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ABSTRACT

We introduce an unsupervised structure learning algorithm for deep, feed-forward,
neural networks. We propose a new interpretation for depth and inter-layer con-
nectivity where a hierarchy of independencies in the input distribution is encoded
in the network structure. This results in structures allowing neurons to connect to
neurons in any deeper layer skipping intermediate layers. Moreover, neurons in
deeper layers encode low-order (small condition sets) independencies and have a
wide scope of the input, whereas neurons in the first layers encode higher-order
(larger condition sets) independencies and have a narrower scope. Thus, the depth
of the network is automatically determined—equal to the maximal order of inde-
pendence in the input distribution, which is the recursion-depth of the algorithm.
The proposed algorithm constructs two main graphical models: 1) a generative
latent graph (a deep belief network) learned from data and 2) a deep discrimina-
tive graph constructed from the generative latent graph. We prove that conditional
dependencies between the nodes in the learned generative latent graph are pre-
served in the class-conditional discriminative graph. Finally, a deep neural net-
work structure is constructed based on the discriminative graph. We demonstrate
on image classification benchmarks that the algorithm replaces the deepest layers
(convolutional and dense layers) of common convolutional networks, achieving
high classification accuracy, while constructing significantly smaller structures.
The proposed structure learning algorithm requires a small computational cost
and runs efficiently on a standard desktop CPU.

1 INTRODUCTION

Over the last decade, deep neural networks have proven their effectiveness in solving many challeng-
ing problems in various domains such as speech recognition (Graves & Schmidhuber, 2005), com-
puter vision (Krizhevsky et al., 2012; Girshick et al., 2014; Simonyan & Zisserman, 2014; Szegedy
et al., 2015) and machine translation (Collobert et al., 2011b). As compute resources became more
available, large scale models having millions of parameters could be trained on massive volumes
of data, to achieve state-of-the-art solutions for these high dimensionality problems. Building these
models requires various design choices such as network topology, cost function, optimization tech-
nique, and the configuration of related hyper-parameters.

In this paper, we focus on the design of network topology—structure learning. Generally, explo-
ration of this design space is a time consuming iterative process that requires close supervision by a
human expert. Many studies provide guidelines for design choices such as network depth (Simonyan
& Zisserman, 2014), layer width (Zagoruyko & Komodakis, 2016), building blocks (Szegedy et al.,
2015), and connectivity (He et al., 2016; Huang et al., 2016). Based on these guidelines, these
studies propose several meta-architectures, trained on huge volumes of data. These were applied
to other tasks by leveraging the representational power of their convolutional layers and fine-tuning
their deepest layers for the task at hand (Donahue et al., 2014; Hinton et al., 2015; Long et al., 2015;
Chen et al., 2015; Liu et al., 2015). However, these meta-architecture may be unnecessarily large
and require large computational power and memory for training and inference.

The problem of model structure learning has been widely researched for many years in the proba-
bilistic graphical models domain. Specifically, Bayesian networks for density estimation and causal
discovery (Pearl, 2009; Spirtes et al., 2000). Two main approaches were studied: score-based
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(search-and-score) and constraint-based. Score-based approaches combine a scoring function, such
as BDe (Cooper & Herskovits, 1992) and BIC (Ripley, 2007), with a strategy for searching through
the space of structures, such as greedy equivalence search (Chickering, 2002). Adams et al. (2010)
introduced an algorithm for sampling deep belief networks (generative model) and demonstrated its
applicability to high-dimensional image datasets.

Constraint-based approaches (Pearl, 2009; Spirtes et al., 2000) find the optimal structures in the large
sample limit by testing conditional independence (CI) between pairs of variables. They are generally
faster than score-based approaches (Yehezkel & Lerner, 2009) and have a well-defined stopping
criterion (e.g., maximal order of conditional independence). However, these methods are sensitive
to errors in the independence tests, especially in the case of high-order conditional-independence
tests and small training sets.

Motivated by these methods, we propose a new interpretation for depth and inter-layer connectivity
in deep neural networks. We derive a structure learning algorithm such that a hierarchy of indepen-
dencies in the input distribution is encoded in the network structure, where the first layers encode
higher-order independencies than deeper layers. Thus, the number of layers is automatically deter-
mined. Moreover, a neuron in a layer is allowed to connect to neurons in deeper layers skipping
intermediate layers. An example of a learned structure, for MNIST, is given in Figure 1.

We describe our recursive algorithm in two steps. In Section 2 we describe a base case—a single-
layer structure learning. In Section 3 we describe multi-layer structure learning by applying the key
concepts of the base case, recursively (proofs are provided in Appendix A). In Section 4 we discuss
related work. We provide experimental results in Section 5, and conclude in Section 6.

Preliminaries. Consider X = {Xi}Ni=1 a set of observed (input) random variables, H = {Hj}Kj=1
a set of latent variables, and Y a class variable. Our algorithm constructs three graphical models
and an auxiliary graph. Each variable is represented by a single node and a single edge may connect
two distinct nodes. Graph G is a generative DAG defined over the observed and latent variables
X ∪H . Graph GInv is called a stochastic inverse of G. Graph GD is a discriminative model defined
over the observed, latent, and class variables X ∪H ∪ Y . An auxiliary graph GX is defined over
X (a CPDAG; an equivalence class of a Bayesian network) and is generated and maintained as an
internal state of the algorithm. The parents set of a node X in G is denoted Pa(X;G). The order
of an independence relation is defined to be the condition set size. For example, if X1 and X2 are
independent given X3 and X4, denoted X1 ⊥⊥X2|{X3, X4}, then the independence order is two.

output layer
gather layer

dense layer

input layer

concatenate

copy

Figure 1: An example of a structure learned by our algorithm (classifying MNIST digits). Neurons
in a layer may connect to neurons in any deeper layer. Depth is determined automatically. Each
gather layer selects a subset of the input, where each input variable is gathered only once. A neural
route, starting with a gather layer, passes through densely connected layers where it may split (copy)
and merge (concatenate) with other routes in correspondence with the hierarchy of independencies
identified by the algorithm. All routes merge into the final output layer (e.g., a softmax layer).
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2 SINGLE LAYER STRUCTURE LEARNING

We start by describing the key concepts of our approach using a simple scenario: learning the
connectivity of a single-layer neural network.

2.1 CONSTRUCTING A GENERATIVE GRAPH

Assume the input joint distribution p(X) complies with the following property.

Assumption 1. The joint distribution p(X) is faithful to a DAG G over observed X and latent
nodes H , where for all X ∈X and H ∈H , Pa(X;G) ⊆H and Pa(H;G) ⊆H\H .

p
(
X;G

)
=

∫
p
(
X,H;G

)
dH =

∫
p
(
H
) N∏

i=1

p
(
Xi

∣∣∣Pa(Xi;G)
)
dH. (1)

Note that the generative graphical model G can be described as a layered deep belief network where
parents of a node in layer m can be in any deeper layer, indexes greater than m, and not restricted
to the next layer m + 1. This differs from the common definition of deep belief networks (Hinton
et al., 2006; Adams et al., 2010) where the parents are restricted to layer m+ 1.

It is desired to learn an efficient graph G having small sets of parents and a simple factorization
of p(H) while maintaining high expressive power. We first construct an auxiliary graph, a CPDAG
(Spirtes et al., 2000), GX over X (an equivalence class of a fully visible Bayesian network) encoding
only marginal independencies1 (empty condition sets) and then construct G such that it can mimic
GX over X , denoted GX � G (Pearl, 2009). That is, preserving all conditional dependencies of X
in GX .

The simplest connected DAG that encodes statistical independence is the v-structure, a structure
with three nodes X1 → X3 ← X2 in which X1 and X2 are marginally independent X1 ⊥⊥X2 and
conditionally dependentX1⊥6⊥X2|X3. In graphs encoding only marginal independencies, dependent
nodes form a clique. We follow the procedure described by Yehezkel & Lerner (2009) and decom-
pose X into autonomous sets (complying with the Markov property) where one set, denoted XD

(descendants), is the common child of all other sets, denoted XA1, . . . ,XAK (ancestor sets). We
select XD to be the set of nodes that have the lowest topological order in GX . Then, by removing
XD from GX (temporarily for this step), the resulting K disjoint sets of nodes (corresponding to K
disjoint substructures) form the K ancestor sets {XAi}Ki=1. See an example in Figure 2.

Next, G is initialized to an empty graph over X . Then, for each ancestor set XAi a latent variable
Hi is introduced and assigned to be a common parent of the pair (XAi,XD). Thus,

p
(
X;G

)
=

∫ K∏
i=1

p(Hi

) ∏
X∈XAi

p
(
X
∣∣∣Hi

) ∏
X′∈XD

p
(
X ′
∣∣∣H)dH. (2)

Note that the parents of two ancestor sets are distinct, whereas the parents set of the descendant set
is composed of all the latent variables.

In the auxiliary graph GX , for each of the resulting v-structures (XAi → XD ← XAj), a link
between a parent and a child can be replaced by a common latent parent without introducing new
independencies. For example, in Figure 2-[b], XA1 = {A}, XA2 = {B}, and XD = {C,D,E}.
Adding a common latent parent (Figure 3-[a]) HA (or HB) and removing all the edges from XA1

(or XA2) to XD preserves the conditional dependence A⊥6⊥B|{C,D,E}.
Algorithm 1 summarizes the procedure of constructing G having a single latent layer. Note that
we do not claim to identify the presence of confounders and their inter-relations as in Elidan et al.
(2001); Silva et al. (2006); Asbeh & Lerner (2016). Instead, we augment a fully observed Bayesian
network with latent variables, while preserving conditional dependence.

1In Section 3, conditional independencies are considered, the construction of GX and G is interleaved, and
the ability of G to mimic GX over X is described recursively.
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Figure 2: [a] An example of a Bayesian network encoding ground-truth conditional independencies
(a DAG underlying observed data) and [b] a corresponding CPDAG (GX ) constructed by testing only
marginal independencies. Only A and B are marginally independent (d-separated in [a], A ⊥⊥ B),
where C and D are marginally dependent (C ⊥6⊥ D) and therefore connected in [b]. Thus, nodes
{C,D,E}, having the lowest topological order, form a descendant set XD = {C,D,E} and nodes
A and B form two distinct ancestor sets, XA1 = {A},XA2 = {B}—disjoint if {C,D,E} is
removed from the graph.

[a]
C E D BA

HA HB

[b]
C E D BA

HA HB

[c]
C E D BA

HA HB

[d]
C E D BA

HA HB

Y

Figure 3: [a] An example of a graph G (corresponding to GX in Figure 2-[b]). [b] A stochastic
inverse generated by the algorithm presented by Stuhlmüller et al. (2013). [c] A stochastic inverse
generated by our method where the graph is a projection of a latent structure. A dependency induced
by a latent Q is described using a bi-directional edge HA ↔ HB . [d] A discriminative structure GD
having a class node Y that provides an explaining away relation for HA ↔ HB . That is, the latent
Q is replaced by an observed common child Y .

2.2 CONSTRUCTING A STOCHASTIC INVERSE

It is important to note that G represents a generative distribution of X and is constructed in an
unsupervised manner (class variable Y is ignored). Hence, we construct GInv, a graphical model that
preserves all conditional dependencies in G but has a different node ordering in which the observed
variables, X , have the highest topological order (parentless)—a stochastic inverse of G. Note that
conditional dependencies among X are not required to be preserved in the stochastic inverse as
these are treated (simultaneously) as observed variables (highest topological order).

Stuhlmüller et al. (2013); Paige & Wood (2016) presented a heuristic algorithm for constructing such
stochastic inverses where the structure is a DAG (an example is given in Figure 3-[b]). However,
these DAGs, though preserving all conditional dependencies, may omit many independencies and
add new edges between layers.

We avoid limiting GInv to a DAG and instead limit it to be a projection of another latent structure
(Pearl, 2009). That is, we assume the presence of additional hidden variables Q that are not in GInv
but induce dependency2 among H . For clarity, we omit these variables from the graph and use
bi-directional edges to represent the dependency induced by them. An example is given in Figure 3-
[c] where a bi-directional edge represents the effect of some variable Q ∈ Q on HA and HB . We
construct GInv in two steps:

1. Invert all G edges (invert inter-layer connectivity).

2. Connect each pair of latent variables, sharing a common child in G, with a bi-directional
edge.

This simple procedure ensures G � GInv over X ∪H while maintaining the exact same number of
edges between the layers (Proposition 1, Appendix A).

2For example, “interactive forks” (Pearl, 2009).

4



Under review as a conference paper at ICLR 2018

Algorithm 1: Marginal Connectivity Learning
Input: X: observed nodes, and Indep: an oracle for testing statistical independence.
Output: G, a latent structure over X and H

1 initialize GX ←− a complete graph over X

2 begin
3 foreach pair of connected nodes Xi, Xj in GX if Indep(Xi, Xj) . find independencies
4 do
5 disconnect Xi and Xj

6 direct edges Xi → Xc ← Xj for every common neighbor Xc

7 XD ←− nodes having the lowest topological order . identify autonomous sets

8 {XAi}Ki=1 ←− disjoint sets, after removing XD from GX
9 G ←− an empty graph over X

10 add K latent variables H = {Hi}Ki=1 to G . create a latent layer
11 set each Hi to be a parent of {XA1 ∪XD} . connect

12 return G

2.3 CONSTRUCTING A DISCRIMINATIVE GRAPH

Recall that G encodes the generative distribution of X and GInv is the stochastic inverse. We fur-
ther construct a discriminative graph GD by replacing bi-directional dependency relations in GInv,
induced by Q, with explaining-away relations by adding the observed class variable Y . Node Y
is set in GD to be the common child of the leaves in GInv (latents introduced after testing marginal
independencies) (see an example in Figure 3-[d]). This preserves the conditional dependency rela-
tions of GInv. That is, GD can mimic GInv over X and H given Y (Proposition 2, Appendix A). It is
interesting to note that the generative and discriminative graphs share the exact same inter-layer con-
nectivity (inverted edge-directions). Moreover, introducing node Y provides an “explaining away”
relation between latents, uniquely for the classification task at hand.

2.4 CONSTRUCTING A FEED-FORWARD NEURAL NETWORK

We construct a neural network based on the connectivity in GD. Sigmoid belief networks (Neal,
1992) have been shown to be powerful neural network density estimators (Larochelle & Murray,
2011; Germain et al., 2015). In these networks, conditional probabilities are defined as logistic
regressors. Similarly, for GD we may define for each latent variable H ′ ∈H,

p(H ′ = 1|X ′) = sigm
(
W ′X ′ + b′

)
(3)

where sigm(x) = 1/(1 + exp(−x)), X ′ = Pa(H ′;GD), and (W ′, b′) are the parameters of the
neural network. Nair & Hinton (2010) proposed replacing each binary stochastic node H ′ by an
infinite number of copies having the same weights but with decreasing bias offsets by one. They
showed that this infinite set can be approximated by

N∑
i=1

sigm(v − i+ 0.5) ≈ log(1 + ev), (4)

where v = W ′X ′ + b′. They further approximate this function by max(0, v + ε) where ε is a zero-
centered Gaussian noise. Following these approximations, they provide an approximate probabilistic
interpretation for the ReLU function, max(0, v). As demonstrated by Jarrett et al. (2009) and Nair
& Hinton (2010), these units are able to learn better features for object classification in images.

In order to further increase the representational power, we represent each H ′ by a set of neurons
having ReLU activation functions. That is, each latent variable H ′ in GD is represented in the neural
network by a dense (fully-connected) layer. Finally, the class node Y is represented by a softmax
layer.

5



Under review as a conference paper at ICLR 2018

3 RECURSIVE MULTI-LAYER STRUCTURE LEARNING

We now extend the method of learning the connectivity of a single layer into a method of learning
multi-layered structures. The key idea is to recursively introduce a new and deeper latent layer by
testing n-th order conditional independence (n is the condition set size) and connect it to latent layers
created by previous recursive calls that tested conditional independence of order n+1. The method
is described in Algorithm 2. It is important to note that conditional independence is tested only
between input variables X and condition sets do not include latent variables. Conditioning on latent
variables or testing independence between them is not required as the algorithm adds these latent
variables in a specific manner, preserving conditional dependencies between the input variables.

Algorithm 2: Recursive Latent Structure Learning (multi-layer)
1 RecurLatStruct (GX ,X,Xex, n)

Input: an initial DAG GX over observed X & exogenous nodes Xex and a desired resolution n.
Output: G, a latent structure over X and H

2 if the maximal indegree of GX(X) is below n+ 1 then . exit condition
3 G ←−an observed layer X
4 return G

5 G′X ←−IncreaseResolution(GX , n) . n-th order independencies

6 {XD,XA1, . . . ,XAK} ←−SplitAutonomous(X,G′X) . identify autonomies

7 for i ∈ {1 . . .K} do
8 GAi ←− RecurLatStruct(G′X ,XAi,Xex, n+ 1) . a recursive call

9 GD ←− RecurLatStruct(G′X ,XD,Xex ∪ {XAi}Ki=1, n+ 1) . a recursive call

10 G ←− Group(GD,GA1, . . . ,GAK) . merge results

11 create latent variables H(n) = {H(n)
1 , . . . , H

(n)
K } in G . create a latent layer

12 set each H
(n)
i to be a parent of {HA

(n+1)
i ∪H

(n+1)
D } . connect

13 where HA
(n+1)
i and H

(n+1)
D are the sets of parentless latents in GAi and GD, respectively.

14 return G

The algorithm maintains and recursively updates an auxiliary graph GX (a CPDAG) over X and
utilizes it to construct G. Yehezkel & Lerner (2009) introduced an efficient algorithm (RAI) for
constructing a CPDAG over X by a recursive application of conditional independence tests with in-
creasing condition set sizes (n). Our algorithm is based on this framework for updating the auxiliary
graph GX (Algorithm 2, lines 5 and 6).

The algorithm starts with n = 0, GX a complete graph, and a set of exogenous nodes Xex = ∅. The
set Xex is exogenous to GX and consists of parents of X .

The function IncreaseResolution (Algorithm 2-line 5) disconnects (in GX ) conditionally inde-
pendent variables in two steps. First, it tests dependency between Xex and X , i.e., X ⊥⊥X ′|S for
every connected pair X ∈ X and X ′ ∈ Xex given a condition set S ⊂ {Xex ∪X} of size n.
Next, it tests dependency within X , i.e., Xi ⊥⊥ Xj |S for every connected pair Xi, Xj ∈ X given
a condition set S ⊂ {Xex ∪X} of size n. After removing the corresponding edges, the remain-
ing edges are directed by applying two rules (Pearl, 2009; Spirtes et al., 2000). First, v-structures
are identified and directed. Then, edges are continually directed, by avoiding the creation of new
v-structures and directed cycles, until no more edges can be directed. Following the terminology
of Yehezkel & Lerner (2009), we say that this function increases the graph d-separation resolution
from n− 1 to n.

The function SplitAutonomous (Algorithm 2-line 6) identifies autonomous sets in a graph in two
steps, as described in Algorithm 1 lines 7 and 8. An autonomous set in GX includes all its nodes’
parents (complying with the Markov property) and therefore a corresponding latent structure can be
constructed independently using a recursive call. Thus, the algorithm is recursively and indepen-
dently called for the ancestor sets (Algorithm 2 lines 7–8), and then called for the descendant set
while treating the ancestor sets as exogenous (Algorithm 2 line 9).
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Figure 4: An example trace of Algorithm 2 where p(X) is faithful to the DAG in Figure 3-[a].
[a] a CPDAG encoding only marginal independencies (n = 0) and the identified autonomous sub-
structures (line 6 in the algorithm). [b] A CPDAG GX over {C,D,E} encoding conditional inde-
pendencies up to second order n = 2 (nodes A and B are exogenous). [c] Graph G is created for
the autonomous set {C,D,E} by introducing latents {HC , HD}. At n = 2 nodes C and D are
identified as autonomous ancestors and E as an autonomous descendant. [d] Graph G is created at
n = 0 for all nodes {A,B,HC , HD} by introducing {HA, HB}, where {HC , HD} represent the
autonomous subset {C,D,E}.

[a]
C E D BA

HA HB

HC HD

[b]
C E D BA

HA HB

HC HD

[c]
C E D BA

HA HB

HC HD

Y

Figure 5: An example of [a] a structure G (the corresponding auxiliary graph GX is depicted in
Figure 2-[a]), [b] its stochastic inverse GInv described as a projection of another latent structure,
and [c] a corresponding discriminative model obtained by expressing dependency relations among
latents (bi-directional edges) with an “explaining away” relation induced by a class node.

Each recursive call returns a latent structure for each autonomous set. Recall that each latent struc-
ture encodes a generative distribution over the observed variables where layer H(n+1), the last
added layer (parentless nodes), is a representation of the input X′ ⊂ X . By considering only layer
H(n+1) of each latent structure, we have the same simple scenario discussed in Section 2—learning
the connectivity between H(n), a new latent layer, and H(n+1), treated as an “input” layer. Thus,
latent variables are introduced as parents of the H(n+1) layers, as described in Algorithm 2 lines
11–13. A simplified example is given in Figure 4.

Next, a stochastic inverse GInv is constructed as described in Section 2—all the edge directions are
inverted and bi-directional edges are added between every pair of latents sharing a common child
in G. An example graph G and a corresponding stochastic inverse GInv are given in Figure 5. A
discriminative structure GD is then constructed by removing all the bi-directional edges and adding
the class node Y as a common child of layer H(0), the last latent layer that is added (Figure 5-[c]).
Finally, a neural network is constructed based on the connectivity of GD. That is, each latent node,
H ∈ H(n), is replaced by a set of neurons, and each edge between two latents, H ∈ H(n) and
H ′ ∈H(n+1), is replaced by a bipartite graph connecting the neurons corresponding to H and H ′.

4 RELATED WORK

Recent studies have focused on automating the exploration of the design space, posing it as a hyper-
parameter optimization problem and proposing various approaches to solve it. (Miconi, 2016) learns
the topology of an RNN network introducing structural parameters into the model and optimize them
along with the model weights by the common gradient descent methods. Smith et al. (2016) takes a
similar approach incorporating the structure learning into the parameter learning scheme, gradually
growing the network up to a maximum size.

A common approach is to define the design space in a way that enables a feasible exploration process
and design an effective method for exploring it. Zoph & Le (2016) (NAS) first define a set of
hyper-parameters characterizing a layer (number of filters, kernel size, stride). Then they use a
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controller-RNN for finding the optimal sequence of layer configurations for a “trainee network”.
This is done using policy gradients (REINFORCE) for optimizing the objective function that is
based on the accuracy achieved by the “trainee” on a validation set. Although this work demonstrates
capabilities to solve large-scale problems (Imagenet), it comes with huge computational cost. In a
following work, Zoph et al. (2017) address the same problem but apply a hierarchical approach.
They use NAS to design network modules on a small-scale dataset (CIFAR-10) and transfer this
knowledge to a large-scale problem by learning the optimal topology composed of these modules.
Baker et al. (2016) use reinforcement learning as well and apply Q-learning with epsilon-greedy
exploration strategy and experience replay. Negrinho & Gordon (2017) propose a language that
allows a human expert to compactly represent a complex search-space over architectures and hyper-
parameters as a tree and then use methods such as MCTS or SMBO to traverse this tree. Smithson
et al. (2016) present a multi objective design space exploration, taking into account not only the
classification accuracy but also the computational cost. In order to reduce the cost involved in
evaluating the network’s accuracy, they train a Response Surface Model that predicts the accuracy
at much lower cost, reducing the number of candidates that go through actual validation accuracy
evaluation. Another common approach for architecture search is based on evolutionary strategies to
define and search the design space. (Real et al., 2017; Miikkulainen et al., 2017) use evolutionary
algorithm to evolve an initial model or blueprint based on its validation performance.

Common to all these recent studies is the fact that structure learning is done in a supervised manner,
eventually learning a discriminative model. Moreoever, these approaches require huge compute
resources, rendering the solution unfeasible for most applications given limited compute and time
resources.

5 EXPERIMENTS

We evaluate the quality of the learned structure in two experiments:

• Classification accuracy as a function of network depth and size for a structure learned
directly from MNIST pixels.

• Classification accuracy as a function of network size on a range of benchmarks and com-
pared to common topologies.

All the experiments were repeated five times where average and standard deviation of the classifi-
cation accuracy were recorded. In all of our experiments, we used a ReLU function for activation,
ADAM (Kingma & Ba, 2015) for optimization, and applied batch normalization (Ioffe & Szegedy,
2015) followed by dropout (Srivastava et al., 2014) to all the dense layers. All optimization hyper-
parameters that were tuned for the vanilla topologies were also used, without additional tuning, for
the learned structures. For the learned structures, all layers were allocated an equal number of neu-
rons. Threshold for independence tests, and the number of neurons-per-layer were selected by using
a validation set. Only test-set accuracy is reported.

Our structure learning algorithm was implemented using the Bayesian network toolbox (Murphy,
2001) and Matlab. We used Torch7 (Collobert et al., 2011a) and Keras (Chollet, 2015) with the
TensorFlow (Abadi et al., 2015) back-end for optimizing the parameters of both the vanilla and
learned structures.

5.1 NETWORK DEPTH, NUMBER OF PARAMETERS, AND ACCURACY

We analyze the accuracy of structures learned by our algorithm as a function of the number of
layers and parameters. Although network depth is automatically determined by the algorithm, it is
implicitly controlled by the threshold used to test conditional independence (partial-correlation test
in our experiments). For example, a high threshold may cause detection of many independencies
leading to early termination of the algorithm and a shallow network (a low threshold has the opposite
effect). Thus, four different networks having 2, 3, 4, and 5 layers, using four different thresholds,
are learned for MNIST. We also select three configurations of network sizes: a baseline (normalized
to 1.00), and two configurations in which the number of parameters is 0.5, and 0.375 of the baseline
network (equal number of neurons are allocated for each layer).
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Classification accuracies are summarized in Table 1. When the number of neurons-per-layers is large
enough (100%) a 3-layer network achieves the highest classification accuracy of 99.07% (standard
deviation is 0.01) where a 2-layer dense network has only a slight degradation in accuracy, 99.04%.
For comparison, networks with 2 and 3 fully connected layers (structure is not learned) with similar
number of parameters achieve 98.4% and 98.75%, respectively. This demonstrates the efficiency
of our algorithm when learning a structure having a small number of layers. In addition, for a
smaller neuron allocation (50%), deeper structures learned by our algorithm have higher accuracy
than shallower ones. However, a decrease in the neurons-per-layer allocation has a greater impact
on accuracy for deeper structures.

num. of paramters 2 layers 3 layers 4 layers 5 layers

1.00 99.04 (0.01) 99.07 (0.012) 99.07 (0.035) 99.07 (0.052)
0.5 98.96 (0.03) 98.98 (0.035) 99.02 (0.04) 99.02 (0.05)

0.375 98.96 (0.035) 98.94 (0.04) 98.93 (0.041) 98.93 (0.049)

Table 1: Mean classification accuracy [%] (and standard deviation) of structures learned from
MNIST images as a function of network depth and number of parameters (normalized). For com-
parison, when a structure is not learned, networks with 2 and 3 dense layers, achieve 98.4% and
98.75% accuracy, respectively (having the same size as learned structures at configuration “100%”).

5.2 LEARNING THE STRUCTURE OF THE DEEPEST LAYERS IN COMMON TOPOLOGIES

We evaluate the quality of learned structures using five image classification benchmarks. We com-
pare the learned structures to common topologies (and simpler hand-crafted structures), which we
call “vanilla topologies”, with respect to network size and classification accuracy. The benchmarks
and vanilla topologies are described in Table 2. In preliminary experiments we found that, for SVHN
and ImageNet, a small subset of the training data is sufficient for learning the structure (larger train-
ing set did not improve classification accuracy). As a result, for SVHN only the basic training data
is used (without the extra data), i.e., 13% of the available training data, and for ImageNet 5% of the
training data is used. Parameters were optimized using all of the training data.

benchmark vanilla topology

dataset topology description size

MNIST (LeCun et al., 1998) None learn a structure directly from pixels
MNIST-Man 32-64-FC:128 127K

SVHN (Netzer et al., 2011) Maxout NiN (Chang & Chen, 2015) 1.6M
SVHN-Man 16-16-32-32-64-FC:256 105K

CIFAR 10 (Krizhevsky & Hinton, 2009) VGG-16 (Simonyan & Zisserman, 2014) 15M
WRN-40-4 (Zagoruyko & Komodakis, 2016) 9M

CIFAR 100 (Krizhevsky & Hinton, 2009) VGG-16 (Simonyan & Zisserman, 2014) 15M

ImageNet (Deng et al., 2009) AlexNet (Krizhevsky et al., 2012) 61M

Table 2: Benchmarks and vanilla topologies. MNIST-Man and SVHN-Man topologies were manu-
ally created by us. MNIST-Man has two convolutional layer (32 and 64 filters each) and one dense
layer with 128 neurons. SVHN-Man was created as a small network reference having reasonable
accuracy compared to Maxout-NiN. In the first row we indicate that in one experiment a structure
for MNIST was learned from the pixels and feature extracting convolutional layers were not used.

Convolutional layers are powerful feature extractors for images exploiting domain knowledge, such
as spatial smoothness, translational invariance, and symmetry. We therefore evaluate our algorithm
by using the first convolutional layers of the vanilla topologies as “feature extractors” (mostly below
50% of the vanilla network size) and learning a deep structure from their output. That is, the deepest
layers of the vanilla network (mostly over 50% of the network size) is removed and replaced by a
structure learned by our algorithm in an unsupervised manner. Finally, a softmax layer is added and
the entire network parameters are optimized.

9
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First, we demonstrate the effect of replacing a different amount of the deepest layers and the ability
of the learned structure to replace feature extraction layers. Table 3 describes classification accuracy
achieved by replacing a different amount of the deepest layers in VGG-16. For example, column
“conv.10” represents learning a structure using the activations of conv.10 layer. Accuracy and the
normalized number of network parameters are reported for the overall network, e.g., up to conv.10
+ the learned structure. Column “vanilla” is the accuracy achieved by the VGG-16 network, after
training under the exact same setting (a setting we found to maximize a validation-set accuracy for
the vanilla topologies).

learned vanilla

conv.5 conv.7 conv.10 classifier –

CIFAR 10 accuracy 90.6 92.61 92.94 92.79 92.32
# parameters 0.10 0.15 0.52 0.98 1.00

CIFAR 100 accuracy 63.17 68.91 70.68 69.14 68.86
# parameters 0.10 0.13 0.52 0.98 1.00

Table 3: Classification accuracy (%) and overall network size (normalized number of parameters).
VGG-16 is the “vanilla” topology. For both, CIFAR 10/100 benchmarks, the learned structure
achieves the highest accuracy by replacing all the layers that are deeper than layer conv.10. More-
over, accuracy is maintained when replacing the layers deeper than layer conv.7.

One interesting phenomenon to note is that the highest accuracy is achieved at conv. 10 rather than
at the “classifier” (the last dense layer). This might imply that although convolutional layers are
useful at extracting features directly from images, they might be redundant for deeper layers. By
using our structure learning algorithm to learn the deeper layers, accuracy of the overall structure
increases with the benefit of having a compact network. An accuracy, similar to that of “vanilla”
VGG-16, is achieved with a structure having 85% less total parameters (conv. 7) than the vanilla
network, where the learned structure is over 50X smaller than the replaced part.

Next, we evaluate the accuracy of the learned structure as a function of the number of parameters
and compare it to a densely connected network (fully connected layers) having the same depth and
size. For SVHN, we used the Batch Normalized Maxout Network in Network topology (Chang
& Chen, 2015) and removed the deepest layers starting from the output of the second NiN block
(MMLP-2-2). For CIFAR-10, we used the VGG-16 and removed the deepest layers starting from
the output of conv.10 layer. For MNIST, a structure was learned directly from pixels. Results are
depicted in Figure 6. It is evident that accuracy of the learned structures is significantly higher (error
bars represent 2 standard deviations) than a set of fully connected layers, especially in cases where
the network is limited to a small number of parameters.
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Figure 6: Accuracy as a function of network size. [a] MNIST, [b] SVHN. [c] CIFAR-10. Error bars
represent 2 standard deviations.

Finally, in Table 4 we provide a summary of network sizes and classification accuracies, achieved
by replacing the deepest layers of common topologies (vanilla) with a learned structure. In the first
row, a structure is learned directly from images; therefore, it does not have a “vanilla” topology as
reference (a network with 3 fully-connected layers having similar size achieves 98.75% accuracy).
In all the cases, the size of the learned structure is significantly smaller than the vanilla topology,
and generally has an increase in accuracy.
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Comparison to other methods. Our structure learning algorithm runs efficiently on a standard
desktop CPU, while providing structures with competitive classification accuracies and network
sizes. For example, the lowest classification error rate achieved by our unsupervised algorithm for
CIFAR 10 is 4.58% with a network of size 6M (WRN-40-4 row in Table 4). For comparison, the
NAS algorithm (Zoph & Le, 2016) achieves error rates of 5.5% and 4.47% for networks of sizes
4.2M and 7.1M, respectively, and requires optimizing thousands of networks using hundreds of
GPUs. For AlexNet network, recent methods for reducing the size of a pre-trained network (pruning
while maintaining classification accuracy) achieve 5× (Denton et al., 2014) and 9× (Han et al.,
2015; 2016) reduction. Our method achieves 13× reduction. For VGG-16 (CIFAR-10), Li et al.
(2017) achieve 3× reduction and our method achieves 7× reduction.

accuracy number of parameters

dataset topology vanilla
learned “feature removed learned

structure extraction” section structure

MNIST
None 99.07 (0.01)

MNIST-Man 99.35 99.45 (0.04) 23K 104K 24.7K

SVHN
Maxout NiN 98.10 97.70 (0.05) 1.07M 527K 52.6K

SVHN-Man 97.10 96.24 (0.05) 17K 88K 25.5K

CIFAR 10
VGG-16 92.32 92.61 (0.14) 1.7M 13.3M 0.47M

WRN-40-4 95.09 95.42 (0.14) 4.3M 4.7M 1.7M

CIFAR 100 VGG-16 68.86 68.91 (0.17) 1.7M 13.3M 0.25M

ImageNet AlexNet 57.20 57.20 (0.03) 2M 59M 2.57M

Table 4: A summary of network sizes and classification accuracies (and standard deviations),
achieved by replacing the deepest layers of common topologies (vanilla) with a learned structure.
The number of parameters are reported for “feature extraction” (first layers of the vanilla topology),
removed section (the deepest layers of the vanilla topology), and the learned structure that replaced
the removed part. The sum of parameters in the “feature extraction” and removed parts equals to the
vanilla topology size. The first row corresponds to learning a structure directly from image pixels.

6 CONCLUSIONS

We presented a principled approach for learning the structure of deep neural networks. Our proposed
algorithm learns in an unsupervised manner and requires small computational cost. The resulting
structures encode a hierarchy of independencies in the input distribution, where a node in one layer
may connect another node in any deeper layer, and depth is determined automatically.

We demonstrated that our algorithm learns small structures, and maintains high classification accu-
racies for common image classification benchmarks. It is also demonstrated that while convolution
layers are very useful at exploiting domain knowledge, such as spatial smoothness, translational in-
variance, and symmetry, they are mostly outperformed by a learned structure for the deeper layers.
Moreover, while the use of common topologies (meta-architectures), for a variety of classification
tasks is computationally inefficient, we would expect our approach to learn smaller and more accu-
rate networks for each classification task, uniquely.

As only unlabeled data is required for learning the structure, we expect our approach to be practical
for many domains, beyond image classification, such as knowledge discovery, and plan to explore
the interpretability of the learned structures.
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APPENDIX

A PRESERVATION OF CONDITIONAL DEPENDENCE

Conditional dependence relations encoded by the genrative structure G are preserved by the dis-
criminative structure GD conditioned on the class Y . That is, GD conditioned on Y can mimic G;
denoted by preference relation G � GD|Y . While the parameters of a model can learn to mimic
conditional independence relations that are not expressed by the graph structure, they are not able to
learn conditional dependence relations (Pearl, 2009).
Proposition 1. Graph GInv preserves all conditional dependencies in G (i.e., G � GInv).

Proof. Graph GInv can be constructed using the procedures described by Stuhlmüller et al. (2013)
where nodes are added, one-by-one, to GInv in a reverse topological order (lowest first) and con-
nected (as a child) to existing nodes in GInv that d-separate it, according to G, from the remainder
of GInv. Paige & Wood (2016) showed that this method ensures the preservation of conditional de-
pendence G � GInv. We set an equal topological order to every pair of latents (Hi, Hj) sharing a
common child in G. Hence, jointly adding nodes Hi and Hj to GInv, connected by a bi-directional
edge, requires connecting them (as children) only to their children and the parents of their chil-
dren (Hi and Hj themselves, by definition) in G. That is, without loss of generality, node Hi is
d-separated from the remainder of GInv given its children in G and Hj . �

It is interesting to note that the stochastic inverse GInv, constructed without adding inter-layer con-
nections, preserves all conditional dependencies in G.
Proposition 2. Graph GD, conditioned on Y , preserves all conditional dependencies in GInv
(i.e., GInv � GD|Y ).

Proof. It is only required to prove that the dependency relations that are represented by bi-directional
edges in GInv are preserved in GD. The proof follows directly from the d-separation criterion (Pearl,
2009). A latent pair {H,H ′} ⊂ H(n+1), connected by a bi-directional edge in GInv, cannot be
d-separated by any set containing Y , as Y is a descendant of a common child of H and H ′. In
Algorithm 2-line 12, a latent in H(n) is connected, as a child, to latents H(n+1), and Y to H(0). �

We formulate GInv as a projection of another latent model (Pearl, 2009) where bi-directional edges
represent dependency relations induced by latent variables Q. We construct a discriminative model
by considering the effect of Q as an explaining-away relation induced by a class node Y . Thus, con-
ditioned on Y , the discriminative graph GD preserves all conditional (and marginal) dependencies
in GInv.
Proposition 3. Graph GD, conditioned on Y , preserves all conditional dependencies in G
(i.e., G � GD).

Proof. It immediately follows from Propositions 1 & 2 that G � GInv � GD conditioned on Y . �

Thus G � GInv � GD conditioned on Y .
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