For instance, normalizing activations via single mean and variance such as BN and
decorrelated BN (Huang et al.| 2018)) can be inadequate in learning multimodal distribution (Bilen
& Vedaldi, 2017} |Deecke et al., 2019). This limitation motivates us to investigate a more general
way of regularizing the distribution of activations. Instead of controlling activations via statistics,
we define the target distribution and then minimize the Wasserstein distance between the activation
distribution and the target distribution.

3 PROJECTED ERROR FUNCTION REGULARIZATION

We consider a neural network with L layers each of which has d; hidden units in layer [. Let
D = {(w;,y;)}?_; be n training samples which are assumed to be i.i.d. samples drawn from a
probability distribution Py ,. In this paper, we consider the optimization by stochastic gradient
descent with mini-batch of b samples randomly drawn from D at each training iteration. For ¢-th
element of the samples, the neural network recursively computes:

hl=¢ (WAl + b)) (D

where hY = x; € R%, h! € R% is an activation in layer [, and ¢ is an activation function. In the
case of recurrent neural networks (RNNs), the recursive relationship takes the form of:

h’f‘ - d) ( rechi 1; + Wzlnhl ! + bl) (2)

where hi is an activation in layer [ at time ¢ and b}, is an initial state. Without loss of gener-
ality, we focus on activations in layer [ of feed- forward networks and the mini-batch of samples

{(z, yl)} ,—1- Throughout this paper, we let f ! be a function made by compositions of recurrent
relation in equationup to layer , i.e., hl = f'(x;), and f} be a j-th output of f.

This paper proposes a new regularization loss, called projected error function regularization (PER),
that encourages activations to follow the standard normal distribution. Specifically, PER directly

matches the distribution of activations to the target distribution via the Wasserstein metric. Let
u € P(R%) be the Gaussian measure defined as j(A) = 2(1[% Jyexp (=3 || @ ||?) de and vy, =

+ 52,61 € P(R?) be the empirical measure of hidden activations where 0y, is the Dirac unit mass
on hi Then, the Wasserstein metric of order p between p and vy, is defined by:

1/p
W) = (it [ e wtis.d) )
R4 xR%

m€[T(1,vy1)

where [](p, vy ) is the set of all joint probability measures on R% x R% having the first and the
second marginals ;. and 14, respectively.

Because direct computation of equation [3|is intractable, we consider the sliced Wasserstein distance
(Rabin et al.l |2011) approximating the Wasserstein distance by projecting the high dimensional
distributions onto R (Fig. [2). It is proved by that the sliced Wasserstein and the Wasserstein are
equivalent metrics (Santambrogio, 2015; [Bonnotte, [2013)). The sliced Wasserstein of order one
between p and 14, can be formulated as:

b
Fo( % Z .| dzdX\(0)
- )

where S%~! is a unit sphere in R%, 19 and Vpt, Tepresent the measures projected to the angle 6,

SWi (p, vt) = Wi (pe; viy )dA(O / /
Sd—1 Sd—1

A is a uniform measure on S¢~!, and F,(x) is a cumulative distribution function of pg. Herein,
equationEIcan be evaluated through sorting {(h},8) }. for each angle 6.

While we can directly use the sliced Wasserstein in equation [d]as a regularization loss, it has a com-
putational dependency on the batch dimension due to the sorting. The computational dependency
between samples may not be desirable in distributed and large-batch training that is becoming more
and more prevalent in recent years. For this reason, we remove the dependency by applying the
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Figure 2: Illustration of minimization of the sliced Wasserstein distance between the current distri-
bution and the target distribution. Note that it only concerns a distance in the projected dimension.

Algorithm 1 Backward pass under PER
Input The number of Monte Carlo evaluations s, an activation for ¢-th sample h;, the gradient

of the loss Vi, £, a regularization coefficient A

1: g+ 0

2: for k < 1to s do
3: Sample v ~ N(0, 1)
4 0+ v/|vl-2
5: Project h} < (h;, )
6: gi + erf (h/V/2)
7.
8:
9:

© g gtgf/s
end for
return Vp. L + \g

Minkowski inequality to equation 4] and obtain the regularization loss Ly, (Vpt):

SWh (e, v ) 7/ /OO 1Z’FP‘9 O)<z

- 2;/&1_1 ((hﬁ,0>erf <<h3;>) + \/?exp (‘W)) MO = Lper ) ()

whose gradient with respect to h! is:

Vit Lper (Vi) = %EGNU(S@,I) fext (0. 1/v2)) 0] ©)

where U (S%~1) is the uniform distribution on S#~!. In this paper, expectation over U (S%~1) is
approximated by the Monte Carlo method with s number of samples. Therefore, PER results in
simple modification of the backward pass as in Alg. [1]

dzdA(6)

3

Encouraging activations to follow the standard normal distribution can be motivated by the natu-
ral gradient (Amaril [1998)). The natural gradient is the steepest descent direction in a Riemannian
manifold, and it is also the direction that maximizes the probability of not increasing generaliza-
tion error (Roux et al.| [2008). The natural gradient is obtained by multiplying the inverse Fisher
information matrix to the gradient. In |Raiko et al.[|(2012) and Desjardins et al.| (2015)), under the
independence assumption between forward and backward passes and activations between different
layers, the Fisher information matrix is a block diagonal matrix each of which block is given by:

oL oc T Y oL o™
Fi = E@y)~oey) Avec(W') Ovec(WH) Ea [h h } E@.y) dal dal )

where vec(W!) is vectorized W', h!=! = fi=1(z), and a' = W' f!=1(z) + b! for z ~ x.

Since computing the inverse Fisher information matrix is too expensive to perform every iterations,
previous studies put efforts into developing reparametrization techniques, activation functions, and
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Figure 3: Illustration of PER and its gradient in R. Herein, PER is shifted by ¢ so that £, (0) — ¢ =
0. The Huber loss is defined as h(x) = |z| — 0.5 in |x| > 1 and h(z) = 22/2 in || < 1 and the
Pseudo-Huber loss is defined as g(z) = v1 + 22 — 1.

regularization losses to make F" close to I, thereby making the gradient close to the natural gradient.
For instance, making zero mean and unit variance activations (LeCun et al., |1998} [Schraudolph)
1998 |Glorot & Bengiol |2010; Raiko et al., [2012; Wiesler et al., [2014) and decorrelated activations

(Cogswell et al., 2016; | Xiong et al.,2016; Huang et al., 2018)) make E {hlilhlflT} ~ I, and these

techniques result in faster training and improved generalization performance. In this perspective, it
is expected that PER will enjoy the same advantages by matching 14, to N(0, T).

3.1 COMPARISON TO CONTROLLING ACTIVATIONS IN LP SPACE

In this subsection, we theoretically compare PER with existing methods that control activations in
LP space. LP(R%) is the space of measurable functions whose p-th power of absolute value is
Lebesgue integrable, and norm of f € LP(R%) is given by:

1/p
150~ ([, veran@) " < ®
R0
where Py is the unknown probability distribution generating training samples {x;}” ;. Since we

have no access to Py, it is approximated by the empirical measure of mini-batch samples.

The L? norm is widely used in the literature for regularization and normalization of neural networks.
For instance, activation norm regularization (Merity et al., 2017a)) penalizes L2 norm of activations.
As another example, BN and its p-th order generalization use L” norm such that the norm of the
centralized activation, or pre-activation, is bounded:

h’éj — Ky
1/p
(i sInk; = l?)

JHj =330 hh ; is the sample mean, B; is a learnable shift parameter,

(b)) =~Le(nl) + 8L, €(hly) = 9)

l
%

where hl; is j-th unit of h
and 7} is a learnable scale parameters. Herein, we have || ¢ o f! ||,= 1 for any unit j and any
empirical measure, thus || ¢ [|,<[| 75 o 1[I, + || B [lp= |7}] + 1851,

PER differs from L” norm-based approaches in two aspects. First, PER can be considered as LP
norm with adaptive order in the projected space because it is very similar to the Pseudo-Huber loss
in one-dimensional space (Fig. [3). Herein, the Pseudo-Huber loss is a smooth approximation of
the Huber loss (Huber, |1964). Therefore, PER smoothly changes its behavior between L' and L2
norms, making the regularization loss sensitive to small values and insensitive to outliers with large
values. However, the previous approaches use predetermined order p, which makes the norm to
change insensitively in the near-zero region when p < 1 or to explode in large value region when
p>1

Second, PER captures the interaction between hidden units by projection vectors, unlike LP norm.
To see this, let || f* 5= ¢ 32, [hl;[" = 3 32, |(hi, e;)[P where {ej}?’zl is the natural basis of
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Table 1: Top-1 error rates of ResNets on CIFAR-10.
Lower is better. All numbers are rounded to two dec-
imal places. Boldface indicates the minimum error. *
and ** are results from Zhang et al.|(2019) and |He et al.

(2016), respectively.

Table 2: Top-1 error rates of 11-layer
CNNs on tiny ImageNet. Lower is bet-
ter. All numbers are rounded to two
decimal places. Boldface indicates the
minimum error. Numbers in parenthe-
ses represent results in [Littwin & Wolf

(2018).
Model Method Test error
ResNet-56 Vanilla 7.21
BN 6.95 Method  Test error
PER 6.72 Vanilla  37.45 (39.22)
ResNet-110  Vanilla  6.90 (7.24%) BN 39.22 (40.02)
BN 6.62 (6.61%%) VCL (37.30)
PER 6.19 PER 36.74

R% . That is, the norm computes the regularization loss, or the normalizer, of activations with the
natural basis as a projection vector. However, PER uses general projection vectors 6 ~ U(S% 1),
capturing the interaction between hidden units when computing the regularization loss. These two
differences make PER more delicate criterion for regularizing activations in deep neural networks
than LP norm, as we will show in the next section.

4 EXPERIMENTS

This section illustrates the effectiveness of PER through experiments on different benchmark tasks
with various datasets and architectures. We compare PER with BN normalizing the first and second
moments and VCL regularizing the fourth moments. PER is also compared with L' and L? acti-
vation norm regularizations that behave similarly in some regions of the projected space. We then
analyze the computational complexity PER and the impact of PER on the distribution of activations.
Throughout all experiments, we use 256 number of slices and the same regularization coefficient for
the regularization losses computed in each layer.

4.1 IMAGE CLASSIFICATION IN CIFAR-10, CIFAR-100, AND TINY IMAGENET

We evaluate PER in image classification task in CIFAR (Krizhevsky et al., [2009) and a subset of
ImageNet (Russakovsky et al.| 20135), called tiny ImageNet. We first evaluate PER with ResNet
(He et all 2016) in CIFAR-10 and compare it with BN and a vanilla network initialized by fixup
initialization (Zhang et al., |2019). We match the experimental details in training under BN with |He
et al.[(2016) and under PER and vanilla with|Zhang et al.|(2019), and we obtain similar performances
presented in the papers. Herein, we search the regularization coefficient over { 3e-4, le-4, 3e-5, le-
5 }. Table [I| presents results of CIFAR-10 experiments with ResNet-56 and ResNet-110. PER
outperforms BN as well as vanilla networks in both architectures. Especially, PER improves the test
errors by 0.49 % and 0.71% in ResNet-56 and ResNet-110 without BN, respectively.

We also performed experiments on an 11-layer convolutional neural network (11-layer CNN) ex-
amined in VCL (Littwin & Wolf] 2018). This architecture is originally proposed in Clevert et al.
(2016). Following [Littwin & Wolf] (2018])), we perform experiments on 11-layer CNNs with ELU,
ReLU, and Leaky ReLU activations, and match experimental details in [Littwin & Wolf| (2018)) ex-
cept that we used 10x less learning rate for bias parameters and additional scalar bias after ReLU
and Leaky ReLU based on|Zhang et al.|(2019). By doing so, we obtain similar results presented in
Littwin & Wolfl (2018). Again, a search space of the regularization coefficient is { 3e-4, le-4, 3e-5,
le-5 }. For ReLU and Leaky ReLU in CIFAR-100, however, we additionally search { 3e-6, le-6,
3e-7, 1e-7 } because of divergence of training with PER in these setting. As shown in Table PER
shows the best performances on four out of six experiments. In other cases, PER gives compatible
performances to BN or VCL, giving 0.16 % less than the best performances.

Following |[Littwin & Wolf] (2018), PER is also evaluated on tiny ImageNet. In this experiment, the
number of convolutional filters in each layer is doubled. Due to the limited time and resources, we
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Table 3: Top-1 error rates of 11-layer CNNs on CIFAR-10 and CIFAR-100. Lower is better. All
numbers are rounded to two decimal places. Boldface indicates the minimum error. Numbers in
parentheses represent results in Littwin & Wolf| (2018).

Activation Method CIFAR-10 CIFAR-100

ReLU Vanilla  8.43 (8.36)  29.45 (32.80)
BN 7.53(7.78)  29.13(29.10)
VCL  7.80(7.80) 30.30 (30.30)
PER 7.21 29.29

LeakyReLU Vanilla  6.73 (6.70)  26.50 (26.80)
BN 6.38 (7.08)  26.83 (27.20)
VCL  6.45(6.45) 26.30 (26.30)
PER 6.29 25.50

ELU Vanilla  6.74 (6.98) 27.53 (28.70)
BN 6.69 (6.63)  26.60 (26.90)
VCL 626 (6.15) 25.86 (25.60)
PER 6.42 25.73

conduct experiments only with ELU that gives good performances for PER, BN, and VCL in CIFAR.
As shown in Table 2] PER is also effective in the larger model in the larger image classification
dataset.

4.2 LANGUAGE MODELING IN PTB AND WIKITEXT2

We evaluate PER in word-level language modeling task in PTB (Mikolov et al.,2010) and WikiText2
(Merity et al., 2017b). We apply PER to LSTM with two layers having 650 hidden units with
and without reuse embedding (RE) proposed in |Inan et al.| (2017) and |Press & Wolf] (2016)), and
variational dropout (VD) proposed in|Gal & Ghahramani (2016). We used the same configurations
with Merity et al.|(2017a) and failed to reproduce the results in Merity et al.| (2017a). Especially,
when we rescale gradient when its norm exceeds 10, we observed divergence or bad performance
(almost 2x perplexity compared to the published result). Therefore, we rescale gradient with norm
over 0.25 instead of 10 based on the default hyperparameter of the PyTorch word-level language
modeﬂ that is also mentioned in |[Merity et al.|(2017a). We also train the networks for 60 epochs
instead of 80 epochs since validation perplexity is not improved after 60 epochs in most cases. In this
task, PER is compared with recurrent BN (RBN;|Cooijmans et al., 2017} because BN is not directly
applicable to LSTM. We also compare PER with L' and L? activation norm regularizations. Herein,
the search space of regularization coefficients of PER, L' regularization, and L? regularization is
{3e-4, le-4, 3e-5 }. For L' and L? penalties in PTB, we search additional coefficients over { le-5,
3e-6, le-6, 3e-6, le-6, 3e-7, le-7 } because the searched coefficients seem to constrain the capacity.

We list in Table [ the perplexities of methods on PTB and WikiText2. While all regularization
techniques show regularization effects by giving improved test perplexity, PER gives the best test
perplexity except LSTM and RE-VD-LSTM in the PTB dataset wherein PER is the second-best
method. We also note that naively applying RBN often reduces performance. For instance, RBN
increases test perplexity of VD-LSTM by about 5 in PTB and WikiText2.

4.3  ANALYSIS

In this subsection, we analyze the computational complexity of PER and its impact on closeness to
the standard normal distribution in the 11-layer CNN.

!Available in https://github.com/pytorch/examples/tree/master/word_language_
model
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Table 4: Validation and test perplexities on PTB and WikiText2. Lower is better. All numbers are
rounded to one decimal place. Boldface indicates minimum perplexity.

PTB WikiText2
Model Method Valid  Test Valid  Test
LSTM Vanilla 123.2 122.0 1389 1327

L' penalty 119.6 114.1 137.7 130.0
[2penalty 1205 1152 1360 131.1

RBN 118.2 115.1 1562 1483
PER 1185 1145 1342 129.6
RE-LSTM Vanilla 114.1 1122 1292 1232

L' penalty 1122 1085 128.6 122.7
L? penalty 116.6 1082 1265 1233

RBN 113.6 1104 138.1 131.6
PER 110.0 108.5 1232 1174
VD-LSTM Vanilla 84.9 81.1 99.6 945

L' penalty 849 815 982 929
L2 penalty 84.5 812 988 942
RBN 89.7 864 1043 99.4
PER 841 807 981 92.6

RE-VD-LSTM  Vanilla 78.9 75.7 914 86.4
L' penalty 783  75.1 90.5 86.1
L?penalty 792  75.8 90.3  86.1
RBN 83.7 80.5 95.5 90.5
PER 78.1 749 90.6 859

4.3.1 COMPUTATIONAL COMPLEXITY

PER has no additional parameters. However, BN and VCL require additional parameters for each
channel and each location and channel in every layer, respectively; that is, 2.5K and 350K number
of parameters are introduced in BN and VCL in the 11-layer CNN, respectively. In terms of time
complexity, PER has the complexity of O(bd;s) for projection operation in each layer {. On the
other hand, BN and VCL have O(bd;) complexities. In our benchmarking, each training iteration
takes 0.071 seconds for a vanilla network, 0.083 seconds for BN, 0.087 for VCL, and 0.093 seconds
for PER on a single NVIDIA TITAN X. Even though PER requires slightly more training time than
BN and VCL, this disadvantage can be mitigated by computation of PER is only required in training
and PER does not have additional parameters.

4.3.2 CLOSENESS TO THE STANDARD NORMAL DISTRIBUTION

To examine the effect of PER on the closeness to A/ (0, I'), we analyze the distribution of activations
in 11-layer CNN in different perspectives. We first analyze the distribution of a single activation hé
for some unit j and layer [ (Fig. ). We observe that changes in probability distributions between two
consecutive epochs are small under BN because BN bound the L? norm of activations into learned
parameters. On the contrary, activation distributions under vanilla and PER are jiggled between
two consecutive epochs. However, PER prevents the variance explosion and pushes the mean to
zero. As shown in Fig. [4] while variances of Vho under both PER and Vanilla are very high at the

beginning of training, the variance keeps moving towards one under PER during training. Similarly,
PER recovers biased means of 14,3 and v,9 at the early stage of learning.
J J

To precisely evaluate closeness to the standard normal distribution, we also analyze
SW1(N(0,I),14,:) at each epoch (Fig. . Herein, the sliced Wasserstein distance is computed by
approximating the Gaussian measure using the empirical measure of samples drawn from A (0, I)
as in [Rabin et al.[(2011). As similar to the previous result, while BN 5; = 0 and fyé = 1 at ini-
tial state gives small STV1 (N (0, I),14y:) in early stage of training, PER also can effectively control
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visualization.
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Figure 5: Closeness to A/(0, I) in the Wasserstein probability distribution space.

the distribution without such normalization. This confirms that PER prevents the distribution of
activation to be drifted away from the target distribution.

5 CONCLUSION

We proposed the regularization loss that minimizes the upper bound of the 1-Wasserstein distance
between the standard normal distribution and the distribution of activations. In image classification
and language modeling experiments, PER gives marginal but consistent improvements over methods
based on sample statistics (BN and VCL) as well as L' and L? activation regularization methods.
The analysis of changes in activations’ distribution during training verifies that PER can stabilize the
probability distribution of activations without normalization. Considering that the regularization loss
can be easily applied to a wide range of tasks without changing architectures or training strategies



Published as a conference paper at ICLR 2020

unlike BN, we believe that the results indicate the valuable potential of regularizing networks in the
probability distribution space as a future direction of research.

The idea of regularizing activations with the metric in probability distribution space can be extended
to many useful applications. For instance, one can utilize task-specific prior when determining a
target distribution, e.g., the Laplace distribution for making sparse activation. The empirical distri-
bution of activations computed by a pretrained network can also be used as a target distribution to
prevent catastrophic forgetting. In this case, the activation distribution can be regularized so that it
does not drift away from the activation distribution learned in the previous task as different from
previous approaches constrains the changes in the the function L? space of logits (Benjamin et al.,
2019).
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