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ABSTRACT

When analyzing the genome, researchers have discovered that proteins bind to DNA
based on certain patterns on the DNA sequence known as “motifs”. However, it
is difficult to construct motifs for protein binding location prediction due to their
complexity. Recently, external learned memory models have proven to be effec-
tive methods for reasoning over inputs and supporting sets. In this work, we present
memory matching networks (MMN) for classifying DNA sequences as protein bind-
ing sites. Our model learns a memory bank of encoded motifs, which are dynami-
cally learned, and then matches a new test sequence to each of the motifs to classify
the sequence as a binding or non-binding site.

1 INTRODUCTION

In genomics, Transcription Factors (TFs) are proteins which bind to certain areas on a DNA sequence
and in turn control gene regulation. Thus, predicting the Transcription Factor Binding sites (TFBSs),
or locations where TFs bind on the genome, is particularly useful for understanding genomic processes
and improving human health. Biologists have discovered that the binding of a TF is triggered by local
sequential patterns within TFBSs, known as “motifs” (Stormo, 2000). As a result, researchers tried to
predict TFBSs by computationally constructing motifs using position weight matrices (PWMs) which
best represented the positive binding sites, and then compared the test sequence to the PWMs to see
if there is a close match. However, it is difficult to find accurate PWMs due to the wide variety of
TFBS sequences. Additionally, a TFBS may be influenced by a combination of different motifs. In
this work, we attempt to create a memory bank of fully learnable motifs, which we can then read from
to compare with and classify a new test sequence.

On the TFBS task, researchers initially used PWM-matching approaches (Stormo, 2000), which were
computationally created motifs for comparison to a test sequence. This was later outperformed by
a convolutional neural network (CNN) model which could learn PWM-like filters (Alipanahi et al.,
2015). In our model, we use a learned memory bank of PWM-like matrices which we directly use
for matching against the test sequence. We run our model on a baseline TFBS dataset and compare
against PWM, CNN, and LSTM approaches.

Recently, deep learning models that use external memory have emerged as promising methods for
many tasks (Graves et al., 2014; Sukhbaatar et al., 2015; Vinyals et al., 2015; Miller et al., 2016).
These studies concentrate on reasoning using external memory based on the input to produce some
target. In our work, we focus on creating a model which uses comparison over a learned memory
bank of motifs for classification. Our work is closely related to the “matching network” (MN) model
by Vinyals et al. (2016), where they train a differentiable nearest neighbor model to find the closest
matching image from a support set on a new unseen image. We introduce Memory Matching Net-
works (MMN), where we modify the MN model by replacing the support set with a dynamic memory
support set for the TFBS classification task. The key difference is that our MMN model is for a gen-
eral classification setting (i.e. not one-shot) and we seek to instead learn the support set (memory
templates), which remains constant for every new test classification. We believe that the dynamically
learned memory can function similarly to the motifs that traditional PWM methods used. Our pre-
liminary models show that the learned memory can find the binding patterns better than traditional
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deep learning methods, and also provide similar explanatory patterns that are predominantly used in
bioinformatics.
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Figure 1: Memory Matching Network Model

2 MEMORY MATCHING NETWORK MODEL FOR CLASSIFICATION

Given a DNA sequence S (composed of characters A,C,G,T) of length t and a Transcription Factor
protein of interest, we want to classify S as a positive or negative binding site for this particular TF
(i.e. binary classification task). To do this, we seek to match S to a bank of ` learned memory matrices,
where each matrix is loosely representative of a motif. Our output classifier is then based on a linear
combination of the motifs and their matching scores.

Each memory matrix Mi is learned via a lookup table ∈ Rp×t with a constant input integer at each
position (e.g. 1 as input to the first position and t as input to position t). To learn each of the ` memory
templates, we use a separate lookup table to produce ` memory matrices {M1, ...,M`} ∈ Rp×t.
Similarly, we encode the input sequence using another lookup table ∈ Rp×4 with the 4 possible
nucleotide inputs to produce input matrix S ∈ Rp×t. We map the encoded input S ∈ Rp×t and
memory matrices {M1, ...,M`} into vectors using two separate functions, f and g, respectively:

s = f(S)

mi = g(g′(Mi)) for i in 1, ..., `
(1)

f is a bidirectional attention LSTM on S, where we compute a context vector s ∈ Rd based on the
attention weights αi as in Bahdanau et al. (2014). g′ is a bidirectional attention LSTM on eachMi, and
shares the weights with f . g is another bidirectional LSTM (no attention) that takes the outputs of g′ as
input to encode dependencies among the motifs, producing final memory vectors {m1,...,m`} ∈ Rd.

Once we have the embedding vectors, we want to compare the original input sequence to the memory
templates for classification. We hypothesize that different memory templates contribute differently.
The importance, or weight wi, of each memory matrix Mi is calculated using a normalized cosine
similarity score between s and each {m1,...,m`}, which is the matching part of the network:

wi =
exp
(
K[s,mi]

)
∑

j exp
(
K[s,mj ]

) (2)

whereK is cosine similarity. Then a read vector r, is computed as a linear combination of the memory
embeddings multiplied by their respective matching weights. This allows for the sequence S to not be
forced to match to a particular motif, but rather a combination of them:

r =
∑
i

wimi (3)

The read vector r and original input embedding vector s are then linearly transformed, added together,
and then fed through a softmax equation to get y, the probability of S being a positive TFBS:

ỹ = Wss+ Wrr

y = softmax
(
ỹ
) (4)
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Table 1: TFBS Binary Classification Results
Model Mean AUC Median AUC Stdev
PWM 0.850 0.876 0.120
LSTM 0.910 0.932 0.056
CNN 0.918 0.940 0.084
MMN (ours) 0.929 0.947 0.067

3 EXPERIMENTS

We ran our MMN model on the 61 leukemia cell TF datasets which had a training set of at least
10,000 sequences from Alipanahi et al. (2015). Each TF dataset has exactly 1,000 testing sequences.
All training and testing sets have an even positive/negative TFBS sequence split. Each sequence
sample S is 101 length (t = 101) and composed of DNA-base characters (A,C,G,T). Since there
is a separate dataset for each different TF, we train a separate model for each TF. In other words,
each model constructs a memory bank for that particular TF. We then aggregate the accuracy results
over all TFs for model comparison. In our experiments, we tuned the following hyperparameters:
number of memory matrices ` ∈ {2, 4,8, 16}, memory matrix column size p ∈ {2,4, 8, 16}, memory
embedding vector size d ∈ {32, 64,128}, with the best parameters in bold.

3.1 ACCURACY RESULTS

We compare our method to the baseline PWM-motif matching approach from Machanick & Bailey
(2011), as well as the CNN model in Alipanahi et al. (2015), and a regular LSTM model in Lanchantin
et al. (2016). The results are shown in Table 1. Our model significantly outperforms the baseline of
constructed PWMs (based on a pairwise t-test). Our model performs slightly better than the other two
baseline deep learning models, including the CNN, which should be able to extract motifs automati-
cally via filters. We believe that this is an important result to show that matching network models are
powerful for classification.

Figure 2: Visualizing the Model: Character and memory weights for a positive ATF1 binding sequence

3.2 VISUALIZING AND INTERPRETING THE MODEL

In medical classification tasks, if a model is accurate, yet hard to interpret, biomedical researchers may
be reluctant to use it. Thus, we seek to understand our model via visualization. While it’s difficult to
directly correlate the memory matrices with DNA characters since they are in an embedded space, we
can look at individual test sequences and see what the model focuses on. We do this by viewing the
attention weights {α1, ..., αt} from f to see which characters are most important, and also the memory
matching weights {w1, ..., w`} to see which memory matrices closely match this sequence. Figure 2
shows an example of our visualizations where the sequence is a positive TFBS sequence from the
“ATF1” TF. We can see that the character-level α attention mostly concentrates on the subsequence
TGACGTA in the middle, which is a “known” motif for ATF1 (Mathelier et al., 2016). Seeing which
particular memory templates match the test sequence via wi doesn’t tell us anything, but it may be of
use for comparing multiple sequences to see if they match certain memories. We plan to explore the
interpretability of the learned memory in future work.

4 CONCLUSION

In this work, we introduced memory matching networks (MMNs) for learning a set of memory matri-
ces which are matched to a new test sequence for classification. We applied our model on the binary
classification task of predicting the binding sites of Transcription Factor proteins, where a memory
of learned “motifs” is beneficial for classifying sequences. We showed that it outperforms the base-
line models of PWM-matching and a CNN, as well as provided a way to visualize the predictions.
We hope that this work will provoke more research on memory-based models for genomic sequence
tasks, where it is a fitting setting. Although we use this on a medical task, we think that the memory
matching network framework may be of use in any application where classification can be done by
matching to memory, such as on text or images.
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