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ABSTRACT

Image translation between two domains is a class of problems aiming to learn
mapping from an input image in the source domain to an output image in the tar-
get domain. It has been applied to numerous applications, such as data augmen-
tation, domain adaptation, and unsupervised training. When paired training data
is not accessible, image translation becomes an ill-posed problem. We constrain
the problem with the assumption that the translated image needs to be percep-
tually similar to the original image and also appears to be drawn from the new
domain, and propose a simple yet effective image translation model consisting of
a single generator trained with a self-regularization term and an adversarial term.
We further notice that existing image translation techniques Zhu et al. (2017a);
Liu (2017) are agnostic to the subjects of interest and often introduce unwanted
changes or artifacts to the input. Thus we propose to add an attention module to
predict an attention map to guide the image translation process. The module learns
to attend to key parts of the image while keeping everything else unaltered, essen-
tially avoiding undesired artifacts or changes. The predicted attention map also
opens door to applications such as unsupervised segmentation and saliency de-
tection. Extensive experiments and evaluations show that our model while being
simpler, achieves significantly better performance than existing image translation
methods.

1 INTRODUCTION

(a) Input image (b) Predicted Attention Map (c) Final result (d) CycleGAN Zhu et al. (2017a).

Figure 1: Horse→zebra image translation. Our model learns to predict an attention map (b) and
translates the horse to zebra while keeping the background untouched (c). By comparison, Cycle-
GAN Zhu et al. (2017a) significantly alters the appearance of the background together with the horse
(d).

Many computer vision problems can be cast as an image-to-image translation problem: the task
is to map an image of one domain to a corresponding image of another domain. For example,
image colorization can be considered as mapping gray-scale images to corresponding images in
RGB space Zhang et al. (2016); style transfer can be viewed as translating images in one style to
corresponding images with another style Gatys et al. (2016); Johnson et al. (2016); Gatys et al.
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(2015). Other tasks falling into this category include semantic segmentation Long et al. (2015a),
super-resolution Ledig et al. (2016), image manipulation Isola et al. (2016), etc. Another important
application of image translation is related to domain adaptation and unsupervised learning: with the
rise of deep learning, it is now considered crucial to have large labeled training datasets. However,
labeling and annotating such large datasets are expensive and thus not scalable. An alternative is to
use synthetic or simulated data for training, whose labels are trivial to acquire Zhu et al. (2017b);
Tzeng et al. (2015a); Rusu et al. (2016); Richter et al. (2016); Qiu & Yuille (2016); Mahendran
et al. (2016); Johnson-Roberson et al. (2017); Christiano et al. (2016). Unfortunately, learning from
synthetic data can be problematic and most of the time does not generalize to real-world data, due to
the data distribution gap between the two domains. Furthermore, due to the deep neural networks’
capability of learning small details, it is anticipated that the trained model would easily over-fits to
the synthetic domain. In order to close this gap, we can either find mappings or domain-invariant
representations at feature level Bousmalis et al. (2016); Ganin et al. (2016); Long et al. (2015b); Sun
et al. (2016); Tzeng et al. (2015b); Gretton et al. (2012); Caseiro et al. (2015); Ajakan et al. (2014);
Kim et al. (2017) or learn to translate images from one domain to another domain to create “fake”
labeled data for training Bousmalis et al. (2017); Zhu et al. (2017a); Liu et al. (2017); Ledig et al.
(2016); Liu & Tuzel (2016); Yoo et al. (2016). In the latter case, we usually hope to learn a mapping
that preserves the labels as well as the attributes we care about.

Typically there exist two settings for image translation given two domains X and Y . The first setting
is supervised, where example image pairs x, y are available. This means for the training data, for
each image xi ∈ X there is a corresponding yi ∈ Y , and we wish to find a translator G : X → Y
such that G(xi) ≈ yi. Representative translation systems in the supervised setting include domain-
specific works Eigen & Fergus (2015); Hertzmann et al. (2001); Laffont et al. (2014); Shih et al.
(2013); Long et al. (2015a); Wang & Gupta (2016); Xie & Tu (2015); Zhang et al. (2016) and the
more general Pix2Pix Isola et al. (2016); Wang et al. (2017). However, paired training data comes
at a premium. For example, for image stylization, obtaining paired data requires lengthy artist
authoring and is extremely expensive. For other tasks like object transfiguration, the desired output
is not even well defined.

Therefore, we focus on the second setting, which is unsupervised image translation. In the unsu-
pervised setting, X and Y are two independent sets of images, and we do not have access to paired
examples showing how an image xi ∈ X could be translated to an image yi ∈ Y . Our task is then
to seek an algorithm that can learn to translate between X and Y without desired input-output ex-
amples. The unsupervised image translation setting has greater potentials because of its simplicity
and flexibility but is also much more difficult. In fact, it is a highly under-constrained and ill-posed
problem, since there could be unlimited many number of mappings between X and Y : from the
probabilistic view, the challenge is to learn a joint distribution of images in different domains. As
stated by the coupling theory Lindvall (2002), there exists an infinite set of joint distributions that
can arrive the two marginal distributions in two different domains. Therefore, additional assump-
tions and constraints are needed for us to exploit the structure and supervision necessary to learn the
mapping.

Existing works that address this problem assume that there are certain relationships between the two
domains. For example, CycleGAN Zhu et al. (2017a) assumes cycle-consistency and the existence
of an inverse mapping F that translates from Y to X . It then trains two generators which are
bijections and inverse to each other and uses adversarial constraint Goodfellow et al. (2014) to
ensure the translated image appears to be drawn from the target domain and the cycle-consistency
constraint to ensure the translated image can be mapped back to the original image using the inverse
mapping (F (G(x)) ≈ x and G(F (y)) ≈ y). UNIT Liu et al. (2017), on the other hand, assumes
shared-latent space, meaning a pair of images in different domains can be mapped to some shared
latent representations. The model trains two generators GX , GY with shared layers. Both GX and
GY maps an input to itself, while the domain translation is realized by letting xi go through part
of GX and part of GY to get yi. The model is trained with an adversarial constraint on the image,
a variational constraint on the latent code Kingma & Welling (2013); Rezende et al. (2014), and
another cycle-consistency constraint.

Assuming cycle consistency ensures 1-1 mapping and avoids mode collapses Salimans et al. (2016),
both models generate reasonable image translation and domain adaptation results. However, there
are several issues with existing approaches. First, such approaches are usually agnostic to the sub-
jects of interest and there is little guarantee it reaches the desired output. In fact, approaches based
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on cycle-consistency Zhu et al. (2017a); Liu (2017) could theoretically find any arbitrary 1-1 map-
ping that satisfies the constraints, and this renders the training unstable and the results random. This
is problematic in many image translation scenarios. For example, when translating from a horse
image to a zebra image, most likely we only wish to draw the particular black-white stripes on top
of the horses while keeping everything else unchanged. However, what we observe is that existing
approaches Zhu et al. (2017a); Liu et al. (2017) do not differentiate between the horse/zebra from
the scene background, and the colors and appearances of the background often significantly change
during translation (Fig. 1). Second, most of the time we only care about one-way translation, while
existing methods like CycleGAN Zhu et al. (2017a) and UNIT Liu (2017) always require training
two generators of bijections. This is not only cumbersome but it is also hard to balance the effects
of the two generators. Third, there is a sensitive trade-off between the faithfulness of the translated
image to the input image and how similar it resembles the new domain, and it requires excessive
manual tuning of the weight between the adversarial loss and the reconstruction loss to get satisfying
results.

To address the aforementioned issues, we propose a simpler yet more effective image translation
model that consists of a single generator with an attention module. We first re-consider what the
desired outcome of an image translation task should be: most of the time the desired output should
not only resemble the target domain but also preserve certain attributes and share similar visual
appearance with input. For example, in the case of horse-zebra translation Zhu et al. (2017a), the
output zebra should be similar to the input horse in terms of the scene background, the location and
the shape of the zebra and horse, etc. In the domain adaptation task that translates MNIST LeCun
et al. (2010) to USPS Denker et al. (1989), we expect the output is visually similar to the input
in terms of the shape and structure of the digit such that it preserves the label. Based on such
observation, our model proposes to use a single generator that maps X to Y and is trained with a
self-regularization term that enforces perceptual similarity between the output and the input, together
with an adversarial term that enforces the output to appear like drawn from Y . Furthermore, in order
to focus the translation on key components of the image and avoid introducing unnecessary changes
to irrelevant parts, we propose to add an attention module that predicts a probability map as to which
part of the image it needs to attend to when translating. Such probability maps, which are learned
in a completely unsupervised fashion, could further facilitate segmentation or saliency detection
(Fig. 1). Third, we propose an automatic and principled way to find the optimal weight between the
self-regularization term and the adversarial term such that we do not have to manually search for the
best hyper-parameter.

Our model does not rely on cycle-consistency or shared representation assumption, and it only learns
one-way mapping. Although the constraint is susceptible to oversimplify certain scenarios, we
found that the model works surprisingly well. With the attention module, our model learns to detect
the key objects from the background context and is able to correct artifacts and remove unwanted
changes from the translated results. We apply our model on a variety of image translation and
domain adaptation tasks and show that our model is not only simpler but also works better than
existing methods, achieving superior qualitative and quantitative performance. To demonstrate its
application in real-world tasks, we show our model can be used to improve the accuracy of face 3D
morphable model Blanz & Vetter (1999) prediction by augmenting the training data of real images
with adapted synthetic images.

2 OUR METHOD

We begin by explaining our model for unsupervised image translation. Let X and Y be two image
domains, our goal is to train a generator Gθ : X → Y , where θ are the function parameters. For
simplicity, we omit θ and use G instead. We are given unpaired samples x ∈ X and y ∈ Y , and the
unsupervised setting assumes that x and y are independently drawn from the marginal distributions
Px∼X(x) and Py∼Y (y). Let y′ = G(x) denote the translated image, the key requirement is that y′
should appear like drawn from domain Y , while preserving the low-level visual characteristics of
x. The translated images y′ can be further used for other downstream tasks such as unsupervised
learning. However, in our case, we decouple image translation from its applications.

Based on the requirements described, we propose to learn θ by minimizing the following loss:

LG = ℓadv(G(x), Y ) + λℓreg(x,G(x)). (1)
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Figure 2: Model overview. Our generator G consists of a vanilla generator G0 and an attention
branch Gattn. We train the model using self-regularization perceptual loss and adversarial loss.

Here G(x) = Gattn(x)⊗G0(x)+ (1−Gattn(x))⊗x, where G0 is the vanilla generator and Gattn

is the attention branch. G0 outputs a translated image while Gattn predicts a probability map that
is used to composite G0(x) with x to get the final output. The first part of the loss, ℓadv , is the
adversarial loss on the image domain that makes sure that G(x) appears like domain Y . The second
part of the losses ℓreg makes sure that G(x) is visually similar to x. In our case, ℓadv is given by a
discriminator D trained jointly with G, and ℓreg is measured with perceptual loss. We illustrate the
model in Fig. 2.

The model architectures: Our model consists of a generator G and a discriminator D. The gen-
erator G has two branches: the vanilla generator G0 and the attention branch Gattn. G0 translates
the input x as a whole to generate a similar image G0(x) in the new domain, and Gattn predicts a
probability map Gattn(x) as the attention mask. Gattn(x) has the same size as x and each pixel is
a probability value between 0-1. In the end, we composite the final image G(x) by adding up x and
G0(x) based on the attention mask.

G0 is based on Fully Convolutional Network (FCN) and leverages properties of convolutional neural
networks, such as translation invariance and parameter sharing. Similar to Isola et al. (2016); Zhu
et al. (2017a), the generator G is built with three components: a down-sampling front-end to reduce
the size, followed by multiple residual blocks He et al. (2016), and an up-sampling back-end to
restore the original dimensions. The down-samping front-end consists of two convolutional blocks,
each with a stride of 2. The intermediate part contains nine residual blocks that keep the height/width
constant, and the up-sampling back-end consists of two deconvolutional blocks, also with a stride
of 2. Each convolutional layer is followed by batch normalization and ReLU activation, except for
the last layer whose output is in the image space. Using down-sampling at the beginning increases
the receptive field of the residual blocks and makes it easier to learn the transformation at a smaller
scale. Another modification is that we adopt the dilated convolution in all residual blocks, and set
the dilation factor to 2. Dilated convolutions use spaced kernels, enabling it to compute each output
value with a wider view of input without increasing the number of parameters and computational
burden. Gattn consists of the initial layers of the VGG-19 network Simonyan & Zisserman (2014)
(up to conv3_3), followed by two deconvolutional blocks. In the end it is a convolutional layer
with sigmoid that outputs a single channel probability map. During training, the VGG-19 layers are
warm-started with weights pretrained on ImageNet Russakovsky et al. (2015).

For the discriminator, we use a five-layer convolutional network. The first three layers have a stride
of 2 followed by two convolution layers with stride 1, which effectively down-samples the networks
three times. The output is a vector of real/fake predictions and each value corresponds to a patch of
the image. Classifying each patch as real/fake introduces PatchGAN, and is shown to work better
than the global GAN Zhu et al. (2017a); Isola et al. (2016).

4



Under review as a conference paper at ICLR 2019

Adversarial loss: Generative Adversarial Network Goodfellow et al. (2014) plays a two-player
min-max game to update the network G and D. G learns to translate the image x to G(x) which
appears as if it is from Y , while D learns to distinguish G(x) from y which is the real image drawn
from Y . The parameters of D and G are updated alternatively. The discriminator D updates its
parameters by maximizing the following objective:

LD = log(D(y))− log(1−D(G(x))). (2)

The adversarial loss used to update the generator G is defined as:

Ladv(G(x), Y ) = − log(−D(G(x))). (3)

By minimizing the loss function, the generator G learns to create translated image that fools the
network D into classifying the image as drawn from Y .

Self-regularization loss: Theoretically, adversarial training can learn a mapping G that produces
outputs identically distributed as the target domain Y . However, if the capacity is large enough,
a network can map the input images to any random permutations of images in the target domain.
Thus, adversarial loses alone cannot guarantee that the learned function G maps the input to the
desired output. To further constrain the learned mapping such that it is meaningful, we argue that
G should preserve visual characteristics of the input image. In other words, the output and the
input need to share perceptual similarities, especially regarding the low-level features. Such features
may include color, edges, shape, objects, etc. We impose this constraint with the self-regularization
term, which is modeled by minimizing the distance between the translated image y′ and the input x:
ℓreg = d(x,G(x)). Here d is some distance function d, which can be ℓ2, ℓ1, SSIM, etc. However,
recent research suggests that using perceptual distance based on a pre-trained network corresponds
much better to human perception of similarity comparing with traditional distance measures Zhang
et al. (2018). In particular, we defined the perceptual loss as:

ℓreg(G(x), x) =
∑

l=1,2,3

1

HlWl

∑
h,w

(∥ wl ◦ (F̂ (x)lhw − F̂ (G(x))lhw) ∥22). (4)

Here F̂ is VGG pretrained on ImageNet used to extract the neural features; we use l to represent each
layer, and Hl,Wl are the height and width of feature F̂ l. We extract neural features with F̂ across
multiple layers, compute the ℓ2 difference at each location h,w of F̂ l and average over the feature
height and width. We then scale it with layer-wise weight wl. We did extensive experiments to try
different combinations of feature layers and obtained the best results by only using the first three
layers of VGG and setting w1, w2, w3 to be 1.0/32, 1.0/16, 1.0/8 respectively. This conforms to
the intuition that we would like to preserve the low-level traits of the input during translation. Note
that this may not always be true (such as in texture transfer), but it is a hyper-parameter that could
be easily adjusted based on different problem settings. We also experimented with using different
pre-trained networks such as AlexNet to extract neural features as suggested by Zhang et al. (2018)
but do not observe much difference in results.

Training scheme: In our experiment, we found that training the attention branch and the vanilla
generator branch is difficult as it is hard to balance the learned translation and mask. In our practice,
we train the two branches separately. First, we train the vanilla generator G0 without the attention
branch. After it converges, we train the attention branch Gattn while keeping the trained generator
G0 fixed. In the end, we jointly fine-tune them with a smaller learning rate.

Adaptive weight induction: Like other image translation methods, the resemblance to the new
domain and faithfulness to the original image is a trade-off. In our model, it is determined by the
weight λ of the self-regularization term relative to the image adversarial term. If λ is too large, the
translated image will be close to the input but does not look like the new domain. If λ is too small,
the translated image would fail to pertain the visual traits of the input. Previous approaches usually
decide the weight heuristically. Here we propose an adaptive scheme to search for the best λ: we
start by setting λ = 0, which means we only use the adversarial constraint to train the generator.
Then we gradually increase λ. This would lead to the increase of the adversarial loss as the output
would shift away from Y to X , which makes it easier for D to classify. We stop increasing λ when
the adversarial loss sinks below some threshold ℓtadv . We then keep λ constant and continue to train
the network until converging. Using the adaptive weight induction scheme avoids manual tuning of
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λ for each specific task and gives results that are both similar to the input x and the new domain Y .
Note that we repeat such process both when training G0 and Gattn.

Analysis: Our model is related to CycleGAN in that if we assume 1-1 mapping, we can define an
inverse mapping F : Y → X such that F (G(x)) = x. This satisfies the constraints of CycleGAN
in that the cycle-consistency loss is zero. This shows that our learned mapping belongs to the
set of possible mappings given by CycleGAN. On the other hand, although CycleGAN tends to
learn the mapping such that the visual distance between y′ and x is small possibly due to cycle-
consistency constraint, it does not guarantee to minimize the perceptual distance between G(x) and
x. Comparing with UNIT, if we add another constraint that G(y) = y, then it is a special case of the
UNIT model where all layers of the two generators are shared which leads to a single generator G.
In this case, the cycle-consistency constraint is implicit as G(G(x)) = G(x) and min d(x,G(x)) =
min d(x,G(G(x))). However, we observe that adding the additional self-mapping constraint for
domain Y does not improve the results.

Even though our approach assumes the perceptual distance between x and its corresponding y ∈ Y
is small, our approach generalizes well to tasks where the input and output domains are significantly
different, such as translation of photo to map, day to night, etc., as long as our assumption generally
holds. For example, in the case of photo to map, the park (photo) is labeled as green (map) and the
water (photo) is labeled as blue (map), which provides certain low-level similarities. Experiments
show that even without the attention branch, our model produces results consistently similar or bet-
ter than other methods. This indicates that the cycle-consistency assumption may not be necessary
for image translation. Note that our approach is a meta-algorithm, and we could potentially improve
the results by using new/more advanced components. For example, the generator and discrimina-
tor could be easily replaced with the latest GAN architectures such as LSGAN Mao et al. (2017),
WGAN-GP Gulrajani et al. (2017), or adding spectral normalization Miyato et al. (2018). We may
also improve the results by employing a more specific self-regularizaton term that is fine-tuned on
the datasets we work on.

3 RESULTS

We tested our model on a variety of datasets and tasks. In the following, we show the qualitative
results of image translation, as well as quantitative results in several domain adaptation settings. In
our experiments, all images are resized to 256x256. We use Adam solver Kingma & Ba (2014) to
update the model weights during training. In order to reduce model oscillation, we update the dis-
criminators using a history of generated images rather than the ones produced by the latest generative
models Shrivastava et al. (2017): we keep an image buffer that stores the 50 previously generated
images. All networks were trained from scratch with a learning rate of 0.0002. Starting from 5k
iteration, we linearly decay the learning rate over the remaining 5k iterations. Most of our training
takes about 1 day to converge on a single Titan X GPU.

3.1 QUALITATIVE RESULTS

Fig. 3 shows visual results of image translation of horse to zebra. For each image, we show the ini-
tial translation G0(x), the attention map Gattn(x) and the final result G(x) composited using G0(x)
and x based on Gattn(x). We also compare the results with CycleGAN Zhu et al. (2017a) and
UNIT Liu (2017), and all models are trained using the same number of iterations. For the baseline
implementation, we use the original authors’ implementations. We can see from the examples that
without the attention branch, our simple translation model G0 already gives results similar or better
than Zhu et al. (2017a); Liu (2017). However, all these results suffer from perturbations of back-
ground color/texture and artifacts near the region of interest. With the predicted attention map which
learns to segment the horses, our final results have much higher visual quality, with the background
keeping untouched and artifacts near the ROI removed (row 2, 4). Complete results of horse-zebra
translations and comparisons are available online 1.

Fig. 4 shows more results on a variety of datasets. We can see that for all these tasks, our model can
learn the region of interest and generate compositions that are not only more faithful to the input,
but also have fewer artifacts. For example, in dog to cat translation, we notice most attention maps

1http://www.harryyang.org/img_trans
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(a) Input (b) Initial trans (c) Attention map (d) Final result (e) UNIT (f) CycleGAN

Figure 3: Image translation results of horse to zebra Isola et al. (2016) and comparison with UNIT
and CycleGAN.

(a) Input (b) Initial (c) Attention (d) Final (e) Input (f) Initial (g) Attention (h) Final

Figure 4: Image translation results on more datasets. From top to bottom: apple to orange Isola
et al. (2016), dog to cat Parkhi et al. (2012), photo to DSLR Isola et al. (2016), yosemite summer to
winter Isola et al. (2016).
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Figure 5: More image translation results. From left to right: edges to shoes Isola et al. (2016); edges
to handbags Isola et al. (2016); SYNTHIA to cityscape Ros et al. (2016); Cordts et al. (2015). Given
the source and target domains are globally different, the initial translation and final result are similar
with the attention maps focusing on the entire images.

have large values around the eyes, indicating the eyes are key ROI to differentiate cats from dogs. In
the examples of photo to DSLR, the ROI should be the background that we wish to defocus, while
the initial translation changes the color of the foreground flower in the photo. The final result, on
the other hand, learns to keep the color of the foreground flower. In the second example of summer
to winter translation, we notice the initial result incorrectly changes color of the person. With the
guidance of attention map, the final result removes such artifacts.

In a few scenarios, the attention map is less useful as the image does not explicitly contain region
of interest and should be translated everywhere. In this case, the composited results largely rely on
the initial prediction given by G0. This is true for tasks like edges to shoes/handbags, SYNTHIA
to cityscape (Fig. 5) and photo to map (Fig. 8). Although many of these tasks have very different
source and target domains, our method is general and can be applied to get satisfying results.

Method 1 Method 2 1 better About same 2 better

Ours initial CycleGAN 45.0% 39.3% 15.7%
UNIT 82.7% 15.7 1.6%

Ours final
CycleGAN 70.7% 23.7% 5.6%
UNIT 89.0% 10.7% 0.3%
Ours initial 86.3% 11.0% 2.7%

Table 1: User study results.

To better demonstrate the effectiveness of our
simple model, Fig. 6 shows several results be-
fore training with the attention branch and com-
pares with baseline. We can see that even with-
out the attention branch, our model generates
better qualitative results comparing with Cycle-
GAN and UNIT.

User study: To more rigorously evaluate the
performance, we perform a user study to com-
pare the results. The procedure is as following:
we asked for feedbacks from 10 users (all are
graduate students). Each user is given 30 sets of images to compare. Each set has 5 images, which
are the input, initial result (w/o attention), final result (with attention), CycleGAN results and UNIT
results. In total there are 300 different image sets randomly selected from several image translation
tasks. The images in each set are in random order. The user is then asked to rank the four results
from highest visual quality to lowest. The user is fully informed about the task and is aware of the
goal as to translate the input image into a new domain while avoiding unnecessary changes.

(a) (b) (c) (d)

Figure 7: Effects of using different layers as fea-
ture extractors. From left to right: input (a), using
the first two layers of VGG (b), using the last two
layers of VGG (c) and using the first three layers
of VGG (d).

Table 1 shows the user-study results. We listed
results of: CycleGAN vs ours initial/final;
UNIT vs ours initial/final; and ours initial vs
ours final. We can see that our results, even
without applying the attention branch (ours ini-
tial), achieves higher ratings than CycleGAN or
UNIT. The attention branch also significantly
improves the results (Ours final). In terms of di-
rectly evaluating the effects of attention branch,
ours final is overwhelmingly better than ours
initial based on user rankings (Table 1 row 5).

Effects of using different layers as feature ex-
tractors: We experimented using different lay-
ers of VGG-19 as feature extractors to measure
the perceptual loss. Fig. 7 shows visual example of the horse to zebra image translation results
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(a) Input (b) CycleGAN (c) UNIT (d) Ours w/o attn

Figure 6: Comparing our results w/o attention with baselines. From top to bottom: dawn to night
(SYNTHIA Ros et al. (2016)), non-smile to smile (CelebA Liu et al. (2015)) and photos to Van-
goh Isola et al. (2016).

input Pix2Pix CycleGAN Ours GT

Figure 8: Unsupervised map prediction visualization.

Method Accuracy
Pix2Pix Isola et al. (2016) 43.18%

CycleGAN Zhu et al. (2017a) 45.91%
Ours 46.72%

Table 2: Unsupervised map prediction ac-
curacy.

(a) (b) (c) (d) (e) (f)

Figure 9: Visualization of image translation from
MNIST (a),(d) to USPS (b),(e) and MNIST-M (c),(f).

Method USPS MNIST-M
CoGAN Liu & Tuzel (2016) 95.65% -

PixelDA Bousmalis et al. (2017) 95.90% 98.20%
UNIT Liu et al. (2017) 95.97% -

CycleGAN Zhu et al. (2017a) 94.28% 93.16%
Target-only 96.50% 96.40%

Ours 96.80% 98.33%

Table 3: Unsupervised classification results.

trained with different perceptual terms. We can see that only using high-level features as regular-
ization leads to results that are almost identical to the input (Fig. 7 (c)) while only using low-level
features as regularization leads to results that are blurry and noisy (Fig. 7 (b)). We find the balance
by adopting the first three layers of VGG-19 as feature extractor which does a good job of image
translation and also avoids introducing too many noise or artifacts (Fig. 7 (d)).
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(a) (b) (c) (d) (e) (f)

Figure 10: Visualization of rendered face to real face translation.
(a)(d): input rendered faces; (b)(e): CycleGAN results; (c)(f):
Our results.

Method MSE
Baseline 2.26

CycleGAN Zhu et al. (2017a) 2.04
Ours 1.97

Table 4: Unsupervised 3DMM pre-
diction results (MSE).

3.2 QUANTITATIVE RESULTS

Map prediction: We translate images from satellite photos to maps with unpaired training data
and compute the pixel accuracy of predicted maps. The original photo-map dataset consists of 1096
training pairs and 1098 testing pairs, where each pair contains a satellite photo and the corresponding
map. To enable unsupervised learning, we take the 1096 photos from the training set and the 1098
maps from the test set, using them as the training data. Note that no attention is used here since
the change is global and we observe training with attention yields similar results. At test time, we
translate the test set photos to maps and again compute the accuracy. If the total RGB difference
between the color of a pixel on the predicted map and that on the ground truth is larger than 12,
we mark the pixel as wrong. Figure 8 and Table 2 show the visual results and the accuracy results,
and we can see our approach achieves highest map prediction accuracy. Note that Pix2Pix is trained
with paired data.

Unsupervised classification: We show unsupervised classification results on USPS Denker et al.
(1989) and MNIST-M Ganin et al. (2016) in Figure 9 and Table 3. On both tasks, we assume we
have access to labeled MNIST dataset. We first train a generator that maps MNIST to USPS or
MNIST-M and then use the translated image and original label to train the classifier (we do not
apply the attention branch here as we did not observe much difference after training with attention).
We can see from the results that we achieve the highest accuracy on both tasks, advancing state-
of-the-art. The qualitative results clearly show that our MNIST-translated images both preserve the
original label and are also visually similar to USPS/MNIST-M.

3DMM face shape prediction: As a real-world application, we study the problem of estimating 3D
face shape, which is modeled with the 3D morphable model (3DMM) Blanz et al. (2002). For a given
face, the 3DMM encodes its shape with a 100 dimension vector. The goal of 3DMM regression is to
predict the 100 dimension vector and we compare them with the ground truth using mean squared
error (MSE). Tran et al. (2017) proposes to train a very deep neural network He et al. (2016) for
3DMM regression. However, in reality, the labeled training data for real faces are expensive to
collect. We propose to use rendered faces instead, as their 3DMM parameters are readily available.
We first rendered 200k faces as the source domain and use human selfie photo data of 645 face
images we collected as the target domain. For test, we use our collected 112 3D-scanned faces as
test data. For the purpose of domain adaptation, we first use our model to translate the rendered faces
to real faces and use the results as the training data, assuming the 3DMM parameters stay unchanged.
The 3DMM regression model structure is 102-layer Resnet He et al. (2016) as in Tran et al. (2017),
and was trained with the translated faces. Figure 10 and Table 4 show the qualitative results and
the final accuracy of 3DMM regression. From the visual results, we see that our translated face
preserves the shape of the original rendered face and has higher quality than using CycleGAN. We
also reduced the 3DMM regression error compared with baseline (where we trained on rendered
faces and tested on real faces) and the CycleGAN results.

4 CONCLUSION

We propose to use a simple model with attention for image translation and domain adaption and
achieve superior performance in a variety of tasks demonstrated by both qualitative and quantitative
measures. We show that the attention module is particularly helpful to focus the translation on
region of interest, remove unwanted changes or artifacts, and may also be used for unsupervised
segmentation or saliency detection.
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