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ABSTRACT

In recent years, deep neural networks are used mainly as discriminators of mul-
timodal learning. We should have large amounts of labeled data for training
them, but obtaining such data is difficult because it requires much labor to label
inputs. Therefore, semi-supervised learning, which improves the discriminator
performance using unlabeled data, is important. Among semi-supervised learn-
ing, methods based on deep generative models such as variational autoencoders
(VAEs) are known to be trained end-to-end with high accuracy. In this paper,
we propose a novel model of semi-supervised multimodal learning based on mul-
timodal VAEs: SS-HMVAE. Furthermore, to cope with unimodal inputs in test
data, we propose an extended model based on existing studies of complementa-
tion of missing values, which we call SS-HMVAE-kl. From experimentation, we
confirm that the proposed model has higher performance than either conventional
unimodal or multimodal semi-supervised learning.

1 INTRODUCTION

We constantly interact with various kinds of information. Each is called a modality, and we are
conducting more reliable information processing based on multimodal information. For machine
learning in recent years, multimodal learning that treats multimodal information as inputs has been
studied widely (Lahat et al., 2015; Baltrušaitis et al., 2017). The most common setting of multi-
modal learning is to predict labels from multimodal data as inputs, which is called fusion setting.

Recently, deep neural networks are often used as discriminators for fusion setting because of their
high performance and ease of design (Ngiam et al., 2011). By sharing the top hidden layers of the
networks for each modality and by training them, one can obtain a joint representation that integrates
information of multiple modalities and that can be useful for predicting labels. In general, training
of deep neural networks requires large labeled datasets. However, while the input data of each
modality network can be obtained easily, it is difficult to obtain corresponding label information
because human resources are required.

One approach to solving this difficulty is semi-supervised learning, which is a framework that im-
proves the discriminator performance using not only labeled data but also large amounts of unlabeled
data for training. Cheng et al. (2016) proposes semi-supervised multimodal learning by co-training
using deep neural networks. In their framework, we can train not only a discriminator given all
modalities as inputs but also discriminators given each modality as input. However, this method
cannot be trained end-to-end. Moreover, it is necessary to devise various additional measures spe-
cialized for the dataset used for training.

Deep generative models can handle unlabeled and labeled data in a unified manner, and can execute
semi-supervised learning end-to-end. Among them, methods based on variational autoencoders
(VAEs) (Kingma & Welling, 2013) are known to have higher performance than that provided by
conventional semi-supervised learning (Kingma et al., 2014; Maaløe et al., 2016).

Therefore, we propose a novel model of semi-supervised multimodal learning using deep gener-
ative models, which we call Semi-Supervised Hierarchical Multimodal Variational AutoEncoder
(SS-HMVAE). However, if inputting unimodal data at testing as did Cheng et al. (2016), then other
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multimodal inputs should be missing, which can degrade accuracy. Therefore, we propose the addi-
tional approach by extending SS-HMVAE based on existing studies of complementation of missing
values (Suzuki et al., 2016; 2018), which we call SS-HMVAE-kl.

2 PROBLEM FORMULATION

We assume a dataset DL = {(x1,w1,y1), ..., (xN ,wN ,yN )} given as a training set, where x and
w are different modalities1, and where y ∈ {0, 1}K is label information representing those target
categories. Each example of the dataset (xn,wn,yn) represents the same object.

The challenge of semi-supervised multimodal learning in this study is to estimate discriminators not
only in multimodal inputs, p(y|x,w), but also in unimodal inputs, p(y|x) and p(y|w), from a small
number of labeled set DL and a large number of unlabeled set DU = {(x1,w1), ..., (xM ,wM )}.

3 PROPOSED METHOD

Let y ∼ p(y) = Cat(y;π), z ∼ p(z) = N (0, I), a ∼ pθ(a|z,y), x,w ∼ pθ(x,w|a) be
generative processes of modalities x,w and a label y, where z and a are latent variables and θ is a
parameter of each generative model. At this time, the joint distribution of all modalities and a label
becomes p(x,w,y) =

∫ ∫
pθ(x|a)pθ(w|a)pθ(a|z,y)p(z)p(y)dadz.

Training this deep generative model requires maximization of this joint distribution over a training
set. However, perform this maximization directly is difficult because this distribution is intractable.
Therefore, we instead maximize the following evidence lower bound (ELBO).

L(x,w,y) = Eqϕ(a,z|x,w,y)[log
pθ(x|a)pθ(w|a)pθ(a|z,y)p(z)p(y)

qϕ(a, z|x,w,y)
], (1)

where qϕ(a, z|x,w,y) = qϕ(z|a)qϕ(a|x,w) is an approximate distribution of a posterior, or
inference model, and ϕ represents its parameter. To optimize this ELBO with respect to param-
eters, we can estimate gradients of ELBO using stochastic gradient variational Bayes (SGVB)
(Kingma & Welling, 2013; Rezende et al., 2014).

Next, we derive ELBO over an unlabeled dataset. Using the discriminative model qϕ(y|x,w) =
Eqϕ(a|x,w)[qϕ(y|a)], ELBO of the joint distribution of all modalities p(x,w) becomes as follows:

U(x,w) = Eqϕ(a,z,y|x,w)[log
pθ(x|a)pθ(w|a)pθ(a|z,y)p(z)p(y)

qϕ(a, z,y|x,w)
], (2)

where qϕ(a, z,y|x,w) = qϕ(z|a,y)qϕ(y|a)qϕ(a|x,w). Then we use Gumbel-softmax
(Jang et al., 2016) to reparameterize a categorical distribution qϕ(y|a).
Therefore, the objective JHMVAE over both labeled and unlabeled sets is as follows:

JHMVAE =
1

N

∑
(xn,wn,yn)∈DL

Ll(xn,wn,yn) +
1

M

∑
(xm,wm)∈DU

U(xm,wm), (3)

where Ll(x,w,y) = L(x,w,y) + α · log qϕ(y|x,w). α is a parameter that adjusts the ratio
between discriminative and generative models in training.

Even if we optimize Equation 3, only qϕ(y|x,w) is trained as a discriminative model. There-
fore, to predict the label from unimodal input, we must miss another modality input. However, this
missing input might adversely affect label prediction. One method of avoid such effects is applica-
tion of a missing value complement technique such as iterative sampling method2 (Rezende et al.,
2014). However, this method has been shown to be unable to cope appropriately when the missing
modality dimensions are numerous (Suzuki et al., 2018). Therefore, we extend SS-HMVAE using
the same approach as JMVAE-kl 3, proposed to address the missing problem in multimodal VAEs
(Suzuki et al., 2016; 2018). We call this approach SS-HMVAE-kl.

We prepare a new inference model for each modality, qλ(a|x) and qλ(a|w), where λ is a parameter
of each model. If we can properly train them, we can obtain discriminative models of unimodal
input, such as qϕ,λ(y|x) = Eqλ(a|x)[qϕ(y|a)]. Therefore, we add divergence between these and

1In this paper, we limit the number of modalities to two.
2See the appendix for details on how to perform the iterate sampling method with SS-HMVAE.
3Vedantam et al. (2017) and Higgins et al. (2017) refer to JMVAE-kl simply as JMVAE.
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Table 1: Comparison with existing semi-supervised learning of unimodal and multimodal. These
results are averages for 10 different train/test splits. †These results were reproduced from the original
papers.

Models RGB depth RGB+depth
Unimodal M2 (Kingma et al., 2014) 85.6 ± 1.6 72.0 ± 1.7 -

SDGM (Maaløe et al., 2016) 85.6 ± 1.9 75.8 ± 1.7 -
CT+SVM† (Cheng et al., 2015) 78.7 75.4 83.7

Multimodal Co-training† (Cheng et al., 2016) 85.5 ± 2.0 82.6 ± 2.3 89.2 ± 1.3
SS-MVAE 79.6 ± 1.8 34.4 ± 7.0 89.9 ± 1.7
SS-HMVAE 85.4 ± 2.2 41.5 ± 6.7 90.6 ± 1.6

Proposed SS-HMVAE (iterative sampling) 86.4 ± 2.1 54.8 ± 1.9 90.6 ± 1.6
SS-HMVAE-kl 86.8 ± 2.2 81.1 ± 2.4 90.2 ± 1.4

the inference model of SS-HMVAE to Equation 3 to approximate them more closely in training.

Jkl = JHMVAE − β

M +N
Jdiv, (4)

where β is a parameter that adjusts the influence of the second term, and

Jdiv =
∑

(xn,wn)∈DL
∪

DU

[DKL(qϕ(a|xn,wn)||qλ(a|xn)) +DKL(qϕ(a|xn,wn)||qλ(a|wn))].

By optimizing this objective of SS-HMVAE-kl, we can train discriminative models of multimodal
and unimodal inputs by end-to-end.

4 EXPERIMENT

In this experiment, we use the Washington RGB-D dataset (Lai et al., 2011), which consists of color
(RGB) and depth images, regarded as different modalities. Each example represents one of 300
household items, and they are grouped into 51 categories. According to Lai et al. (2011), about
35,000 examples were set as a training set and 6,877 as a test set. In addition, 5% of the training set
was selected randomly to be a labeled set, and the rest were set as an unlabeled set. See the appendix
for preprocessing of the dataset and the network structures of each distribution. The number of
iterative sampling was set to 100, and we set α = β = 1. We used Tars4 to implement the models.

To evaluate the performance of the proposed methods, we compare them with existing semi-
supervised learning of unimodal (M2 (Kingma et al., 2014), SDGM (Maaløe et al., 2016)) and mul-
timodal (CT+SVM (Cheng et al., 2015), co-training (Cheng et al., 2016), SS-MVAE). SS-MVAE is
simply a multimodal extension of M2, which is almost identical to semiMVAE (Du et al., 2017) 5.
Note that we cannot apply complementary methods such as SS-HMVAE-kl to SS-MVAE.

Table 1 presents the classification accuracies of respective models. First, compared to the proposed
methods, the unimodal input accuracy is not much improved by the iterative sampling method, but
it is greatly improved by SS-HMVAE-kl. This is a better result than those obtained using semi-
supervised models of unimodal input. Next, compared with existing multimodal methods, the pro-
posed models outperform them in multimodal input (RGB+depth). Even in the case of unimodal in-
put (RGB, depth), the proposed methods almost outperform the existing ones. In depth, co-training
is better than our methods, perhaps because of the difference in depth preprocessing. Furthermore,
note that Cheng et al. (2016) uses not only co-training but also various techniques for performance
enhancement.

5 CONCLUSION

In this paper, we focused on semi-supervised multimodal learning and proposed SS-HMVAE based
on deep generative models. We also proposed SS-HMVAE-kl to cope with unimodal input. Results
of experiments confirmed that the proposed models outperform existing models.

4https://github.com/masa-su/Tars. This is a deep generative model library in Theano
(Team et al., 2016) and Lasagne (Dieleman et al., 2015).

5Actually, the only difference between semiMVAE and SS-MVAE is that semiMVAE sets a mixed Gaussian
in the inference distribution, whereas SS-MVAE sets a single Gaussian.
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A PREPROCESSING OF THE DATASET

First, we resize both RGB and depth images to 148 × 148 pixels. Because the original images are
portrait or landscape, the longer side of the original images is fixed at 148, and the shorter side is
interpolated by extending the edge pixel. Next, we interpolate the missing values of the distance
in the depth images with the nearest distance values and normalize the distance values to [0, 225].
Furthermore, we extend the single channel depth images to three channels using the jet colormap
process. All preprocessing above is done in accordance with Eitel et al. (2015), where only the
image size follows Cheng et al. (2016). Note that the method described by Cheng et al. (2016)
preprocesses depth images with surface normal processing, which provides higher accuracy than jet
colormap.

In this experiment, we do not treat RGB-D image directly as an input of deep generative models.
We use features extracted from deep neural networks as input because the purpose of this study
is not to generate images. The deep neural network for feature extraction is pre-trained VGG16
(Simonyan & Zisserman, 2014) using the ILSVRC 2012 dataset. The output values at the fc1 layer
(4096 dimensions) of it are used as input features. We prepared VGG16 for each modality, with
fine-tuning only of the labeled set. We used Adam (Kingma & Ba, 2014) and trained 200 epochs
with a learning rate of 10−5 to prevent over-fitting.

Therefore, the input features of RGB and depth images are x ∈ R4096
>0 and w ∈ R4096

>0
6.

B PARAMETERIZATION OF DISTRIBUTIONS WITH DEEP NEURAL NETWORKS

The Gaussian distribution can be parameterized with deep neural networks as
N (z;µ,diag(σ2)),

µ = fµ(fMLP(x)),

σ2 = Softplus(fσ2(fMLP(x))),

where fµ and fσ2 are respectively denote linear single layer neural networks and where fMLP rep-
resents a deep neural network with an arbitrary number of layers. Moreover, applying the softplus
function for each element of a vector is denoted as Softplus.

The Bernoulli distribution is parameterized as
pθ(x|z) = B(x;µ),µ = Sigmoid(fµ(fMLP(z))),

where Sigmoid is represents the sigmoid function.

In the case of the categorical distribution, we can parameterize it as
pθ(x|z) = C(x;µ),µ = Softmax(fµ(fMLP(z))),

where Softmax denotes the softmax function.

C MODEL ARCHITECTURE

For the notation of model structures, we denote a linear fully-connected layer with k units, batch
normalization, and ReLU as DkBR. Also, we denote DkBRwithout batch normalization and ReLU as

6These domains of definition become positive real numbers because the activation function of the fc1 layer
is ReLU.
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Dk. In addition, the process of applying J after I is denoted as I-J, and the process of concatenating
the last layers of the two networks I, J into one layer is denoted as (I,J).

Therefore, the network structures of distributions of SS-HMVAE are as follows:

• p(x|a), p(w|a)
– fµ: D1024
– fMLP: a-D1024BR-D1024BR

• q(y|a) (categorical)
– fµ: D51
– fMLP: a-D1024BR-Dropout0.5

• q(a|x,w) (Gaussian)
– fµ and fσ2 : D1024
– fMLP: (x-D1024BR, w-D1024BR)

• q(a|z,y) (Gaussian)
– fµ and fσ2 : D1024
– fMLP: (z-D1024BR, y-D1024BR)

• q(z|a,y) (Gaussian)
– fµ and fσ2 : D1024
– fMLP: (a-D1024BR, y-D1024BR)

where DropoutRate denote the dropout layer with the dropout rate Rate．
Furthermore, the inference models of each modality of SS-HMVAE-kl are set as follows:

• q(a|x), q(a|w) (Gaussian)
– fµ and fσ2 : D1024
– fMLP: x or w-D1024BR

We used Adam for the optimization algorithm. The batch size was 128, the learning rate was 10−4.
Then we trained 200 epochs.

D ITERATIVE SAMPLING IN SS-HMVAE

SS-HMVAE contains the latent variable a. This variable plays the role of a joint representation
integrating multimodal information. Therefore, when the input x of the discriminative model is
missing, the transition kernel can be written using a as follows:

T (x̃|x,w) =

∫
p(x̃|a)q(a|x,w)da (5)

Therefore, the processes of the iterative sampling method are described below: First, let the initial
value of x be random noise such as x ∼ p(x). We then sample a using the inference model
q(a|x,w) and reconstruct x by sampling from the generative model p(x|a).
By repeating these processes several times, the missing modality x becomes supplemented.
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