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ABSTRACT

Music theory studies the regularity of patterns in music to capture concepts un-
derlying music styles and composers’ decisions. This paper continues the study
of building automatic theorists (rovers) to learn and represent music concepts that
lead to human interpretable knowledge and further lead to materials for educating
people. Our previous work took a first step in algorithmic concept learning of tonal
music, studying high-level representations (concepts) of symbolic music (scores)
and extracting interpretable rules for composition. This paper further studies the
representation hierarchy through the learning process, and supports adaptive 2D
memory selection in the resulting language model. This leads to a deeper-level
interpretability that expands from individual rules to a dynamic system of rules,
making the entire rule learning process more cognitive. The outcome is a new
rover, MUS-ROVER II, trained on Bach’s chorales, which outputs customizable
syllabi for learning compositional rules. We demonstrate comparable results to
our music pedagogy, while also presenting the differences and variations. In addi-
tion, we point out the rover’s potential usages in style recognition and synthesis,
as well as applications beyond music.

1 INTRODUCTION

Forming hierarchical concepts from low-level observations is key to knowledge discovery. In the
field of artificial neural networks, deep architectures are employed for machine learning tasks, with
the awareness that hierarchical representations are important (Bengio et al., 2013). Rapid progress
in deep learning has shown that mapping and representing topical domains through increasingly
abstract layers of feature representation is extremely effective. Unfortunately, this layered represen-
tation is difficult to interpret or use for teaching people. Consequently, deep learning models are
widely used as algorithmic task performers (e.g. AlphaGo), but few act as theorists or pedagogues.
In contrast, our goal is to achieve a deeper-level interpretability that explains not just what has been
learned (the end results), but also what is being learned at every single stage (the process).

On the other hand, music theory studies underlying patterns beneath the music surface. It objec-
tively reveals higher-level invariances that are hidden from the low-level variations. In practice, the
development of music theory is an empirical process. Through manual inspection of large corpora
of music works, theorists have summarized compositional rules and guidelines (e.g. J. J. Fux, author
of Gradus ad Parnassum, the most influential book on Renaissance polyphony), and have devised
multi-level analytical methods (e.g. H. Schenker, inventor of Schenkerian analysis) to emphasize the
hierarchical structure of music, both of which have become the standard materials taught in today’s
music theory classes. The objective and empirical nature of music theory suggests the possibility of
an automatic theorist — statistical techniques that perform hierarchical concept learning — while
its pedagogical purpose requires human interpretability throughout the entire learning process.

The book title Gradus ad Parnassum, means “the path towards Mount Parnassus,” the home of
poetry, music, and learning. This paper presents MUS-ROVER II, an extension of our prior work
(Yu et al., 2016a;b), to independently retake the path towards Parnassus. The rover acts more as a
pathfinder than a generative model (e.g. LSTM), emphasizing the path more than the destination.
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Figure 1: MUS-ROVER’s self-learning loop (the kth iteration). The teacher (discriminator) takes
as inputs the student’s latest style p〈k−1〉

stu and the input style p̂, and identifies a feature φ through
which the two styles manifest the largest gap D(·||·). The identified feature is then made into a rule
(a constraint set Γk), and augments the ruleset {Γi}ki=1. The student (generator) takes as input the
augmented ruleset to update its writing style into p〈k〉stu, and favors creativity, i.e. more possibilities,
by maximizing the Tsallis entropy Sq subject to the rule constraints. In short, the teacher extracts
rules while the student applies rules; both perform their tasks by solving optimization problems.

We compare the paths taken by this improved automatic theorist to paths taken by human theorists
(say Fux), studying similarities as well as pros and cons of each. So advantages from both can be
jointly taken to maximize the utility in music education and research. In this paper in particular,
we highlight the concept hierarchy that one would not get from our prior work, as well as enhanced
syllabus personalization that one would not typically get from traditional pedagogy.

2 MUS-ROVER OVERVIEW

As the first algorithmic pathfinder in music, MUS-ROVER I introduced a “teacher 
 student” model
to extract compositional rules for writing 4-part chorales (Yu et al., 2016a;b). The model is im-
plemented by a self-learning loop between a generative component (student) and a discriminative
component (teacher), where both entities cooperate to iterate through the rule-learning process (Fig-
ure 1). The student starts as a tabula rasa that picks pitches uniformly at random to form sonorities
(a generic term for chord) and sonority progressions. The teacher compares the student’s writing
style (represented by a probabilistic model) with the input style (represented by empirical statistics),
identifying one feature per iteration that best reveals the gap between the two styles, and making it
a rule for the student to update its probabilistic model. As a result, the student becomes less and
less random by obeying more and more rules, and thus, approaches the input style. Collecting from
its rule-learning traces, MUS-ROVER I successfully recovered many known rules, such as “Parallel
perfect octaves/fifths are rare” and “Tritons are often resolved either inwardly or outwardly”.

What is Inherited from MUS-ROVER I MUS-ROVER II targets the same goal of learning in-
terpretable music concepts. It inherits the self-learning loop, as well as the following design choices.

(Dataset and Data Representation) We use the same dataset that comprises 370 C scores of Bach’s
4-part chorales. We include only pitches and their durations in a piece’s raw representation, notated
as a MIDI matrix whose elements are MIDI numbers for pitches. The matrix preserves the two-
dimensional chorale texture, with rows corresponding to melodies, and columns to harmonies.

(Rule Representation) We use the same representation for high-level concepts in terms of rules,
unrelated to rules in propositional logic. A (compositional) rule is represented by a feature and its
distribution: r = (φ, pφ), which describes likelihoods of feature values. It can also be transformed
to a linear equality constraint (Aφpstu = pφ) in the student’s optimization problem (Γ’s in Figure 1).

(Student’s Probabilistic Model) We still use n-gram models to represent the student’s style/belief,
with words being sonority features, and keep the student’s optimization problem as it was. To
reiterate the distinctions to many music n-grams, we never run n-grams in the raw feature space, but
only collectively in the high-level feature spaces to prevent overfitting. So, rules are expressed as
probabilistic laws that describe either (vertical) sonority features or their (horizontal) progressions.
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What is New in MUS-ROVER II We study hierarchies on features, so rules are later presented
not just as a linear list, but as hierarchical families and sub-families. In particular, we introduce
conceptual hierarchy that is pre-determined by feature maps, and infer informational hierarchy that
is post-implied from an information-theoretic perspective. We upgrade the self-learning loop to
adaptively select memories in a multi-feature multi-n-gram language model. This is realized by
constructing hierarchical filters to filter out conceptual duplicates and informational implications.
By further following the information scent spilled by Bayesian surprise (Varshney, 2013), the rover
can effectively localize the desired features in the feature universe.

3 RELATED WORK

Adversarial or Collaborative MUS-ROVER’s self-learning loop between the teacher (a discrim-
inator) and student (a generator) shares great structural similarity to generative adversarial nets
(Goodfellow et al., 2014) and their derivatives (Denton et al., 2015; Makhzani et al., 2015). How-
ever, the working mode between the discriminator and generator is different. In current GAN al-
gorithms, the adversarial components are black-boxes to each other, since both are different neural
networks that are coupled only end to end. The learned intermediate representation from one model,
no matter how expressive or interpretable, is not directly shared with the other. Contrarily in MUS-
ROVER, both models are transparent to each other (also to us): the student directly leverages the
rules from the teacher to update its probabilistic model. In this sense, the learning pair in MUS-
ROVER is more collaborative rather than adversarial. Consequently, not only the learned concepts
have interpretations individually, but the entire learning trace is an interpretable, cognitive process.

Furthermore, MUS-ROVER and GAN contrast in the goal of learning and the resulting evaluations.
The rover is neither a classifier nor a density estimator, but rather a pure representation learner
that outputs high-level concepts and their hierarchies. Training this type of learner in general is
challenging due to the lack of a clear objective or target (Bengio et al., 2013), which drives people
to consider some end task like classification and use performance on the task to indirectly assess the
learned representations. In MUS-ROVER, we introduce information-theoretic criteria to guide the
training of the automatic theorist, and in the context of music concept learning, we directly evaluate
machine generated rules and hierarchies by comparison to those in existing music theory.

Interpretable Feature Learning In the neural network community, much has been done to first
recover disentangled representations, and then post-hoc interpret the semantics of the learned fea-
tures. This line of work includes denoising autoencoders (Vincent et al., 2008) and restricted Boltz-
mann machines (Hinton et al., 2006; Desjardins et al., 2012), ladder network algorithms (Rasmus
et al., 2015), as well as more recent GAN models (Radford et al., 2015). In particular, InfoGAN also
introduces information-theoretic criteria to augment the standard GAN cost function, and to some
extent achieves interpretability for both discrete and continuous latent factors (Chen et al., 2016).
However, beyond the end results, the overall learning process of these neural networks are still far
away from human-level concept learning (Lake et al., 2015), so not directly instructional to people.

Automatic Musicians Music theory and composition form a reciprocal pair, often realized as the
complementary cycle of reduction and elaboration (Laitz, 2016) as walks up and down the multi-
level music hierarchy. Accordingly, various models have been introduced to automate this up/down
walk, including music generation (Cope & Mayer, 1996; Biles, 1994; Simon et al., 2008), analysis
(Taube, 1999), or theory evaluation (Rohrmeier & Cross, 2008). In terms of methodologies, we have
rule-based systems (Cope, 1987), language models (Google Brain, 2016; Simon et al., 2008), and
information-theoretic approaches (Jacoby et al., 2015; Dubnov & Assayag, 2002). However, all of
these models leverage domain knowledge (e.g. human-defined chord types, functions, rules) as part
of the model inputs. MUS-ROVER takes as input only the raw notations (pitches and durations),
and outputs concepts that are comparable to (but also different from) our domain knowledge.

4 HIERARCHICAL RULE LEARNING

MUS-ROVER II emphasizes hierarchy induction in learning music representations, and divides the
induction process into two stages. In the first stage, we impose conceptual hierarchy as pre-defined
structures among candidate features before the self-learning loop. In the second stage, we infer
informational hierarchy as post-implied structures through the rule learning loops.
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Interpretable Features A feature is a function that computes a distributed representation of the
building blocks that constitute data samples. For Bach’s 4-part chorales, we model every piece
(4-row matrix) as a sequence of sonorities (columns). So every sonority is the building block of its
composing piece (like a word in a sentence). Then a feature maps a sonority onto some feature space,
summarizing an attribute. To formalize, let Ω = {R, p1, . . . , pn} be an alphabet that comprises a
rest symbol R, and n pitch symbols pi. In addition, the alphabet symbols — analogous to image
pixels — are manipulable by arithmetic operations, such as plus/minus, modulo, and sort. More
precisely, every pi is an integer-valued MIDI number (60 for middle C, granularity 1 for semi-tone),
and R is a special character which behaves like a python nan variable. The four coordinates of
every sonority p ∈ Ω4 denote soprano, alto, tenor, and bass, respectively. We define a feature as a
surjective function φ : Ω4 7→ φ(Ω4), and the corresponding feature space by its range. As a first
and brutal categorization, we say a feature (space) is raw (or lowest-level) if |φ(Ω4)| = |Ω4|, and
high-level if |φ(Ω4)| < |Ω4|. For instance, Ω4 or any permutation of Ω4 is a raw feature space.

MUS-ROVER II employs a more systematic way of generating the universe of interpretable features.
A (sonority) feature is constructed as the composition of a window and a descriptor. A window is
a function that selects parts of the input sonority: wI : Ω4 7→ Ω|I|, where I is an index set. For
instance, w{1,4}(p) = (p1, p4) selects soprano and bass. A descriptor is constructed inductively
from a set of basis descriptors B, consisting of atomic arithmetic operations. We currently set B =
{order, diff, sort, mod12} (Appendix A.2). We define a descriptor of length k as the composition
of k bases: d(k) = bk ◦ · · · ◦ b1, for all bi ∈ B, where d(0) is the identity function. We collect the
family of all possible windows: W = {wI | I ∈ 2{1,2,3,4}\{∅}}, and the family of all descriptors
of length less than or equal to k: D[k] = {d(k′) | 0 ≤ k′ ≤ k}, and form the feature universe:

Φ = {d ◦ w | w ∈W,d ∈ D[k]}. (1)

The fact that every candidate feature in Φ is systematically generated as composition of atomic oper-
ators ensures its interpretability, since one can literally read it out step-by-step from the composition.

Feature-Induced Partition On the one hand, a feature function has all the mathematic specifica-
tions to name the corresponding feature and feature values. On the other hand, we only care about
the partition of the input domain (Ω4) induced by the feature but not the (superficial) naming of the
clusters. In other words, we only identity the sonority clusters whose members are mapped to the
same function value, but not the value per se. As a result, we use a partition to refer to the essence of
a concept, and the inducing function as a mathematical name to interpret the concept. To formalize,
a feature function φ induces a partition of its domain

Pφ =
{
φ−1({y}) | y ∈ φ(Ω4)

}
. (2)

Given a feature universe Φ, (2) defines an equivalence relation on Φ: φ P∼ φ′ if Pφ = Pφ′ , which
induces the corresponding partition family PΦ as the resulting equivalence classes. For two par-
titions P,Q ∈ PΦ, we say P is finer than Q (or Q is coarser), written as P � Q, if for all
p, p′ ∈ Ω4, p, p′ are in the same cluster under P ⇒ p, p′ are in the same cluster under Q. We say P
is strictly finer, written as P � Q, if P � Q and Q � P .

Conceptual Hierarchy Based on the binary relation �, we construct the conceptual hierarchy
for the partition family PΦ, and represent it as a directed acyclic graph (DAG) with nodes being
partitions. For any pair of nodes v, v′, v → v′ if and only if the partition referred by v is (strictly)
finer than that referred by v′. The DAG grows from a single source node, which represents the finest
partition — every point in the domain by itself is a cluster — and extends via the edges to coarser
and coarser partitions. In terms of features, we say a feature φ′ is at a higher level than another
feature φ, if the induced partitions satisfy Pφ � Pφ′ . In other words, a higher-level feature induces
a coarser partition that ignores lower-level details by merging clusters. One can check that the finest
partition (the source node) is indeed induced by a raw feature. We attach an efficient algorithm for
pre-computing the conceptual hierarchy in Appendix A.3.

We emphasize the necessity of this multi-step process: features→ partitions→ hierarchy (DAG),
as opposed to a simple hierarchical clustering (tree). The latter loses many inter-connections due to
the tree structure and its greedy manner, and more importantly, the interpretability of the partitions.

Informational Hierarchy We infer informational hierarchy from a many-to-one relation, called
implication, along a rule trace. More formally, let {ri}ki=1 := {(φi, p̂φi)}ki=1 be the extracted trace
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of rules (in terms of feature and feature distribution) by the kth iteration of the self-learning loop.
We say a feature φ is informationally implied from the trace {ri}ki=1 with tolerance γ > 0, if

gap
(
p
〈k〉
φ,stu

∥∥ p̂φ
)

:= D
(
p
〈k〉
φ,stu

∥∥ p̂φ
)
< γ, and gap

(
p
〈k′〉
φ,stu

∥∥ p̂φ
)
≥ γ,∀k′ < k,

where D(·‖·) is the KL divergence used to characterize the gap of the student’s style (probabilistic
model) against Bach’s style (input). One trivial case happens when φ is extracted as the kth rule, i.e.
φ = φk, then gap(p〈k〉φ′,stu

∥∥ p̂φ′) = 0 < γ, ∀φ′ ∈ {φ′ | Pφ � Pφ′}, meaning that feature φ, once
learned as a rule, informationally implies itself and all its descendants in the conceptual hierarchy.
However, what is more interesting is the informational implication from other rules outside the
conceptual hierarchy, which is typically hard for humans to “eyeball”.

One might question the necessity of conceptual hierarchy since it can be implied in the informational
hierarchy. The answer is yes in principle, but no in practice. The main difference is that conceptual
hierarchy is pre-computed over the entire feature universe before the loop, which is global, precise,
and trace independent. On the contrary, informational hierarchy is trace specific and loose, due to
tolerance γ and the precision of the optimization solver. As a result, informational hierarchy alone
tends to lose the big picture and require more post-hoc interpretations, and is unstable in practice.

Hierarchical Filters Beyond their benefits in revealing inter-relational insights among distributed
representations, we build hierarchical filters from both conceptual and informational hierarchies,
for the purpose of pruning hierarchically entangled features and speeding up feature selection. This
upgrades MUS-ROVER II into a more efficient, robust, and cognitive theorist. Recall the skeleton
of the teacher’s optimization problem in Figure 1, we flesh it out as follows:

maximize
φ∈Φ

gap
(
p
〈k−1〉
φ,stu

∥∥ p̂φ
)

(3)

subject to H(p̂φ) ≤ δ (Regularity Condition)

φ /∈ C〈k−1〉 :=
{
φ
∣∣ Pφ � Pφ′ , φ′ ∈ Φ〈k−1〉

}
(Conceptual-Hierarchy Filter)

φ /∈ I〈k−1〉 :=
{
φ
∣∣ gap

(
p
〈k−1〉
φ,stu

∥∥ p̂φ
)
< γ

}
(Informational-Hierarchy Filter)

In the above optimization problem, Φ is the feature universe defined in (1) and φ ∈ Φ is the op-
timization variable whose optimal value is used to form the kth rule: φk = φ?, rk = (φ?, p̂φ?).
We decouple the regularity condition from the objective function in our previous work (which was
the generalized cultural hole function), and state it separately as the first constraint that requires
the Shannon entropy of the feature distribution to be no larger than a given threshold (Pape et al.,
2015). The second constraint encodes the filter from conceptual hierarchy, which prunes coarser
partitions of the learned features Φ〈k−1〉 := {φ1, . . . , φk−1}. The third constraint encodes the filter
from informational hierarchy, which prunes informationally implied features.

There are two hyper-parameters δ and γ in the optimization problem (3), whose detailed usage in
syllabus customization will be discussed later in Sec. 6. At a high level, we often pre-select γ before
the loop to express a user’s satisfaction level: a smaller γ signifies a meticulous user who is harder
to satisfy; the threshold δ upper bounds the entropic difficulty of the rules, and is adaptively adjusted
through the loop: it starts from a small value (easy rules first), and auto-increases whenever the
feasible set of (3) is empty (gradually increases the difficulty when mastering the current level).

5 ADAPTIVE MEMORY SELECTION

MUS-ROVER II considers a continuous range of higher order n-grams (variable memory), and
adaptively picks the optimal n based on a balance among multiple criteria. The fact that every n-
gram is also on multiple high-level feature spaces opens the opportunities for long-term memories
without exhausting machine memory, while effectively avoiding overfitting.

Two-Dimensional Memory In light of a continuous range of n-grams, say n ∈ N = {2, 3, . . . },
the feature universe adds another dimension, forming a two-dimensional memory (N×Φ) — length
versus depth — for the language model (Figure 2: left). The length axis enumerates n-gram orders,
with a longer memory corresponding to a larger n; the depth axis enumerates features, with a deeper
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Figure 2: MUS-ROVER II’s two-dimensional memory (left): the length axis enumerates n-gram
orders; the depth axis enumerates features; and every cell is a feature distribution. Memory mask
(right): 0 marks the removal of the corresponding cell from feature selection, which is caused by a
hierarchical filter or the regularity condition or (contradictory) duplication.

memory corresponding to a higher-level feature. Every cell in the memory is indexed by two co-
ordinates (n, φ), referring to the feature φ under the n-gram, and stores the corresponding feature
distribution. As a consequence, the rule extraction task involves picking the right feature under the
right n-gram, which extends the space of the optimization problem (3) from Φ to N × Φ. Accord-
ingly, the constraints of (3) jointly forge a mask on top of the 2D memory (Figure 2: right).

Criteria and Balance We propose three criteria to extract rules from the 2D memory: confidence,
regularity, and efficacy. Confidence is quantified by empirical counts: the more relevant examples
one sees in Bach’s chorales, the more confident. Regularity is quantified by Shannon entropy of
the rule’s feature distribution: a rule is easier to memorize if it is less entropic (Pape et al., 2015).
Efficacy is inversely quantified by the gap between the student’s probabilistic model and the rule’s
feature distribution: a rule is more effective if it reveals a larger gap. There are tradeoffs among
these criteria. For instance, a lower-level feature is usually more effective since it normally reflects
larger variations in the gap, but is also unlikely to be regular, thus harder to memorize and generalize.
Also a feature under a higher-order n-gram may be both regular and effective, but the number of
examples that match the long-term conditionals is likely to be small, reducing confidence.

Adaptive Selection: Follow the (Bayesian) Surprise The teacher’s optimization problem (3)
explicitly expresses the efficacy factor in the objective, and the regularity condition as the first con-
straint. To further incorporate confidence, we cast the rule’s feature distribution p̂φ in a Bayesian
framework rather than a purely empirical framework as in our previous work. We assume the stu-
dent’s belief with respect to a feature φ follows a Dirichlet distribution whose expectation is the
student’s probabilistic model. In the kth iteration of the self-learning loop, we set the student’s prior
belief as the Dirichlet distribution parameterized by the student’s latest probabilistic model:

priorφ,stu ∼ Dir
(
c · p〈k−1〉

φ,stu

)
,

where c > 0 denotes the strength of the prior. From Bach’s chorales, the teacher inspects the em-
pirical counts qφ associated with the feature φ and the relevant n-gram, and computes the student’s
posterior belief if φ were selected as the rule:

posteriorφ,stu ∼ Dir
(
qφ + c · p〈k−1〉

φ,stu

)
.

The concentration parameters of the Dirichlet posterior show the balance between empirical counts
and the prior. If the total number of empirical counts is small (less confident), the posterior will
be smoothed more by the prior, de-emphasizing the empirical distribution from qφ. If we compute

p̂φ ∝
(
qφ + c · p〈k−1〉

φ,stu

)
in the objective of (3), then

gap
(
p
〈k−1〉
φ,stu

∥∥ p̂φ
)

= D
(
E
[
priorφ,stu

] ∥∥ E
[
posteriorφ,stu

])
. (4)

The right side of (4) is closely related to Bayesian surprise (Varshney, 2013), which takes the form
of KL divergence from the prior to posterior. If we remove the expectations and switch the roles
between the prior and posterior, we get the exact formula for Bayesian surprise. Both functionals
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Table 1: Customizing a syllabus (* signifies rules that are skipped in the faster pace)

Rule Trace Faster Pace (γ = 0.5) Slower Pace (γ = 0.1)

1 order ◦ w{1,2,3,4} order ◦ w{1,2,3,4}
2 mod12 ◦ w{1} order ◦ diff ◦ sort ◦ w{1,2,4}∗
3 mod12 ◦ diff ◦ w{2,3} order ◦ diff ◦ mod12 ◦ w{1,2,3}∗
4 mod12 ◦ diff ◦ w{3,4} order ◦ diff ◦ diff ◦ w{1,2,3,4}∗
5 diff ◦ sort ◦ w{2,3} order ◦ sort ◦ mod12 ◦ w{2,3,4}∗
6 mod12 ◦ w{3} order ◦ sort ◦ mod12 ◦ w{1,3,4}∗
7 mod12 ◦ diff ◦ w{1,2} order ◦ sort ◦ mod12 ◦ w{1,2,3,4}∗
8 mod12 ◦ diff ◦ w{2,4} mod12 ◦ w{1}
9 diff ◦ w{1,2} mod12 ◦ diff ◦ w{2,3}

10 diff ◦ sort ◦ w{1,3} mod12 ◦ diff ◦ w{3,4}

capture the idea of comparing the gap between the prior and posterior. Therefore, the efficacy of
concept learning is analogous to seeking (informational) surprise in the learning process.

The subtlety in (4) where we exchange the prior and posterior, makes a distinction from Bayesian
surprise due to the asymmetry of KL divergence. As a brief explanation, adopting (4) as the objective
tends to produce rules about what Bach hated to do, while the other way produces what Bach liked
to do. So we treat it as a design choice and adopt (4), given that rules are often taught as prohibitions
(e.g. “parallel fifths/octaves are bad”, “never double the tendency tones”). There are more in-depth
and information-theoretic discussions on this point (Huszár, 2015; Palomar & Verdú, 2008).

6 EXPERIMENTS

MUS-ROVER II’s main use case is to produce personalized syllabi that are roadmaps to learning the
input style (customized paths to Mount Parnassus). By substituting the student module, users can
join the learning cycle, in which they make hands-on compositions and get iterative feedback from
the teacher. Alternatively, for faster experimentation, users make the student their learning puppet,
which is personalized by its external parameters. This paper discusses the latter case in detail.

Math-to-Music Dictionary MUS-ROVER II conceptualizes every rule feature as a partition of
the raw space, and uses the inducing function as its mathematical name. To get the meanings of the
features, one can simply work out the math, but some of them already have their counterparts as
music terminologies. We include a short dictionary of those correspondences in Appendix A.1.

Pace Control and Syllabus Customization We present a simple yet flexible pace control panel
to the users of MUS-ROVER II, enabling personalized set-up of their learning puppet. The control
panel exposes four knobs: the lower bound, upper bound, and stride of the rule’s entropic difficulty
(δmin, δmax, δstride), as well as the satisfactory gap (γ). These four hyper-parameters together allow
the user to personalize the pace and capacity of her learning experience. The entropic difficulty δ
caps the Shannon entropy of a rule’s feature distribution in (3), a surrogate for the complexity (or
memorability) of the rule (Pape et al., 2015). It is discretized into a progression staircase from δmin
up to δmax, with incremental δstride. The resulting syllabus starts with δ = δmin, the entry level
difficulty; and ends whenever δ ≥ δmax, the maximum difficulty that the user can handle. Anywhere
in between, the loop deactivates all rules whose difficulties are beyond current δ, and moves onto
the next difficulty level δ + δstride if the student’s probabilistic model is γ-close to the input under
all currently active rule features.

To showcase syllabus customization, we introduce an ambitious user who demands a faster pace and
a patient user who prefers a slower one. In practice, one can collectively tune the stride parameter
δstride and the gap parameter γ, with a faster pace corresponding to a larger δstride (let’s jump
directly to the junior year from freshman) and a larger γ (having an A- is good enough to move onto
the next level, why bother having A+). Here we simply fix δstride, and let γ control the pace. We
illustrate two syllabi in Table 1, which compares the first ten (1-gram) rules in a faster (γ = 0.5)
syllabus and a slower one (γ = 0.1). Notice the faster syllabus gives the fundamentals that a music
student will typically learn in her first-year music theory class, including rules on voice crossing,
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Table 2: Sample 1-gram rules and their hierarchies.

mod12 � diff � w{3,4}mod12 � diff � w{2,3}

mod12 � w{1}

order � w{1,2,3,4}

Interpretable rule (Spacing): Almost always, the
soprano pitch is above the alto, alto above tenor,
and tenor above bass.

This partition sub-family includes 21 coarser parti-
tions, which are local orderings that are already cap-
tured by the global ordering.

mod12 � diff � w{3,4}mod12 � diff � w{2,3}

mod12 � w{1}

order � w{1,2,3,4}

Interpretable rule (Scale): The soprano voice is
drawn from a diatonic scale with high probability.

This partition sub-family does not contain any other
coarser partitions.

mod12 � diff � w{3,4}mod12 � diff � w{2,3}

mod12 � w{1}

order � w{1,2,3,4}

Interpretable rule (Interval): The interval of the
inner voices are mostly consonant (3,4,5,7,8,9),
but perfect octave/unison (0) is rare due to the tight
spacing between alto and tenor.

This partition sub-family contains only one coarser
partition:

order ◦ sort ◦ mod12 ◦ w{2,3}.

mod12 � diff � w{3,4}mod12 � diff � w{2,3}

mod12 � w{1}

order � w{1,2,3,4}

Interpretable rule (Interval): The interval of the
lower voices are mostly consonant, and emerges
more perfect octaves due to the wide spacing be-
tween tenor and bass. Also, perfect fourth (5) is
now considered as a dissonance against the bass.

This partition sub-family contains only one coarser
partition:

order ◦ sort ◦ mod12 ◦ w{3,4}.

pitch class set (scale), intervals, and so on (triads and seventh chords will appear later). It effectively
skips the nitty-gritty rules (marked by an asterisk) that are learned in the slower setting. Most of
these skipped rules do not have direct counterparts in music theory (such as taking the diff operator
twice) and are not important, although occasionally the faster syllabus will skip some rules worth
mentioning (such as the second rule in the slower pace, which talks about spacing among soprano,
alto, and bass). Setting an appropriate pace for a user is important: a pace that is too fast will miss
the whole point of knowledge discovery (jump to the low-level details too fast); a pace that is too
slow will bury the important points among unimportant ones (hence, lose the big picture).

Fundamentals: Hierarchical 1-gram Similar to our teaching of music theory, MUS-ROVER II’s
proposed syllabus divides into two stages: fundamentals and part writing. The former is under the
1-gram setting, involving knowledge independent of the context; the latter provides online tutoring
under multi-n-grams. We begin our experiments with fundamentals, and use them to illustrate the
two types of feature hierarchies.

Let’s take a closer look at the two syllabi in Table 1. The specifications (left) and hierarchies (right)
of the four common rules are illustrated in Table 2. The rules’ translations are below the correspond-
ing bar charts, all of which are consistent with our music theory. Extracted from the conceptual
hierarchy, the right column lists the partition sub-family sourced at each rule, which is pictorially
simplified as a tree by hiding implied edges from its corresponding DAG. Every coarser partition in
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iter

gap

…

iter

gap

…

�7 = order � sort � mod12 � w{1,2,3,4}�2 = order � diff � sort � w{1,2,4}

iter

gap

…

iter

gap

…

�7 = order � sort � mod12 � w{1,2,3,4}�2 = order � diff � sort � w{1,2,4}

Figure 3: Gap trajectories for two features. The dashed black lines show two different satisfactory
gaps (γ = 0.5 and 0.1). The bottom charts show the informationally implied hierarchies.

a sub-family is indeed a higher-level representation, but has not accumulated sufficient significance
to make itself a rule. A partition will never be learned if one of its finer ancestors has been made a
rule. Observe that all of the coarser partitions are not typically taught in theory classes.

MUS-ROVER II measures the student’s progress from many different angles in terms of features.
With respect to a feature, the gap between the student and Bach is iteratively recorded to form a
trajectory when cycling the loop. Studying the vanishing point of the trajectory reveals the (local)
informational hierarchy around the corresponding feature. Taking the second and seventh rule in
the slower syllabus for example, we plot their trajectories in Figure 3. Both illustrate a decreasing
trend1 for gaps in the corresponding feature spaces. The left figure shows that the second rule is
largely but not entirely implied by the first, pointing out the hierarchical structure between the two:
the first rule may be considered as the dominant ancestor of the second, which is not conceptually
apparent, but informationally implied. On the contrary, the right figure shows that the seventh rule
is not predominantly implied by the first, which instead is informationally connected to many other
rules. However, one could say that it is probably safe to skip both rules in light of a faster pace, since
they will eventually be learned fairly effectively (with small gaps) but indirectly.

Part Writing: Adaptive n-grams Unlike fundamentals which studies sonority independently
along the vertical direction of the chorale texture, rules on part writing (e.g. melodic motion, chord
progression) are horizontal, and context-dependent. This naturally results in an online learning
framework, in which rule extractions are coupled in the writing process, specific to the realization
of a composition (context). Context dependence is captured by the multi-n-gram language model,
which further leads to the 2D memory pool of features for rule extraction (Sec. 5). Consider an ex-
ample of online learning and adaptive memory selection, where we have the beginning of a chorale:

〈s〉 → (60, 55, 52, 36)→ (60, 55, 52, 36)→ (62, 59, 55, 43)→ (62, 59, 55, 43)→ (62, 59, 55, 43),

and want to learn the probabilistic model for the next sonority. Instead of starting from scratch,
MUS-ROVER II launches the self-learning loop with the ruleset initialized by the fundamentals
(incremental learning), and considers the 2D memoryN×Φ, forN = {2, 3, 4, 5}. The first extracted
rule is featured by order ◦ sort ◦ mod12 ◦ w{3,4}. The rule is chosen because its corresponding
feature has a large confidence level (validated by the large number of matched examples), a small
entropy after being smoothed by Bayesian surprise, and reveals a large gap against the Bach’s style.
Figure 4 shows the relative performance of this rule (in terms of confidence, regularity, and style
gap) to other candidate cells in the 2D memory. Among the top 20 rules for this sonority, 12 are
5-gram, 5 are 4-gram, 3 are 2-gram, showing a long and adaptive dependence to preceding context.

Visualizing Bach’s Mind With the hierarchical representations in MUS-ROVER II, we are now
able to visualize Bach’s music mind step by step via activating nodes in the DAG of rule features

1Fluctuations on the trajectory are largely incurred by the imperfect solver of the optimization problem.
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Figure 4: The relative performance of the selected rule (pointed) among the pool of all cells in the
2D memory. A desired rule has: higher confidence (measured by the number of examples, brighter
regions in the first row), more regularity (measured by Shannon entropy, darker regions in the second
row), and larger style gap (measured by KL divergence, brighter regions in the bottom two rows).

(similar to neuron activations in a brain). The hierarchical structure, as well as the additive acti-
vation process, is in stark contrast with the linear sequence of rules extracted from our prior work
(Appendix A.5). Figure 5 shows a snapshot of the rule-learning status after ten loops, while the
student is writing a sonority in the middle of a piece. The visualization makes it clear how earlier
independent rules are now self-organized into sub-families, as well as how rules from a new context
overwrite those from an old context, emphasizing that music is highly context-dependent.

unlearned
1-gram
3-gram
10-gram
6-gram
7-gram
4-gram

Figure 5: Visualization of Bach’s music mind for writing chorales. The underlying DAG represents
the conceptual hierarchy (note: edges always point downwards). Colors are used to differentiate
rule activations from different n-gram settings. We have enlarged N = {1, 2, . . . , 10} to allow even
longer-term dependencies.
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7 CONCLUSIONS AND DISCUSSIONS

Learning hierarchical rules as distributed representations of tonal music has played a central role in
music pedagogy for centuries. While our previous work achieved the automation of rule extraction,
and to certain level, the interpretability of the rules, this paper yields deeper interpretability that
extends to a system of rules and the overall learning process. In summary, it highlights the impor-
tance of disentangling the rule features, sorting out their interconnections, and making the concept
learning process more dynamic, hierarchical, and cognitive.

MUS-ROVER is targeted to complement music teaching and learning. For instance, to many music
students, learning and applying rules in part-writing is like learning to solve a puzzle (like Sudoku).
Rules themselves are quite flexible as opposed to 0-1 derivatives, and may sometimes be contradic-
tory. In addition, due to the limitation of human short-term memory and the difficulty of foreseeing
implications, one has to handle a small set of rules at a time in a greedy manner, make some trials,
and undo a few steps if no luck. Hence, solving this music puzzle could become a struggle (or
maybe interesting): according to personal preferences, one typically begins with a small set of im-
portant rules, and via several steps of trial and error, tries one’s best to make the part-writing satisfy
a majority of rules, with occasional violations on unimportant ones. On the other hand, a machine is
often good at solving and learning from puzzles due to its algorithmic nature. For instance, MUS-
ROVER’s student can take all rules into consideration: load them all at a time as constraints and
figure out the global optimum of the optimization problem in only a few hours. The same level of
efficiency might take a human student years to achieve.

We envision the future of MUS-ROVER as a partner to humans in both music teaching and research,
which includes but is not limited to, personalizing the learning experience of a student, as well as
suggesting new methodologies to music theorists in analyzing and developing new genres. It also
has practical applications: as by-products from the self-learning loop, the teacher can be made into
a genre classifier, while the student can be cast into a style synthesizer. We are also eager to study
the rover’s partnership beyond the domain of music.
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A APPENDIX

A.1 MATH-TO-MUSIC DICTIONARY

Table 3: Sample math-to-music dictionary

Music Terminology Feature Map Feature Values

pitches in the upper 3 voices w{1,2,3} C4 7→ 60, C]4/D[4 7→ 61
pitch class of the bass voice mod12 ◦ w{4} C 7→ 0, C]/D[ 7→ 1
interval of the inner voices diff ◦ w{2,3} P8 7→ 12, M10 7→ 16

interval class of the outer voices mod12 ◦ diff ◦ w{1,4} P8 7→ 0, M10/M3 7→ 4
voicing/spacing order ◦ diff ◦ wI cf. open (closed) position

chord regardless of inversion sort ◦ mod12 ◦ wI V7/V6
5/V4

3/V4
2 7→ (2, 4, 5, 7)

voice doubling / tripling order ◦ sort ◦ mod12 ◦ wI doubling 7→ “=”

A.2 ATOMIC ARITHMETIC OPERATORS

In MUS-ROVER II, we set B = {order, diff, sort, mod12}, where

diff(x) = (x2 − x1, x3 − x2, · · · ), ∀x ∈ Ω2 ∪ Ω3 ∪ Ω4;

sort(x) = (x(1), x(2), · · · ), ∀x ∈ Ω2 ∪ Ω3 ∪ Ω4;

mod12(x) = (mod(x1, 12),mod(x2, 12), · · · ), ∀x ∈ Ω ∪ Ω2 ∪ Ω3 ∪ Ω4;

and order(x), similar to argsort, maps x ∈ Ω2 ∪ Ω3 ∪ Ω4 to a string that specifies the ordering
of its elements, e.g. order((60, 55, 52, 52)) = “4=3<2<1”. The numbers in an order string denote
the indices of the input vector x.

A.3 ALGORITHM FOR CONCEPTUAL HIERARCHY

Input: A family of distinct partitions, represented by a sorted list P = [p1, . . . , pn]:
pi 6= pj, for all i 6= j, and |p1| ≤ . . . ≤ |pn|;

Output: The conceptual hierarchy as a DAG, represented by the n by n adjacency matrix T:
T[i, j] = 1 if there is an edge from node i to node j in the DAG;

initialize T[i, j] = 0 for all i, j;
for i = n : 1 do

for j = (i + 1) : n do
if T[i, j] == 0 then

if is coarser(pi, pj) then
for k in {k | pj ≺ pk} ∪ {j} do

T[i, k] = 1;
end

end
end

end
end
T = Transpose(T);

Algorithm 1: Algorithm for computing the conceptual hierarchy

A.4 HEURISTICS FOR COMPARING TWO PARTITIONS

Given two partitions P,Q from the partition family, the function is coarser(P,Q) in Algorithm 1
returns True if P ≺ Q. A brute-force implementation of this function involves studying all (un-
ordered) pairs of elements in the input domain (Hubert & Arabie, 1985), which incurs computational
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burdens if the size of the input domain is large. Therefore, we try to get around this brute-force rou-
tine whenever certain heuristic can be used to infer the output of is coarser directly. We propose
a few of these heuristics as follows.

Transitivity Heuristic If Pφ � Pφ′ and Pφ′ � Pφ′′ , then Pφ � Pφ′′ .

Window Heuristic Let Pφ and Pφ′ be two partitions induced by features φ and φ′, respectively.
In addition, φ and φ′ are generated from the same descriptor that preserves the orders of the inputs’
coordinates, e.g. diff, mod12:

φ = d ◦ wI , φ′ = d ◦ wI′ .
We claim that Pφ � Pφ′ , if I ⊃ I ′ and |φ(Ω4)| > |φ′(Ω4)|. To see why this is the case, pick
any x, y ∈ Ω4 from the same cluster in Pφ, then φ(x) = φ(y). Since d preserves the orders of the
inputs’ coordinates, and I ′ extracts coordinates from I , then φ′(x) = φ′(y), i.e. x, y are in the same
cluster in Pφ′ . So, by definition, Pφ � Pφ′ . Since |φ(Ω4)| > |φ′(Ω4)|, Pφ � Pφ′ .

Descriptor Heuristic Let Pφ and Pφ′ be two partitions induced by features φ and φ′, respectively.
In addition, φ and φ′ are generated from the same window:

φ = d ◦ wI ; φ′ = d′ ◦ wI .
We claim that Pφ � Pφ′ , if d′ = b ◦ d for some function b and |φ(Ω4)| > |φ′(Ω4)|. To see why this
is the case, pick any x, y ∈ Ω4 from the same cluster in Pφ, then φ(x) = φ(y). Since d′ = b ◦ d for
some b, then φ′ = b ◦ d ◦ wI = b ◦ φ, thus, φ′(x) = φ′(y), i.e. x, y are in the same cluster in Pφ′ .
So, by definition, Pφ � Pφ′ . Since |φ(Ω4)| > |φ′(Ω4)|, Pφ � Pφ′ .

Combined Heuristic Combining the above heuristics, one can show that for Pφ and Pφ′ where

φ = d ◦ wI ; φ′ = d′ ◦ wI′ ,
we have Pφ � Pφ′ , if the following conditions are satisfied:

1) d, d′ both preserve the orders of the inputs’ coordinates,
2) d′ = b ◦ d for some b,
3) I ⊃ I ′,
4) |φ(Ω4)| > |φ′(Ω4)|.

A.5 SAMPLE RULE TRACES FROM MUS-ROVER I

Table 4 is essentially the same as Table 2 in our previous publication (Yu et al., 2016a), with feature
notations following the current fashion. α is the pace control parameter that we used in our previous
system. No hierarchy was present in any of the three rule traces. For instance, the ordering features
were learned as independent rules in a trace, even if they are apparently correlated, e.g. the ordering
of w{1,2,3,4} (S,A,T,B) implies the ordering of w{1,4} (S,B).

Table 4: Sample rule traces from MUS-ROVER I

α = 0.1 α = 0.5 α = 1.0

1 order ◦ w{1,4} order ◦ w{1,4} w{1,2,3}
2 order ◦ w{1,3} order ◦ w{1,3} w{2,3,4}
3 order ◦ w{2,4} order ◦ w{2,4} mod12 ◦ w{1,2,3,4}
4 order ◦ w{1,2} order ◦ w{1,2} w{1,3,4}
5 order ◦ w{2,3} order ◦ w{2,3,4} w{1,2,4}
6 order ◦ w{3,4} w{1,3,4} diff ◦ w{1,2,3,4}
· · · · · · · · · · · ·
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