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ABSTRACT

Representation learning is one of the foundations of Deep Learning and allowed
important improvements on several Machine Learning tasks, such as Neural Ma-
chine Translation, Question Answering and Speech Recognition. Recent works
have proposed new methods for learning representations for nodes and edges in
graphs. Several of these methods are based on the SkipGram algorithm, and they
usually process a large number of multi-hop neighbors in order to produce the
context from which node representations are learned. In this paper, we propose an
effective and also efficient method for generating node embeddings in graphs that
employs a restricted number of permutations over the immediate neighborhood
of a node as context to generate its representation, thus ego-centric representa-
tions. We present a thorough evaluation showing that our method outperforms
state-of-the-art methods in six different datasets related to the problems of link
prediction and node classification, being one to three orders of magnitude faster
than baselines when generating node embeddings for very large graphs.

1 INTRODUCTION

Many important problems involving graphs require the use of learning algorithms to make predic-
tions about nodes and edges. These predictions and inferences on nodes and edges from a graph
are typically done using classifiers with carefully engineered features (Grover & Leskovec, 2016).
These features, besides taking time and manual labor to be developed and acquired, usually do not
generalize well to other problems or contexts.

The field of Natural Language Processing (NLP) has had many advances due to the use of algorithms
that learn word representations, instead of manually extracted features. Originally proposed by
Bengio et al. (2003) and commonly used with Word2Vec algorithms like CBOW and SkipGram
(Mikolov et al., 2013a), word embeddings are used in many state-of-the-art solutions for neural
machine translation (Luong & Manning, 2016; Firat et al., 2016), question answering (Andreas
et al., 2016) and natural language generation (Wen et al., 2015). Recent works have proposed new
methods for learning representations for nodes and edges in graphs, based on random walks (Perozzi
et al., 2014; Grover & Leskovec, 2016) or auto-encoding adjacency vectors (Wang et al., 2016).

In this paper, we propose a new general purpose method for generating node embeddings in very
large graphs, which we call Neighborhood Based Node Embeddings (or simply NBNE). NBNE is
based on the SkipGram algorithm and uses nodes neighborhoods as contexts. NBNE outperforms
state-of-the-art DeepWalk (Perozzi et al., 2014) and Node2Vec (Grover & Leskovec, 2016) for the
tasks of link prediction and node classification on six collections, being one to three orders of mag-
nitude faster. In this work, we considered DeepWalk and Node2Vec as baselines.

The main reason for this improvement on effectiveness and efficiency is that we concentrate learning
on the “predictable” parts of the graph. A study by Facebook research (Edunov et al., 2016) found
that each person in the world (at least among the people active on Facebook) is connected to every
other person by an average 3.57 other people. In a graph of this magnitude and connectedness,
learning node embeddings by maximizing the log-probability of predicting nearby nodes in a random
walk (with a window size of 5) can be highly inefficient and make it ‘harder’ for the embeddings to
be constructed, even if these random walks are biased like in Node2Vec. We suspect this can also
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make them more unstable, which would explain why they need more iterations before embedding
convergence.

The main contributions of this work are:

• We present a new general purpose method that is more effective and more efficient than
state-of-the-art methods for generating node embeddings in graphs. NBNE has a single
tunable parameter (number of permutations, which will be explained later) that can be
tuned at once on the training set to avoid overfitting the representations.

• Experimental results in solving the link prediction and node classification problems for six
graph sets show that our method outperforms, in terms of effectiveness and efficiency,
the methods DeepWalk and Node2Vec.

• In spite of the fact that our method has the same time complexity of the two baselines
DeepWalk and Node2Vec, we were able to improve the training time by one to three
orders of magnitude, which is important when dealing with very large graphs. For in-
stance, to learn node embeddings for a graph containing 317,080 nodes and 1,049,866
edges, collected from the DBLP1 repository (Yang & Leskovec, 2012), NBNE took ap-
proximately 14m30s minutes, DeepWalk approximately 164m34s and Node2Vec approxi-
mately 3,285m59s (more than 54 hours).

2 RELATED WORK

The definition of node similarity and finding general purpose node and/or edge representations are
non-trivial challenges (Lü & Zhou, 2011). Many definitions of similarity in graphs use the notion
of first and second order proximity. First-order proximity is the concept that connected nodes in
a graph should have similar properties, while the second-order proximity indicates that nodes with
similar neighborhoods should have common characteristics.

Some earlier works on finding these embeddings use various matrix representations of the graph,
together with dimensionality reduction techniques, to obtain the nodes’ representations (Roweis &
Saul, 2000; Tenenbaum et al., 2000). A problem with these approaches is that they usually depend
on obtaining the matrix’ eigenvectors, which is infeasible for large graphs (O(n2.376)) with the
Coppersmith-Winograd algorithm (Coppersmith & Winograd, 1987)). Recent techniques attempt to
solve this problem by dynamically learning representations for nodes in a graph using non-linear
techniques based either on first and second order proximities (Tang et al., 2015; Wang et al., 2016)
or random walks (Perozzi et al., 2014; Grover & Leskovec, 2016).

Other recent works focus on finding representations for specific types of graphs. TriDNR (Pan et al.,
2016) uses a graph structure together with node content and labels to learn node representations in
two citation networks. Their work can be directly applied to any graph where nodes have labels
and/or text contents. TEKE (Wang & Li, 2016) and KR-EAR (Lin et al., 2016) find representations
for entities in knowledge graphs and metapath2vec (Dong et al., 2017) finds node representations in
heterogeneous networks. The method LINE (Tang et al., 2015) finds a d dimensional representation
for each node based on first and second-order graph proximities, not being feasible for large graphs,
because its cost function depends on the whole adjacency matrix (O(|V |2)).
Another method, Structural Deep Network Embedding (SDNE) (Wang et al., 2016), is also based
on first and second order proximities. It uses autoencoders to learn a compact representation for
nodes based on their adjacency matrix (second-order proximity), while forcing representations of
connected nodes to be similar (first-order proximity) by using an hybrid cost function. SDNE is also
not feasible for large graphs, since the autoenconders are trained on the complete adjacency vectors.
Each vector has size O(|V |) and is created at least once, creating a lower bound on time complexity
O(|V |2).
The method DeepWalk (Perozzi et al., 2014) generates k random walks starting on each vertex in
the graph to create sentences where each “word” is a node. These sentences are then trained using
the SkipGram algorithm to generate node embeddings. This method has a time complexity bounded
by O(|V | log |V |).

1http://dblp.uni-trier.de
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Node2Vec (Grover & Leskovec, 2016) also uses random walks with SkipGram and can be seen as a
generalization of DeepWalk. The difference between the two methods is that Node2Vec’s walks are
random, but biased by two pre-assigned parameters p and q. During the creation of the walks, these
parameters are used to increase the chance of the walk returning to a parent node or going farther
from it. This method uses a semi-supervised approach which requires several models to be generated
and a small sample of labeled nodes to be used so that the best parameters p and q can be chosen.
Node2Vec is not efficient for densely connected graphs, since its time and memory dependencies on
the graph’s branching factor b are O(b2).

In this work, we considered DeepWalk (Perozzi et al., 2014) and Node2Vec (Grover & Leskovec,
2016) as baselines, since they are scalable, having a time complexity (O(|V | log |V |)). The main
differences between NBNE and the two baselines are: (i) we use a different sentence sampling strat-
egy which is based in a node’s neighborhood instead of random walks, (ii) NBNE is more effective
than both Node2Vec and DeepWalk, as supported by our experiments in six different datasets, and
(iii) NBNE is efficient for both dense and sparse graphs and scalable for very large applications,
having a faster training time than both Node2Vec and DeepWalk.

3 NEIGHBORHOOD BASED NODE EMBEDDINGS

The context of a word is not a straightforward concept, but it is usually approximated by the words
surrounding it. In graphs, a node’s context is an even more complex concept. As explained above,
DeepWalk and Node2Vec use random walks as sentences and consequently as contexts in which
nodes appear.

In this work, the contexts are based solely on the neighborhoods of nodes, defined here as the nodes
directly connected to it, focusing mainly on the second-order proximities. Consequently, nodes’
representations will be mainly defined by their neighborhoods and nodes with similar neighborhoods
(contexts) will be associated with similar representations.

3.1 SENTENCE GENERATION

In our Neighborhood Based Node Embedding’s (NBNE) method, as the name implies, sentences are
created based on the neighborhoods of nodes. There are two main challenges in forming sentences
from neighborhoods, as follows:

• A sentence containing all the neighbors from a specific highly connected root node might
be of little use. Most neighbors would be distant from each other in the sentence, not
influencing each other’s representations, and not directly influencing the root node.

• There is no explicit order in the nodes in a neighborhood. So there is no clear way to choose
the order in which they would appear in a sentence.

In this work, the solution is to form small sentences, with only k neighbors in each, using random
permutations of these neighborhoods. Algorithm 1 presents the code for generating sentences. As
a trade-off between training time and increasing the training dataset the user can select the number
of permutations n. Selecting a higher value for n creates a more uniform distribution on possible
neighborhood sentences, but also increases training time.

Algorithm 1 Sentence Sampling

1: procedure GETSENTENCES(graph, n)
2: sentences ← [∅]
3: for j in 0 : n do
4: for node in graph.nodes() do
5: neighbors ← random permutation(node.neighbors())
6: for i in 0 : len(neighbors)/k do
7: sentence ← [node] + neighbors[i · k : i · (k + 1)]
8: sentences .append(sentence)
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3.2 LEARNING REPRESENTATIONS

As described in Section 3.1, Algorithm 1 forms a set of sentences S, where each word is actually a
node from the graph. We train the vector representations of nodes by maximizing the log probability
of predicting a node given another node in a sentence and given a set of representations r. We use
a window of size k which is equal to the size of the generated sentences, so that each node in a
sentence predicts all the others. The log probability maximized by NBNE is given by:

max
r

1

|S|
∑
s∈S

(log (p (s|r))) (1)

where p (s|r) is the probability of each sentence, which is given by:

log (p (s|r)) = 1

|s|
∑
i∈s

 ∑
j∈s,j 6=i

(log (p (vj |vi, r)))

 (2)

where vi is a vertex in the graph and vj are the other vertices in the same sentence. The proba-
bilities in this model are learned using the feature vectors rvi , which are then used as the vertex
representations. The probability p (vj |vi, r) is given by:

p (vo|vi, r) =
exp

(
r′Tvo × rvi

)∑
v∈V (exp (r′Tv × rvi

))
(3)

where r′Tvj is the transposed output feature vector of vertex j, used to make predictions. The rep-
resentations r′v and rv are learned simultaneously by optimizing Equation (1). This is done using
stochastic gradient ascent with negative sampling (Mikolov et al., 2013b).

By optimizing this log probability, the algorithm maximizes the predictability of a neighbor given
a node, creating node embeddings where nodes with similar neighborhoods have similar represen-
tations. Since there is more than one neighbor in each sentence, this model also makes connected
nodes have similar representations, because they will both predict each others neighbors, resulting
in representations also having some first order similarities. A trade-off between first and second
order proximity can be achieved by changing the parameter k, which simultaneously controls both
the size of sentences generated and the size of the window used in the SkipGram algorithm.

3.3 AVOIDING OVERFITTING REPRESENTATIONS

When using large values of n (i.e., number of permutations) on graphs with few edges per node,
some overfitting can be seen on the representations, as shown in details in Section 5.1. This over-
fitting can be avoided by sequentially training on increasing values of n and testing the embeddings
on a validation set every few iterations, stopping when performance stops improving, as shown in
Algorithm 2.

Algorithm 2 NBNE without Overfitting

1: procedure TRAINNBNE(graph, max n)
2: sentences← get sentences(graph,max n)
3: model← [initialize model()]
4: for j in 0 : log2(max n) do
5: model← train(model, sentences[2j : 2j+1])
6: error ← test(new model, validation set)
7: if error > old error then
8: break

4 EXPERIMENTS

NBNE was evaluated on two different tasks: link prediction, and node classification.2 We used
a total of six graph datasets to evaluate NBNE and Table 1 presents details about these datasets.

2NBNE code is available at https://github.com/tiagopms/nbne.
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Table 1: Statistics on the first six graph datasets

Nodes Edges Edges/Node # Classes
Facebook1 (McAuley & Leskovec, 2012) 4,039 88,234 21.84 -
Astro1 (Leskovec et al., 2007) 18,772 198,110 10.55 -
PPI1,2 (Breitkreutz et al., 2008) 3,890 38,739 9.95 49
Wikipedia1,2 (Mahoney, 2011) 4,777 92,517 19.36 39
Blog1,2 (Zafarani & Liu, 2009) 10,312 333,983 32.38 39
DBLP1 (Yang & Leskovec, 2012) 317,080 1,049,866 3.31 -

1 used in Link Prediction
2 used in Node Classification

A brief description of each dataset can be found in Appendix A. We present results for the link
prediction problem in Section 4.1 and for the node classification problem in Section 4.2. For all
experiments we used sentences of size k = 5 and embeddings of size d = 128, while the number of
permutations was run for n ∈ {1, 5, 10}. The best value of n was chosen according to the precision
on the validation set and we used early stopping, as described in Section 3.3.

On both these tasks, DeepWalk and Node2Vec were used as baselines, having been trained and tested
under the same conditions as NBNE and using the parameters as proposed in (Grover & Leskovec,
2016). More specifically, we trained them with the same training, validation and test sets as NBNE
and used a window size of 10 (k), walk length (l) of 80 and 10 runs per node (r). For Node2Vec,
which is a semi-supervised algorithm, we tuned p and q on the validation set, doing a grid search on
values p, q ∈ {0.25; 0.5; 1; 2; 4}.

4.1 LINK PREDICTION

Setup. Link prediction attempts to estimate the likelihood of the existence of a link between two
nodes, based on observed links and the nodes’ attributes (Lü & Zhou, 2011). Typical approaches
to this task use similarity metrics, such as Common Neighbors or Adamic-Adar (Adamic & Adar,
2003). Instead of these hand made similarity metrics, we propose to train a logistic classifier based
on the concatenation of the embeddings from both nodes that possibly form an edge and predict the
existence or not of the edge.

To train NBNE on this task, we first obtained a sub-graph with 90% randomly select edges from
each dataset, and obtained the node embeddings by training NBNE on this sub-graph. We, then,
separated a small part of these sub-graph edges as a validation set, using the rest to train a logistic
regression with the learned embeddings as features.

After the training was completed, the unused 10% of the edges were used as a test set to predict
new links. 10-fold cross-validation was used on the entire training process to access the statistical
significance of the results, analyzing statistical difference between the baselines and NBNE. To
evaluate the results on this task, we used as metrics: AUC (area under the ROC curve) (Baeza-Yates
& Ribeiro-Neto, 2011), and training time.3 The logistic regressions were all trained and tested using
all available edges (respectively in the training or test set), and an equal sized sample of negative
samples, which, during training, included part of the 10% removed edges.

Results. Table 2 presents results for this task. Considering AUC scores on the Link Prediction task,
NBNE was statistically better4 than both DeepWalk and Node2Vec on the Astro and PPI datasets,
with more than 7% improvement, also showing a 4.67% performance gain in Wikipedia and a small,
but statistically significant, gain on Blog. Only losing by a small percentage on Facebook, with a
difference that was not statistically significant.

In DBLP, NBNE again presents the best AUC score, although this difference was small and its
statistical significance could not be verified due to the large training times of the baselines. This
dataset contains the largest graph analyzed in this work (317,080 nodes and 1,049,866 edges) and

3Training times were all obtained using 16 core processors, running NBNE, Node2Vec or DeepWalk on 12
threads, with all algorithms having been implemented using gensim (Řehůřek & Sojka, 2010).

4In all experiments we performed Welch’s t-tests with p = 0.01. The symbol ∗ marks results which are
statistically different from NBNE.
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Table 2: Link prediction results

Facebook Astro PPI

AUC Training AUC Training AUC Training
Time Time Time

NBNE 0.9688 0m11s 0.8328 0m07s 0.8462 0m02s
DeepWalk 0.9730 2m26s 0.7548∗ 6m55s 0.7741∗ 2m30s
Node2vec 0.9762 69m33s 0.7738∗ 182m16s 0.7841∗ 66m37s

Gain -0.76% 12.96x 7.62% 59.06x 7.91% 77.43x
369.85x 1555.80x 2061.67x

Wikipedia Blog DBLP

AUC Training AUC Training AUC Training
Time Time Time

NBNE 0.6853 0m02s 0.9375 1m11s 0.9335† 14m30s
DeepWalk 0.6534∗ 7m38s 0.9098∗ 28m13s 0.9242‡ 164m34s
Node2Vec 0.6547∗ 236m60s 0.9202∗ 838m41s 0.9322‡ 3,285m59s

Gain 4.67% 194.86x 1.88% 23.86x 0.13% 11.34x
6049.77x 709.24x 226.52x

† average of 10 fold results
‡ no statistical tests were run, due to the time necessary to run a single fold

in it, to train a single fold, Node2Vec took 3,285m59s (more than 54 hours) and DeepWalk took
164m34s (approximately 2 hours and 44 minutes), while NBNE took only 14m30s, which represents
a 226/11 times improvement over Node2Vec and DeepWalk, respectively.

Considering training time for this task, NBNE presents the biggest improvements on sparser net-
works of medium size, like Astro, PPI and Wikipedia datasets. On these graphs, the best results
are for n = 1, resulting in more than 50x faster training than DeepWalk and more than 1,500 times
faster than Node2Vec, achieving a 6,049 times faster training than Node2Vec on Wikipedia. For the
Blog and Facebook datasets the best results are for n = 5, resulting in larger training times, but
still more than one order of magnitude faster than DeepWalk and more than 350 times faster than
Node2Vec. For the DBLP dataset, the best results were achieved with n = 10, still much faster than
the baselines.

4.2 NODE CLASSIFICATION

Setup. Given a partially labeled graph, node classification is the task of inferring the classification
of the unknown nodes, using the structure of the graph and/or the properties of the nodes. In this
task, the node embeddings were trained using NBNE on the complete graph. After obtaining the
node embeddings, 80% of the labeled nodes in the graph were used to train a logistic classifier that
predicted the class of each node, while 5% of the nodes were used for validation and the remaining
15% nodes were used as a test set. This test was repeated for 10 different random seed initializations
to access the statistical relevance of the results.

Results. Results on the Blog, PPI and Wikipedia datasets are shown in Table 3 and are presented
in terms of Macro F1 scores and training times. NBNE produces statistically similar results to its
baselines, in terms of Macro F1, on both PPI and Wikipedia, while showing a statistically significant
22.45% gain in the Blog dataset, indicating that NBNE’s embeddings did not only get a better
accuracy on Blog, but also that correct answers were better distributed across the 39 possible classes.

Considering training times, NBNE is more than 10 times faster than DeepWalk on these three
datasets and is [300 ∼ 600] times faster than Node2Vec. NBNE didn’t show statistically worse
result in any dataset analyzed here, while having an order of magnitude faster training time than
DeepWalk and more than two orders of magnitude faster training time than Node2Vec.

5 FURTHER ANALYSIS

NBNE is further analyzed in this section, with Section 5.1 presenting a detailed evaluation of hyper-
parameter n, while Section 5.2 shows an analysis of NBNE’s computational complexity.
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Table 3: Node classification results

Blog PPI Wikipedia

Macro F1 Training Macro F1 Training Macro F1 Training
Time Time Time

NBNE 0.2004 1m57s 0.0978 0m16s 0.0727 0m41s
DeepWalk 0.1451∗ 31m31s 0.0991 3m04s 0.0679 13m04s
Node2vec 0.1637∗ 959m12s 0.0971 83m02s 0.0689 408m00s

Gain 22.45% 16.18x -1.35% 11.82x 5.56% 19.04x
492.57x 319.78x 594.62x

5.1 NUMBER OF PERMUTATIONS (n)

The quality of NBNE’s embeddings depends on both the size of the embeddings (d) and the number
of permutations (n). For highly connected graphs, larger numbers of permutations should be chosen
(n ∈ [10, 1000]) to better represent distributions, while for sparser graphs, smaller values can be
used (n ∈ [1, 10]).
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Figure 1: (Color online) NBNE AUC scores vs
embedding sizes on Facebook dataset with 50%
edges removes

Figure 1 shows AUC scores versus embedding
sizes for several values of n on the Facebook
link prediction task. Quadratic functions ap-
proximating log(auc score) were plotted to al-
low for a better understanding of the results. It
can be seen that for larger numbers of permu-
tations (n > 100) results improve with embed-
ding size, while for small ones (n = 1) they
decrease. The plot also shows that n = 10
gives fairly robust values for all tested embed-
ding sizes.

A further analysis can be seen in Table 4, which
shows that graphs with more edges per node
tend to get better results with larger values of
n, while graphs with a smaller branching factor
have better results with only one permutation
(n = 1). Other factors also enter into account
when choosing n, like graph size. For example,
link prediction on the DBLP graph had its best
results for n = 10, although its branching size
was only 3.31.

Table 4: Link Prediction results for varying n with NBNE

PPI (9.95†) Facebook (21.84†) Blog (32.38†)

n
Precision AUC Precision AUC Precision AUCTrain Test Train Test Train Test

10 0.7071 0.7108 0.7795 0.8453‡ 0.9061 0.9642 0.8771‡ 0.8627 0.9348‡

5 0.7280 0.7305 0.8071 0.8408‡ 0.9070 0.9688 0.8775‡ 0.8681 0.9375‡
1 0.7822 0.7751 0.8462 0.8036 0.8410 0.9150 0.8115 0.8374 0.9146

† Edges per node ‡ No statistical difference

5.2 TIME COMPLEXITY

SkipGram’s time complexity is linear on the number of sentences, embedding size (d) and logarith-
mic on the size of the vocabulary (Mikolov et al., 2013a). Since the number of sentences is linear
on the number of permutations (n), branching factor of the graph (b) and on the number of nodes,
which is the size of the vocabulary (|V |), the algorithm will take a time bounded by:

O (d · n · b · |V | · log(|V |))
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Figure 2: (Color online) (Top) Facebook dataset with 30% edges removed: Training times vs (Left)
embedding size (Right) number of permutations. (Bottom) Randomly generated graphs: Training
times vs (Left) number of vertices with b = 10 (Right) branching factor with |V | = 500.

Figure 2 (Top-Left and Top-Right) show training time is indeed linear on both embedding size and
number of permutations. It also shows that Node2Vec is considerably slower than DeepWalk, and
only has a similar training time to running NBNE with at least n = 1000. NBNE with n < 10 was
by far the fastest algorithm.

NBNE, Node2Vec and DeepWalk run in a time bounded by O(|V | log |V |), as can be seen in Fig-
ure 2 (Bottom-Left). Figure 2 (Bottom-Right) shows that NBNE’s time complexity is linear in the
branching factor b, while Node2Vec’s is quadratic. DeepWalk’s running time is constant in this pa-
rameter, but for a graph with a larger branching factor, a higher number of walks per node should be
used to train this algorithm, which would make it indirectly dependent on this factor.

6 CONCLUSIONS

The proposed node embedding method NBNE shows results similar or better than the state-of-the-
art algorithms Node2Vec and DeepWalk on several different datasets. It shows promising results in
two application scenarios: link prediction and node classification, while being efficient and easy to
compute for large graphs, differently from other node embedding algorithms, such as LINE (Tang
et al., 2015) or SDNE (Wang et al., 2016).

NBNE focuses learning on node’s immediate neighbors, creating more ego-centric representations,
which we suspect makes them more stable and faster to learn. Empirical results show that, although
it has a similar time complexity, NBNE can be trained in a fraction of the time taken by DeepWalk
(10 to 190 times faster) or Node2Vec (200 to 6,000 times faster), giving fairly robust results. Since
embeddings are learned using only a node’s immediate neighbors, we suspect it should also be easier
to implement more stable asynchronous distributed algorithms to train them, and we leave this as
future work.
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A DATASETS

We used a total of six graph datasets to evaluate NBNE, with DeepWalk and Node2Vec being used
as baselines. Next we briefly describe these datasets:

1. Facebook (McAuley & Leskovec, 2012): A snapshot of a subgraph of Facebook, where
nodes represent users and edges represent friendships.

2. Astro (Leskovec et al., 2007): A network that covers scientific collaborations between
authors whose papers were submitted to the Astrophysics category in Arxiv.

3. Protein-Protein Interactions (PPI) (Breitkreutz et al., 2008): We use the same subgraph
of the PPI network for Homo Sapiens as in (Grover & Leskovec, 2016). This subgraph
contains nodes with labels from the hallmark gene sets (Liberzon et al., 2011) and repre-
sent biological states. Nodes represent proteins, and edges indicate biological interactions
between pairs of proteins.

4. Wikipedia (Mahoney, 2011): A co-occurrence network of words appearing in the first mil-
lion bytes of the Wikipedia dump. Labels represent Part-of-Speech (POS) tags.

5. Blog (Zafarani & Liu, 2009): A friendship network, where nodes are bloggers and edges
are friendships between them. Each node in this dataset has one class which is referent to
the blogger’s group.

6. DBLP (Yang & Leskovec, 2012): A co-authorship network where two authors are con-
nected if they published at least one paper together.
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