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Abstract

Collecting high-quality, large scale datasets typically requires significant resources.1

The aim of the present work is to improve the label efficiency of large neural2

networks operating on audio data through multitask learning with self-supervised3

tasks on unlabeled data. To this end, we trained an end-to-end audio feature4

extractor based on WaveNet that feeds into simple, yet versatile task-specific5

neural networks. We describe three self-supervised learning tasks that can operate6

on any large, unlabeled audio corpus. We demonstrate that, in a scenario with7

limited labeled training data, one can significantly improve the performance of a8

supervised classification task by simultaneously training it with these additional9

self-supervised tasks. We show that one can improve performance on a diverse10

sound events classification task by nearly 8.94% when jointly trained with up to11

three distinct self-supervised tasks. This improvement scales with the number of12

additional auxiliary tasks as well as the amount of unlabeled data. We also show13

that incorporating data augmentation into our multitask setting leads to even further14

gains in performance.15

1 Introduction16

Deep neural networks (DNNs) [16] are the bedrock of state-of-the-art approaches to modeling and17

classifying auditory data [2, 16, 22, 39, 40]. However, these data-hungry neural architectures are not18

always matched to the available training resources, and the creation of large-scale corpora of audio19

training data is usually costly and time-consuming. While labeled datasets are quite scarce, we have20

access to virtually infinite sources of unlabeled data, which makes effective unsupervised learning21

an enticing research direction. Here we aim to develop techniques that enable models to generalize22

better by incorporating auxiliary self-supervised auditory tasks into the training phase [12, 13, 27].23

Our main contributions in this paper are two fold: the successful identification of appropriate24

self-supervised audio-related tasks and the demonstration that they can be trained jointly with data-25

constrained supervised tasks in order to significantly improve performance. We also show how to26

use WaveNet as a general feature extractor capable of providing rich audio representations using raw27

waveform data as input. We hypothesize that by learning multi-scale hierarchical representations28

from raw audio, WaveNet-based models are capable of adapting to subtle variations within tasks in29

an efficient and robust manner. Our approach is quite general and flexible.30

The remainder of the paper is organized as follows: after covering related work in section 2, we31

proceed to describe the model and the auditory tasks on which the model was trained in section 3.32

In section 4 we describe our experiments and report the results we obtained when training a shared33

acoustic model with multiple tasks in section 5. We close with a summary of the main takeaways of34

this work and propose some interesting future directions in section 6.35
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2 Related Work36

Principally, multitask learning is about learning two or more tasks simultaneously within a single37

shared model. A single model can only learn multiple tasks if they are related in some way. Task38

relatedness, as a concept, is poorly defined in the field, though it hinges on the presence of common39

structure within the input that is relied upon by each task [6]. Such structure has been described40

for decades in the literature on sensory environments, with Gabor filters and gammatone filters41

underlying much of visual and auditory processing, respectively [1, 21, 37]. This suggests that42

models trained to accomplish many tasks should be able to synergize to uncover this underlying43

structure, enabling better single-task performance with smaller amounts of data per-task. There are44

many ways in which models can be designed to uncover this common structure [23]. Most existing45

approaches to multitask learning attempt to learn a single non-trivial general-purpose representation46

[5]. While other intriguing approaches have been proposed [25], our work largely belongs to this first47

category, so we will focus our discussion there. For a more thorough review, see [23, 34].48

Multitask learning [6] has been studied across several fields in machine learning. More recently49

it has been incorporated into a variety of deep neural network models, addressing problems in the50

domains of vision [5, 26, 33, 41], speech [7, 10, 36], natural language processing [8, 9, 15, 38],51

and reinforcement learning [3, 11, 17]. For instance, Bilen & Veldadi showed that a single visual52

model could learn 10 distinct visual tasks operating on 10 datasets [5]. The model described therein53

outperformed baseline single-task networks, suggesting that it was able to take advantage of the shared54

representation space to pool the error signals from seemingly disparate classification tasks. It has also55

been shown that noise-robust speech recognition performance can be improved by adding a denoising56

auxiliary task to the main classification task [32]. Though the utility of a shared representation space57

may not be surprising in these instances (one might expect that supplementary denoising should aid58

in producing a noise-free representation), modern deep learning models remain strikingly oriented59

toward single tasks. Shared representations are not only useful for single modality models. Kaiser et60

al. [18] have shown that a single, albeit very large, model is capable of jointly learning 8 tasks across61

3 different modalities.62

While shared representations allow models to pool data from different datasets, the problem persists63

that the cleanly labeled datasets that have permitted so much progress in deep learning are painstaking64

to come by. One proposed solution that has gained traction is to use self-supervised learning to65

take advantage of unlabeled data. Self-supervised tasks are those where the input, or a simple66

transformation of the inputs, provides its own label. Recent self-supervised work in the visual67

domain has shown promising results, leveraging unlabeled data using tasks like inpainting for image68

completion [28, 31], image colorization [20, 43], and motion segmentation [30].69

In this work, we find that simultaneously training on multiple diverse self-supervised audio tasks70

yields strong performance gains on data-constrained supervised classification tasks. Though multitask71

learning shares much in common with transfer learning, it has no inherent task primacy. For the72

sake of expositional clarity, however, it is often easiest to think about multitask learning as being73

composed of a main task and a set of supporting auxiliary tasks. In the work described here, the74

main task is a supervised classification task, viz. sound events classification task which we refer to as75

audio tagging for the remainder of the paper, and the auxiliary tasks are three self-supervised tasks:76

next-step prediction, noise reduction, and upsampling.77

3 Model Architecture78

One approach to multitask learning via shared representations would be to enforce parameter sharing79

across tasks. In our setting, this is implemented using a network with a trunk comprised of a stack80

of layers shared across tasks, augmented by a set of specialized heads specific to individual tasks81

(see Figure 1 and Figure 2). The heads are standalone neural networks driven by inputs emitted82

by the trunk. We chose to keep the heads as “lightweight" as possible by giving them just enough83

capacity to solve their designated tasks, thus forcing the shared trunk to model as much of the shared84

representation space as possible. During training, task-specific input data is fed into the trunk, and in85

turn, the trunk’s output is routed to the appropriate task-specific head. The trunk’s parameters are86

simultaneously updated with respect to all tasks. While the parameters in the specific heads are not87

directly shared across tasks, they nonetheless interact with each other since the trunk’s parameters are88

updated using gradients contributed by all the heads.89
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3.1 Shared Trunk90

Although audio tag classification does not require the fine temporal resolution found in raw audio91

waveforms, our chosen auxiliary tasks (or any arbitrary auditory task for which we may desire our92

model to be sufficient) require higher temporal resolutions. To satisfy this, we chose to build our93

model following the WaveNet architecture [39].94

WaveNet models are autoregressive networks capable of processing high temporal resolution raw95

audio signals. Models from this class are ideal in cases where the complete sequence of input samples96

is readily available. WaveNet models employ causal dilated convolutions to process sequential inputs97

in parallel, making these architectures faster to train compared to RNNs which can only be updated98

sequentially.99

Figure 1: Model architecture. Multiple tasks
are processed using small, task-specific neu-
ral networks built atop a task-agnostic trunk.
The trunk architecture principally follows the
structure of WaveNet, with several blocks of
stacked, dilated, and causal convolutions be-
tween every convolution layer. Outputs from
the trunk are fed into task-specific heads (de-
tails in Section 3.1).

As shown Figure 1, our WaveNet trunk is composed of N
blocks, where each block consists of S dilated causal con-
volution layers, with dilation factors increasing from 1 to
2S − 1, residual connections and saturating nonlinearities.
We label the blocks using b = 1, · · · , N . We use indices
` ∈ [1 + (b− 1)S, bS] to label layers in block b. Each layer,
`, of the WaveNet trunk consists of a “residual atom” which
involves two computations, labeled as “Filter” and “Gate”
in the figure. Each residual atom computation produces a
hidden state vector h(`) and a layer output x(`) defined via

h(`) = σ
(
W

(`)
gate ~` x

(`−1))� tanh
(
W

(`)
filter ~` x

(`−1))
x(`) = x(`−1) + h(`)

where � denotes element-wise products, ~ represents the
regular convolution operation, ~` denotes dilated convolu-
tions with a dilation factor of 2`mod bS if ` is a layer in block
b+1, σ denotes the sigmoid function andW (`)

gate andW (`)
filter

are the weights for the gate and filter, respectively.

The first (` = 0) layer – represented as the initial stage
marked “1× 1 Conv” in Figure 1 – applies causal convolu-
tions to the raw audio waveforms X = (X1, X2, · · · , XT ),
sampled at 16 kHz, to produce an output x(0) =W (0) ~X .

Given the structure of the trunk laid out above, any given
block b has an effective receptive field of 1 + b(2S − 1).
Thus the total effective receptive field of our trunk is τ =
1+N(2S − 1). Following an extensive hyperpameter search
over various configurations, we settled on [N = 3] blocks
comprised of [S = 6] layers each for our experiments. Thus
our trunk has a total receptive field of τ = 190, which corre-
sponds to about 12 milliseconds of audio sampled at 16kHz.

100

3.2 Task-specific Heads101

As indicated above, each task-specific head is a simple neural network whose input data is first102

constrained to pass through a trunk that it shares with other tasks. Each head is free to process this103

input to its advantage, independent of the other heads.104

Each task also specifies its own objective function, as well as a task-specific optimizer, with cus-105

tomized learning rates and annealing schedules, if necessary. We arbitrarily designate supervised106

tasks as the primary tasks and refer to any self-supervised tasks as auxiliary tasks. In the experiments107

reported below, we used “audio tagging” as the primary supervised classification task and “next-step108
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prediction”, “noise reduction” and “upsampling” as auxiliary tasks training on various amounts of109

unlabeled data. The parameters used for each of the task specific heads can be found in Table 3 of the110

accompanying supplement to this paper.111

Figure 2: The head architectures were designed to be simple, using only as few layers as necessary to
solve the task. Simpler head architectures force the shared trunk to learn a representation suitable for
multiple audio tasks.

3.2.1 Next-Step Prediction112

The next-step prediction task can be succinctly formalized as follows: given a sequence113

{xt−τ+1, · · · , xt} of frames of an audio waveform, predict the next value xt+1 in the sequence.114

This prescription allows one to cheaply obtain arbitrarily large training datasets from an essentially115

unlimited pool of unlabeled audio data.116

Our next-step prediction head is a 2-layer stack of 1×1 convolutional layers with ReLU nonlinearities117

in all but the last layer. The first layer contains 128 units, while the second contains a single output unit.118

The head takes in τ frames of data from the trunk, where τ is the trunk’s effective receptive field, and119

produces an output which represents the model’s prediction for the next frame of audio in the sequence.120

The next-step head treats this as a regression problem, using the mean squared error of the difference121

between predicted values and actual values as a loss function, i.e. given inputs {xt−τ+1, · · · , xt},122

the head produces an output yt from which we compute a loss LMSE(t) = (yt − xt+1)
2 and then123

aggregate over the frames to get the total loss.124

We would like to note that the original WaveNet implementation treated next-step prediction as a125

classification problem, instead predicting the bin-index of the audio following a µ-law transform. We126

found that treating the task as a regression problem worked better in multitask situations but make no127

claims on the universality of this choice.128

3.2.2 Noise-Reduction129

In defining the noise reduction task, we adopt the common approach of treating noise as an additive130

random process on top of the true signal: if {xt} denotes the clean raw audio waveform, we obtain131

the noisy version via x̂t := xt + ξt where ξt an arbitrary noise process. For the denoising task, the132

model is trained to predict the clean sample, xt, given a window
{
x̂t− 1

2 (τ−1)
, · · · , x̂t+ 1

2 (τ−1)
}

of133

noisy samples. Formally speaking, the formulation of the next-step prediction and denoising tasks134

are nearly identical, so it should not be surprising to find that models with similar structures are135

well-adapted to solving either task. Thus, our noise reduction head has a structure similar to the136

next-step head. It is trained to minimize a smoothed L1 loss between the clean and noisy versions of137

the waveform inputs, i.e. for each frame t, the head produces an output ŷt, and we compute the loss138

Lsmooth L1(t) =


1
2 |ŷt − xt|

2 if |ŷt − xt| < 1

|ŷt − xt| − 1
2 if |ŷt − xt| ≥ 1

(1)

and then aggregate over frames to obtain the total loss. We used the smooth L1 loss because it139

provided a more stable convergence for the denoising task than mean squared error.140

3.2.3 Upsampling141

In the same spirit as the denoising task, one can easily create an unsupervised upsampling task142

by simply downsampling the audio source. The downsampled signal serves as input data while143
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the original source serves as the target. Upsampling is an analog of the “super-resolution” task in144

computer vision.145

For the upsampling task, the original audio was first downsampled to 4 kHz using the resample146

method in the librosa python package [24]. To keep the network operating at the same time scale147

for all auxiliary tasks, we repeated every time-point of the resampled signal 4 times so as to mimic148

the original signal’s 16 kHz sample rate. The job of the network is then to infer the high frequency149

information lost during the transform.150

Again, given the formal similarity of the upsampling task to the next-step prediction and noise-151

reduction tasks, we used an upsampling head with a structure virtually identical to those described152

above. As with the denoising task, we used a smooth L1 loss function (see eqn. (1) above) to compare153

the estimated upsampled audio with the original.154

3.2.4 Audio Tag Classification155

All of the tasks described above are entirely self-supervised and can make use of vast amounts of156

unlabeled data. In contrast, the audio tagging task is a classification problem that requires labeled157

data for training.158

Since the WaveNet trunk produces outputs with a temporal structure, our audio tagging head first159

reduces the trunk’s output across the time axis to produce a single output vector for the entire audio160

sequence. This is done using a global mean pooling layer, which simply averages over the time161

axis. On top of this pooling, we use a multilayer perceptron with ReLU nonlinearities and finally162

a softmax output layer. Training is done by minimizing the cross entropy between the softmax163

outputs and one-hot encoded audio tag vectors, i.e. if we use p̂k to denote the one-hot vector164

corresponding to the kth tag label, and pk to represent the corresponding softmax output, then165

Lcross-entropy = −
∑
k∈[1,K] p̂k ln pk, where K is the total number of tag labels.166

4 Experiments167

4.1 Datasets168

4.1.1 FSDKaggle2018169

FSDKaggle2018 [14] is a dataset collected through Freesound, a sound sharing site with a heteroge-170

neous audio content including sounds from a wide range of real-world environments. The complete171

dataset contains a total of 11,073 files provided as uncompressed PCM 16 bit, 44.1 kHz, mono172

audio files which is further subdivided into a training set and a test set. The duration of these audio173

clips ranges from 300ms to 30s. The training set is composed of 9473 audio clips corresponding to174

approximately 18 hours of audio which is unequally distributed among 41 categories. The ground175

truth labels of the training data have varying degrees of reliability, with only 3710 of the audio clips176

having manually-verified labels and the remaining 5763 having non-verified labels, meaning they177

were automatically categorized using user-provided metadata. The test set is composed of 1600 audio178

clips with manually-verified labels which are used for the final scoring.179

4.1.2 Librispeech180

The Librispeech dataset1 (comprised of read English speech sampled at 16 kHz) was used as a proxy181

for a large unlabeled dataset. The models described below were trained using clips from either the182

"train-clean-100" or "train-other-500 versions". Models trained with 5, 50 and 100 hours of unlabeled183

data were sourced from "train-clean-100", while the model trained with 500 hours was sourced184

entirely from "train-other-500". Due to memory constraints, we limited the duration of each utterance185

to 2 seconds which we obtained by cropping from a random position in the original clip. This dataset186

was only used to train the auxiliary tasks.187

1http://www.openslr.org/12/
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4.2 Training188

We trained the model using raw audio waveform inputs taken from the FSDKaggle2018 and Lib-189

rispeech datasets. All code for the experiments described here was written in the PyTorch framework190

[29]. All audio samples were first cropped to two seconds in duration and downsampled to 16 kHz.191

To normalize for the variation in onset times for different utterances, the 2 seconds were randomly192

selected from the original clip. Samples shorter than 2 seconds were zero padded. We then scaled the193

inputs to lie in the interval [−1, 1]. The noise-reduction task required noisy inputs which we obtained194

by adding noise sampled from ChiME3 datasets [4] at a randomly chosen SNR from 10dB to 15dB.195

The noise types include booth (BTH), on the bus (BUS), cafe (CAF), pedestrian area (PED), and196

street junction (STR)) . Starting with the main task, we first performed a hyperparameter search over197

the number of blocks in the trunk, the number of layers per block, the number of layers and units of198

the main task head, and the learning rate. We tried several values for the number of blocks in the199

trunk, ranging from 2 to 5. We also varied the number of dilated convolution layers in each block200

from 3 to 8. We found that the performance and training characteristics of the network were largely201

unaffected by the exact architecture specifications, though learning rate was often important. We202

then searched over the depth and width of each auxiliary task head, as well as the learning rate for203

the head. These searches were done by pairing each task individually with the main task. The final204

choice of hyper-parameters was made by picking values which gave the best possible performance on205

both the main task and the auxiliary tasks, heuristically favoring performance on the main task.206

We jointly trained the model on all tasks simultaneously by performing a forward pass for each task,207

computing the loss function for each task, and then calculating the gradients based on a weighted208

sum of the losses, viz. Ltotal =
∑
i αiLi, where the sum runs over all the tasks. We used a uniform209

weighting strategy in our current experiments. More advanced weighting strategies showed no benefit210

for the tagging task (see section 6).211

We used the “Adam” optimizer [19] with parameters β0 = 0.9, β1 = 0.99 , ε = 10−8. The learning212

rate was decayed by a factor of .95 every 5 epochs, as this was found to improve convergence. We213

used a batch size of 48 across all experiments, since it was the largest batch size permissible by the214

computational resources available to us. Adding the noise reduction and upsampling tasks required a215

separate forward propagation of the noisy and downsampled audio, respectively. Exact values for all216

important parameters of the model can be found in Table 3 of the accompanying supplement to this217

paper.218

5 Results219

As discussed above, we used audio tagging as the main task to investigate whether supervised220

classification of audio could be improved by the addition of self-supervised tasks. The datasets221

used for these tasks are detailed in Section 4.1. The benchmark model provided by [14] used a222

3-layer CNN with log mel spectrogram features as input and obtained a mean average precision at 3223

(MAP@3) score of 0.69 on the test set. For our experiments, we also used the MAP@3 [14] along224

with top-1 classification accuracy as the performance metric.225

First, we trained a purely supervised model on 2 seconds of non-silence audio extracted using random226

cropping from the FSDKaggle2018 dataset. This model was trained using 90% of the training data227

and the remaining training data was set aside for validation. The final scores were reported on the test228

set. At the end of training, this baseline model with a single task of audio tagging as the head obtained229

an MAP@3 score of 0.637. It is not surprising that the baseline model achieves a slightly lower score230

than the benchmark model. This can be attributed to the fact that the benchmark model does the231

time averaging of the entire audio signal during training as well as inference. Due to limitations in232

memory requirements we constrained our sample length to 2 seconds in our model.233

5.1 Addition of self-supervised tasks234

In this experiment, we added each of the self-supervised tasks to the baseline model discussed above,235

simultaneously training them using 100 hours of unlabeled data sampled from the Librispeech dataset236

along with the main supervised task.237
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We notice that, addition of any self-supervised
task showed an average improvement of 4.6% to
the MAP@3 score compared to the main task’s
baseline performance. Adding a pair of tasks
gave an average improvement of 4.55% over
baseline, showing no improvement over adding a
single task. Training with three additional tasks
yielded the best results with an improvement of
5.33% over the main task. Looking at MAP@3
scores throughout training showed that conver-
gence in every multitask setting was stable, with
gradual improvements for increasing number of
tasks. The best performance values on the test
sets for a sequence of task additions can be found
in Table 1.

The set of experiments described above demon-
strate that, for a fixed amount of unlabeled data
(100 hours), simultaneously training a super-
vised task with various self-supervised tasks
yields a significant improvement in the main
task’s performance.

5.2 Varying amounts of unlabeled data
To further test how performance changes with
increasing amounts of data, we re-trained our
model while varying the amount of unlabeled
data used to train the auxiliary tasks. We no-
ticed that even without any additional unlabeled
data, the MAP@3 score with three additional
tasks was significantly better than the score ob-
tained on a single task. This demonstrates that
addition of self-supervised tasks improves the
performance of main task.

Increasing the size of the unlabeled data for the
auxiliary tasks increases the size of the multi-
task benefit (Figure 3).The MAP@3 Scores at
different levels of unlabaled data showed pro-
gressive improvement to 0.656, 0.669, with 5
and 50 hours respectively. We observed a peak
MAP@3 score of 0.694 with 500 hours of unla-
beled data, which is an improvement of 8.94%
over the main task’s baseline performance.

5.3 Comparison with Data Augmentation
Next, we explore several approaches to data
augmentation and compare them with multitask
learning. Previous work has demonstrated the
effectiveness of data augmentation through sim-
ple techniques, such as noise injection, and pitch
shifting [35, 42, 44]. We compared our proposed
method with traditional data augmentation strate-
gies by retraining our model only for the main
task after applying the aforementioned augmen-
tations to the FSDKaggle2018 training data.

The MAP@3 values for the data augmentation
experiments on the test sets can be found in Table
2. We observed a peak MAP@3 score of 0.703
with pitch shifting augmentation which is similar

in scale to that of our best multitask performance
gains. In an attempt to observe how both the
techniques work together, we combined data aug-
mentation with multitask learning and obtain an
MAP@3 score of 0.726 which was the best score
among all the experiments we conducted.

Table 1: Results showing multitask learning per-
formance gains with audio tagging as the primary
classification task along with 100 hours of unla-
beled data. TAG=Audio tagging, UP=upsampling,
NS=next-step prediction, NR=noise-reduction.

MAP@3
Score

Classification
Accuracy(%)

TAG 0.637 55.31
TAG + NS 0.665 58.15
TAG + NR 0.665 57.77
TAG + UP 0.669 58.54
TAG + NS + NR 0.664 57.88
TAG + UP + NR 0.664 58.14
TAG + NS + UP 0.669 58.27
TAG + NS + UP + NR 0.671 58.40

Figure 3: Improved MAP@3 scores with increas-
ing amounts of unlabeled data. Shown are the
MAP@3 scores on test set when the main task
is trained with 3 auxiliary tasks with 0, 5, 50,
100, and 500 hours of unlabeled data respectively.
The amount of labelled data is held constant for
the whole experiment. We see a smooth increase
in performance with increasing amounts of unla-
beled data.

Table 2: Results showing performance gains
with data augmentation on audio tagging task.
MTL100=Multitask learning with all auxiliary
tasks and 100 hours of unlabeled data, NI=noise
injection, PS=pitch shifting.

MAP@3
Score

Classification
Accuracy(%)

NI 0.661 57.31
PS 0.703 62.60
PS + MTL100 0.726 64.87

238
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6 Discussion239

We investigated our multitask learning framework under two specific evaluation settings: sequentially240

adding various self-supervised tasks and adding more unlabeled data. We have shown that jointly241

training a supervised classification task together with multiple self-supervised tasks using a WaveNet-242

based architecture can significantly improve the performance of the supervised task in situations243

where one has a limited quantity of labeled data. We have also shown that the performance of the244

supervised task improves by increasing either the number of auxiliary self-supervised tasks or the245

quantity of unlabeled data or both. We attain a peak performance boost of 8.94% over the baseline246

with the inclusion of 3 self-supervised tasks when trained with additional 500 hours of unlabeled data.247

Finally, our multitask learning scheme further benefits when the training data for the data-constrained248

task is augmented using standard techniques. Since our results suggest that the performance gain with249

our approach is additive when used with data augmentation, it may be interesting to use multitask250

learning with other augmentation approaches to observe if they complement each other in different251

settings.252

We have strived to systematically present our results within a coherent multitask learning framework.253

For the most part, our methodology follows a straightforward extension of the techniques used254

in related approaches like transfer learning and self-supervised learning. There is, however, one255

challenging aspect that deserves more attention: how to best simultaneously optimize a set of arbitrary256

objective functions. For example, in our setup, the auxiliary tasks are inherently temporal in nature257

while the supervised classification task does not make use of the temporal aspects of the audio258

waveform. It is quite plausible that a naive combination of loss functions associated with tasks259

operating on very different time scales leads to sub-optimal results. While in all our experiments260

we have simply added the task specific losses to design our final objective, we believe that a better261

understanding of multiple objective optimization will improve the performance further.262

While we have shown that one can effectively utilize multitask learning with unlabeled audio data,263

many questions remain to be answered. We want to explore if there is a limit to the number of264

auxiliary tasks that can be added to a main task in the multitask setting and if we can place an upper265

bound on the amount of improvement that we can expect from such a setting. A more principled266

notion of task similarity/relationship still need to be investigated with regard to multitask learning267

in order to know which tasks should be preferred. Intuitively, we expect that when our multitask268

model learns to simultaneously forecast frames of audio, remove noise from the audio and perform269

upsampling, it must have formed a representation of the audio. What is this representation? Can270

it be extracted or distilled? A proper exploration of these questions should enable us to handle a271

broader range of auditory tasks, hopefully providing a useful tool for tackling deep learning in the272

limited-data regime.273
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Supplementary Material274

Table 3: Important hyperparameter values for all experimental runs

Parameter Value
Trunk # Blocks 3

# Layers 6
# Units 64

Optimizer Type Adam
Learning rate 3× 10−4

Epochs per step 5
Schedule multiplier 0.95

Audio Tagging Head # Layers 1
# Units - hidden 512
# Units - output 41
Learning rate 5.37× 10−5

Epochs per step 5
Schedule multiplier 0.95

Next-step Head # Layers 2
# Units - hidden 128
# Units - output 1
Learning rate 5× 10−3

Epochs per step 5
Schedule multiplier 0.95

Noise Reduction Head # Layers 2
# Units - output 128
Filter width 11
Learning rate 5× 10−3

Epochs per step 5
Schedule multiplier 0.95

Upsampling Head # Layers 2
# Units 128
# Units - output 1
Filter width 11
Learning rate 5× 10−3

Epochs per step 5
Schedule multiplier 0.95
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