
Under review as a conference paper at ICLR 2020

ROBUST LEARNING WITH JACOBIAN
REGULARIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Design of reliable systems must guarantee stability against input perturbations.
In machine learning, such guarantee entails preventing overfitting and ensuring
robustness of models against corruption of input data. In order to maximize
stability, we analyze and develop a computationally efficient implementation of
Jacobian regularization that increases classification margins of neural networks.
The stabilizing effect of the Jacobian regularizer leads to significant improvements
in robustness, as measured against both random and adversarial input perturbations,
without severely degrading generalization properties on clean data.

1 INTRODUCTION

Stability analysis lies at the heart of many scientific and engineering disciplines. In an unstable system,
infinitesimal perturbations amplify and have substantial impacts on the performance of the system. It
is especially critical to perform a thorough stability analysis on complex engineered systems deployed
in practice, or else what may seem like innocuous perturbations can lead to catastrophic consequences
such as the Tacoma Narrows Bridge collapse (Amman et al., 1941) and the Space Shuttle Challenger
disaster (Feynman and Leighton, 2001). As a rule of thumb, well-engineered systems should be
robust against any input shifts – expected or unexpected.

Most models in machine learning are complex nonlinear systems and thus no exception to this rule.
For instance, a reliable model must withstand shifts from training data to unseen test data, bridging
the so-called generalization gap. This problem is severe especially when training data are strongly
biased with respect to test data, as in domain-adaptation tasks, or when only sparse sampling of a
true underlying distribution is available, as in few-shot learning. Any instability in the system can
further be exploited by adversaries to render trained models utterly useless (Szegedy et al., 2013;
Goodfellow et al., 2014; Moosavi-Dezfooli et al., 2016; Papernot et al., 2016a; Kurakin et al., 2016;
Madry et al., 2017; Carlini and Wagner, 2017; Gilmer et al., 2018). It is thus of utmost importance to
ensure that models be stable against perturbations in the input space.

Various regularization schemes have been proposed to improve the stability of models. For linear
classifiers and support vector machines (Cortes and Vapnik, 1995), this goal is attained via an L2

regularization which maximizes classification margins and reduces overfitting to the training data.
This regularization technique has been widely used for neural networks as well and shown to promote
generalization (Hinton, 1987; Krogh and Hertz, 1992; Zhang et al., 2018). However, it remains
unclear whether or not L2 regularization increases classification margins and stability of a network,
especially for deep architectures with intertwining nonlinearity.

In this paper, we suggest ensuring robustness of nonlinear models via a Jacobian regularization
scheme. We illustrate the intuition behind our regularization approach by visualizing the classification
margins of a simple MNIST digit classifier in Figure 1 (see Appendix A for more). Decision
cells of a neural network, trained without regularization, are very rugged and can be unpredictably
unstable (Figure 1a). On average, L2 regularization smooths out these rugged boundaries but does not
necessarily increase the size of decision cells, i.e., does not increase classification margins (Figure 1b).
In contrast, Jacobian regularization pushes decision boundaries farther away from each training data
point, enlarging decision cells and reducing instability (Figure 1c).

The goal of the paper is to promote Jacobian regularization as a generic scheme for increasing
robustness while also being agnostic to the architecture, domain, or task to which it is applied. In

1

Under review as a conference paper at ICLR 2020

(a) Without regularization (b) With L2 regularization (c) With Jacobian regularization

Figure 1: Cross sections of decision cells in the input space. To make these cross sections for
LeNet’ models trained on the MNIST dataset, a test sample (black dot) and a two-dimensional
hyperplane ⊂ R784 passing through it are randomly chosen. Different colors indicate the different
classes predicted by these models, transparency and contours are set by maximum of the softmax
values, and the circle around the test sample signifies distance to the closest decision boundary in the
plane. (a) Decision cells are rugged without regularization. (b) Training with L2 regularization leads
to smoother decision cells, but does not necessarily ensure large cells. (c) Jacobian regularization
pushes boundaries outwards and embiggens decision cells.

support of this, after presenting the Jacobian regularizer, we evaluate its effect both in isolation as
well as in combination with multiple existing approaches that are intended to promote robustness and
generalization. Our intention is to showcase the ease of use and complimentary nature of our proposed
regularization. Domain experts in each field should be able to quickly incorporate our regularizer into
their learning pipeline as a simple way of improving the performance of their state-of-the-art system.

The rest of the paper is structured as follows. In Section 2 we motivate the usage of Jacobian
regularization and develop a computationally efficient algorithm for its implementation. Next, the
effectiveness of this regularizer is empirically studied in Section 3. As regularlizers constrain the
learning problem, we first verify that the introduction of our regularizer does not adversely affect
learning in the case when input data remain unperturbed. Robustness against both random and
adversarial perturbations is then evaluated and shown to receive significant improvements from the
Jacobian regularizer. We contrast our work with the literature in Section 4 and conclude in Section 5.

2 METHOD

Here we introduce a scheme for minimizing the norm of an input-output Jacobian matrix as a
technique for regularizing learning with stochastic gradient descent (SGD). We begin by formally
defining the input-output Jacobian and then explain an efficient algorithm for computing the Jacobian
regularizer using standard machine learning frameworks.

2.1 STABILITY ANALYSIS AND INPUT-OUTPUT JACOBIAN

Let us consider the set of classification functions, f , which take a vectorized sensory signal, x ∈ RI ,
as input and outputs a score vector, z = f(x) ∈ RC , where each element, zc, is associated with
likelihood that the input is from category, c.1 In this work, we focus on learning this classification
function as a neural network with model parameters θ, though our findings should generalize to any
parameterized function. Our goal is to learn the model parameters that minimize the classification
objective on the available training data while also being stable against perturbations in the input space
so as to increase classification margins.

1Throughout the paper, the vector z denotes the logit before applying a softmax layer. The probabilistic
output of the softmax pc relates to zc via pc ≡ ezc/T∑

c′ e
z
c′/T

with temperature T , typically set to unity.

2

Under review as a conference paper at ICLR 2020

The input-output Jacobian matrix naturally emerges in the stability analysis of the model predictions
against input perturbations. Let us consider a small perturbation vector, ε ∈ RI , of the same
dimension as the input. For a perturbed input x̃ = x+ ε, the corresponding output values shift to

z̃c = fc(x+ ε) = fc(x) +

I∑
i=1

εi ·
∂fc
∂xi

(x) +O(ε2) = zc +

I∑
i=1

Jc;i(x) · εi +O(ε2) (1)

where in the second equality the function was Taylor-expanded with respect to the input perturbation
ε and in the third equality the input-output Jacobian matrix,

Jc;i(x) ≡ ∂fc
∂xi

(x) , (2)

was introduced. As the function f is typically almost everywhere analytic, for sufficiently small
perturbations ε the higher-order terms can be neglected and the stability of the prediction is governed
by the input-output Jacobian.

2.2 ROBUSTNESS THROUGH INPUT-OUTPUT JACOBIAN MINIMIZATION

From Equation (1), it is straightforward to see that the larger the components of the Jacobian are, the
more unstable the model prediction is with respect to input perturbations. A natural way to reduce
this instability then is to decrease the magnitude for each component of the Jacobian matrix, which
can be realized by minimizing the square of the Frobenius norm of the input-output Jacobian,2

||J(x)||2F ≡

∑
i,c

[Jc;i (x)]
2

 . (3)

For linear models, this reduces exactly to L2 regularization that increases classification margins
of these models. For nonlinear models, however, Jacobian regularization does not equate to L2

regularization, and we expect these schemes to affect models differently. In particular, predictions
made by models trained with the Jacobian regularization do not vary much as inputs get perturbed
and hence decision cells enlarge on average. This increase in stability granted by the Jacobian
regularization is visualized in Figure 1, which depicts a cross section of the decision cells for the
MNIST digit classification problem using a nonlinear neural network (LeCun et al., 1998).

The Jacobian regularizer in Equation (3) can be combined with any loss objective used for training
parameterized models. Concretely, consider a supervised learning problem modeled by a neural
network and optimized with SGD. At each iteration, a mini-batch B consists of a set of labeled
examples, {xα,yα}α∈B, and a supervised loss function, Lsuper, is optimized possibly together with
some other regularizerR(θ) – such as L2 regularizer λWD

2 θ2 – over the function parameter space,
by minimizing the following bare loss function

Lbare ({xα,yα}α∈B;θ) =
1

|B|
∑
α∈B
Lsuper [f(xα);yα] +R(θ) . (4)

To integrate our Jacobian regularizer into training, one instead optimizes the following joint loss

LBjoint (θ) = Lbare({xα,yα}α∈B;θ) +
λJR

2

[
1

|B|
∑
α∈B
||J(xα)||2F

]
, (5)

where λJR is a hyperparameter that determines the relative importance of the Jacobian regularizer. By
minimizing this joint loss with sufficient training data and a properly chosen λJR, we expect models
to learn both correctly and robustly.

2Minimizing the Frobenius norm will also reduce the L1-norm, since these norms satisfy the inequalities
||J(x)||F ≤

∑
i,c

∣∣Jc;i (x)
∣∣ ≤ √IC||J(x)||F. We prefer to minimize the Frobenius norm over the L1-norm

because the ability to express the former as a trace leads to an efficient algorithm [see Equations (6) through (8)].

3

Under review as a conference paper at ICLR 2020

2.3 EFFICIENT APPROXIMATE ALGORITHM

In the previous section we have argued for minimizing the Frobenius norm of the input-output
Jacobian to improve robustness during learning. The main question that follows is how to efficiently
compute and implement this regularizer in such a way that its optimization can seamlessly be
incorporated into any existing learning paradigm. Recently, Sokolić et al. (2017) also explored the
idea of regularizing the Jacobian matrix during learning, but only provided an inefficient algorithm
requiring an increase in computational cost that scales linearly with the number of output classes, C,
compared to the bare optimization problem (see explanation below). In practice, such an overhead
will be prohibitively expensive for many large-scale learning problems, e.g. ImageNet classification
has C = 1000 target classes (Deng et al., 2009). (Our scheme, in contrast, can be used for ImageNet:
see Appendix H.)

Here, we offer a different solution that makes use of random projections to efficiently approximate
the Frobenius norm of the Jacobian.3 This only introduces a constant time overhead and can be made
very small in practice. When considering such an approximate algorithm, one naively must trade off
efficiency against accuracy for computing the Jacobian, which ultimately trades computation time
for robustness. Prior work by Varga et al. (2017) briefly considers an approach based on random
projection, but without providing any analysis on the quality of the Jacobian approximation. Here, we
describe our algorithm, analyze theoretical convergence guarantees, and verify empirically that there
is only a negligible difference in model solution quality between training with the exact computation
of the Jacobian as compared to training with the approximate algorithm, even when using a single
random projection (see Figure 2).

Given that optimization is commonly gradient based, it is essential to efficiently compute gradients of
the joint loss in Equation (5) and in particular of the squared Frobenius norm of the Jacobian. First,
we note that automatic differentiation systems implement a function that computes the derivative of a
vector such as z with respect to any variables on which it depends, if the vector is first contracted
with another fixed vector. To take advantage of this functionality, we rewrite the squared Frobienus
norm as

||J(x)||2F = Tr
(
JJT

)
=
∑
{e}

eJJTeT =
∑
{e}

[
∂ (e · z)

∂x

]2

, (6)

where a constant orthonormal basis, {e}, of the C-dimensional output space was inserted in the
second equality and the last equality follows from definition (2) and moving the constant vector inside
the derivative. For each basis vector e, the quantity in the last parenthesis can then be efficiently
computed by differentiating the product, e · z, with respect to input parameters, x. Recycling
that computational graph, the derivative of the squared Frobenius norm with respect to the model
parameters, θ, can be computed through backpropagation with any use of automatic differentiation.
Sokolić et al. (2017) essentially considers this exact computation, which requires backpropagating
gradients through the model C times to iterate over the C orthonormal basis vectors {e}. Ultimately,
this incurs computational overhead that scales linearly with the output dimension C.

Instead, we further rewrite Equation (6) in terms of the expectation of an unbiased estimator

||J(x)||2F = C Ev̂∼SC−1

[
||v̂ · J ||2

]
, (7)

where the random vector v̂ is drawn from the (C − 1)-dimensional unit sphere SC−1. Using this
relationship, we can use samples of nproj random vectors v̂µ to estimate the square of the norm as

||J(x)||2F ≈
1

nproj

nproj∑
µ=1

[
∂ (v̂µ · z)

∂x

]2

, (8)

which converges to the true value as O(n
−1/2
proj). The derivation of Equation (7) and the calculation of

its convergence make use of random-matrix techniques and are provided in Appendix B.

Finally, we expect that the fluctuations of our estimator can be suppressed by cancellations within
a mini-batch. With nearly independent and identically distributed samples in a mini-batch of size

3In Appendix C, we give an alternative method for computing gradients of the Jacobian regularizer by using
an analytically derived formula.

4

Under review as a conference paper at ICLR 2020

(a) Accuracy, full-training (b) Robustness, full-training

Figure 2: Comparison of Approximate to Exact Jacobian Regularizer. The difference between
the exact method (cyan) and the random projection method with nproj = 1 (blue) and nproj = 3 (red
orange) is negligible both in terms of accuracy (a) and the norm of the input-output Jacobian (b) on
the test set for LeNet’ models trained on MNIST with λJR = 0.01. Shading indicates the standard
deviation estimated over 5 distinct runs and dashed vertical lines signify the learning rate quenches.

Algorithm 1 Efficient computation of the approximate gradient of the Jacobian regularizer.
Inputs: mini-batch of |B| examples xα, model outputs zα, and number of projections nproj.
Outputs: Square of the Frobenius norm of the Jacobian JF and its gradient∇θJF .
JF = 0
for i = 1 to nproj do
{vαc } ∼ N (0, I) . (|B|, C)-dim tensor with each element sampled from a standard normal.
v̂α = vα/||vα|| . Uniform sampling from the unit sphere for each α.
zflat = Flatten({zα}); vflat = Flatten({v̂α}) . Flatten for parallelism.
Jv = ∂(zflat · vflat)/∂x

α

JF += C||Jv||2/(nproj|B|)
end for
∇θJF = ∂JF /∂θ
return JF ,∇θJF

|B| � 1, we expect the error in our estimate to be of order (nproj|B|)−1/2. In fact, as shown in
Figure 2, with a mini-batch size of |B| = 100, single projection yields model performance that is
nearly identical to the exact method, with computational cost being reduced by orders of magnitude.

The complete algorithm is presented in Algorithm 1. With a straightforward implementation in
PyTorch (Paszke et al., 2017) and nproj = 1, we observed the computational cost of the training with
the Jacobian regularization to be only ≈ 1.3 times that of the standard SGD computation cost, while
retaining all the practical benefits of the expensive exact method.4

3 EXPERIMENTS

In this section, we evaluate the effectiveness of Jacobian regularization on robustness. As all
regularizers constrain the learning problem, we begin by confirming that our regularizer effectively
reduces the value of the Frobenius norm of the Jacobian while simultaneously maintaining or
improving generalization to an unseen test set. We then present our core result, that Jacobian
regularization provides significant robustness against corruption of input data from both random
and adversarial perturbations (Section 3.2). In the main text we present results mostly with the
MNIST dataset; the corresponding experiments for the CIFAR-10 (Krizhevsky and Hinton, 2009)
and ImageNet (Deng et al., 2009) datasets are relegated to Appendices E and H. The following
specifications apply throughout our experiments:

Datasets: The MNIST data consist of black-white images of hand-written digits with 28-by-28
pixels, partitioned into 60,000 training and 10,000 test samples (LeCun et al., 1998). We preprocess
the data by subtracting the mean (0.1307) and dividing by the variance (0.3081) of the training data.

4The costs are measured on a single NVIDIA GP100 for the LeNet’ architecture on MNIST data. The
computational efficiency depends on datasets and model architectures; the largest we have observed is a factor of
≈ 2 increase in computational time for ResNet-18 on CIFAR-10 (Appendix E), which is still of order one.

5

Under review as a conference paper at ICLR 2020

Table 1: Generalization on clean test data. LeNet’ models learned with varying amounts of training
samples per class are evaluted on MNIST test set. Jacobian regularizer substantially reduces the norm
of the Jacobian while retaining test accuracy. Errors indicate 95% confidence intervals over 5 distinct
runs for full training and 15 for sub-sample training.

Test Accuracy (↑) ||J ||F (↓)

Samples per class

Regularizer 1 3 10 30 All All

No regularization 49.2 ± 1.9 67.0 ± 1.7 83.3 ± 0.7 90.4 ± 0.5 98.9 ± 0.1 32.9 ± 3.3
L2 49.9 ± 2.1 68.1 ± 1.9 84.3 ± 0.8 91.2 ± 0.5 99.2 ± 0.1 4.6 ± 0.2
Dropout 49.7 ± 1.7 67.4 ± 1.7 83.9 ± 1.8 91.6 ± 0.5 98.6 ± 0.1 21.5 ± 2.3
Jacobian 49.3 ± 2.1 68.2 ± 1.9 84.5 ± 0.9 91.3 ± 0.4 99.0 ± 0.0 1.1 ± 0.1
All Combined 51.7 ± 2.1 69.7 ± 1.9 86.3 ± 0.9 92.7 ± 0.4 99.1 ± 0.1 1.2 ± 0.0

Implementation Details: For the MNIST dataset, we use the modernized version of LeNet-5 (LeCun
et al., 1998), henceforth denoted LeNet’ (see Appendix D for full details). We optimize using SGD
with momentum, ρ = 0.9, and our supervised loss equals the standard cross-entropy with one-hot
targets. The model parameters θ are initialized at iteration t = 0 by the Xavier method (Glorot
and Bengio, 2010) and the initial descent value is set to 0. The hyperparameters for all models
are chosen to match reference implementations: the L2 regularization coefficient (weight decay)
is set to λWD = 5 · 10−4 and the dropout rate is set to pdrop = 0.5. The Jacobian regularization
coefficient λJR = 0.01, is chosen by optimizing for clean performance and robustness on the white
noise perturbation. (See Appendix G for performance dependence on the coefficient λJR.)

3.1 EVALUATING GENERALIZATION

The main goal of supervised learning involves generalizing from a training set to unseen test set. In
dealing with such a distributional shift, overfitting to the training set and concomitant degradation
in test performance is the central concern. For neural networks one of the most standard antidotes
to this overfitting instability is L2 reguralization (Hinton, 1987; Krogh and Hertz, 1992; Zhang
et al., 2018). More recently, dropout regularization has been proposed as another way to circumvent
overfitting (Srivastava et al., 2014). Here we show how Jacobian regualarization can serve as yet
another solution. This is also in line with the observed correlation between the input-output Jacobian
and generalization performance (Novak et al., 2018).

Generalizing within domain: We first verify that in the clean case, where the test set is composed of
unseen samples drawn from the same distribution as the training data, the Jacobian regularizer does
not adversely affect classification accuracy. Table 1 reports performance on the MNIST test set for the
LeNet’ model trained on either a subsample or all of the MNIST train set, as indicated. When learning
using all 60,000 training examples, the learning rate is initially set to η0 = 0.1 with mini-batch size
|B| = 100 and then decayed ten-fold after each 50,000 SGD iterations; each simulation is run for
150,000 SGD iterations in total. When learning using a small subsample of the full training set,
training is carried out using SGD with full batch and a constant learning rate η = 0.01, and the model
performance is evaluated after 10,000 iterations. The main observation is that optimizing with the
proposed Jacobian regularizer or the commonly used L2 and dropout regularizers does not change
performance on clean data within domain test samples in any statistically significant way. Notably,
when few samples are available during learning, performance improved with increased regularization
in the form of jointly optimizing over all criteria. Finally, in the right most column of Table 1, we
confirm that the model trained with all data and regularized with the Jacobian minimization objective
has an order of magnitude smaller Jacobian norm than models trained without Jacobian regularization.
This indicates that while the model continues to make the same predictions on clean data, the margins
around each prediction has increased as desired.

Generalizing to a new domain: We test the limits of the generalization provided by Jacobian
regularization by evaluating an MNIST learned model on data drawn from a new target domain
distribution – the USPS (Hull, 1994) test set. Here, models are trained on the MNIST data as
above, and the USPS test dataset consists of 2007 black-white images of hand-written digits with

6

Under review as a conference paper at ICLR 2020

Table 2: Generalization on clean test data from an unseen domain. LeNet’ models learned with
all MNIST training data are evaluated for accuracy on data from the novel input domain of USPS test
set. Here, each regularizer, including Jacobian, increases accuracy over an unregularized model. In
addition, the regularizers may be combined for the strongest generalization effects. Averages and
95% confidence intervals are estimated over 5 distinct runs.

No regularization L2 Dropout Jacobian All Combined

80.4± 0.7 83.3± 0.8 81.9± 1.4 81.3± 0.9 85.7± 1.0

(a) White noise (b) PGD (c) CW

Figure 3: Robustness against random and adversarial input perturbations. This key result il-
lustrates that Jacobian regularization significantly increases the robustness of a learned model with
LeNet’ architecture trained on the MNIST dataset. (a) Considering robustness under white noise per-
turbations, Jacobian minimization is the most effective regularizer. (b,c) Jacobian regularization alone
outperforms an adversarial training defense (base models all include L2 and dropout regularization).
Shades indicate standard deviations estimated over 5 distinct runs.

16-by-16 pixels; images are upsampled to 28-by-28 pixels using bilinear interpolation and then
preprocessed following the MNIST protocol stipulated above. Table 2 offers preliminary evidence
that regularization, of each of the three forms studied, can be used to learn a source model which
better generalizes to an unseen target domain. We again find that the regularizers may be combined to
increase the generalization property of the model. Such a regularization technique can be immediately
combined with state-of-the-art domain adaptation techniques to achieve further gains.

3.2 EVALUATING UNDER DATA CORRUPTION

This section showcases the main robustness results of the Jacobian regularizer, highlighted in the case
of both random and adversarial input perturbations.

Random Noise Corruption: The real world can differ from idealized experimental setups and input
data can become corrupted by various natural causes such as random noise and occlusion. Robust
models should minimize the impact of such corruption. As one evaluation of stability to natural
corruption, we perturb each test input image x to x̃ = dx + εccrop where each component of the
perturbation vector is drawn from the normal distribution with variance σnoise as

εi ∼ N (0, σ2
noise), (9)

and the perturbed image is then clipped to fit into the range [0, 1] before preprocessing. As in the
domain-adaptation experiment above, models are trained on the clean MNIST training data and
then tested on corrupted test data. Results in Figure 3a show that models trained with the Jacobian
regularization is more robust against white noise than others. This is in line with – and indeed
quantitatively validates – the embiggening of decision cells as shown in Figure 1.

Adversarial Perturbations: The world is not only imperfect but also possibly filled with evil agents
that can deliberately attack models. Such adversaries seek a small perturbation to each input example
that changes the model predictions while also being imperceptible to humans. Obtaining the actual
smallest perturbation is likely computationally intractable, but there exist many tractable approxima-

7

Under review as a conference paper at ICLR 2020

tions. The simplest attack is the white-box untargeted fast gradient sign method (FGSM) (Goodfellow
et al., 2014), which distorts the image as x̃ = dx+ εccrop with

εi = εFGSM · sign

(∑
c

∂Lsuper

∂zc
Jc;i

)
. (10)

This attack aggregates nonzero components of the input-output Jacobian to a substantial effect by
adding them up with a consistent sign. In Figure 3b we consider a stronger attack, projected gradient
descent (PGD) method (Kurakin et al., 2016; Madry et al., 2017), which iterates the FGSM attack
in Equation (10) k times with fixed amplitude εFGSM = 1/255 while also requiring each pixel
value to be within 32/255 away from the original value. Even stronger is the Carlini-Wagner (CW)
attack (Carlini and Wagner, 2017) presented in Figure 3c, which yields more reliable estimates of
distance to the closest decision boundary (see Appendix F). Results unequivocally show that models
trained with the Jacobian regularization is again more resilient than others. As a baseline defense
benchmark, we implemented adversarial training, where the training image is corrupted through the
FGSM attack with uniformly drawn amplitude εFGSM ∈ [0, 0.01]; the Jacobian regularization can be
combined with this defense mechanism to further improve the robustness.5 Appendix A additionally
depicts decision cells in adversarial directions, further illustrating the stabilizing effect of the Jacobian
regularizer.

4 RELATED WORK

To our knowledge, double backpropagation (Drucker and LeCun, 1991; 1992) is the earliest attempt
to penalize large derivatives with respect to input data, in which (∂Lsuper/∂x)

2 is added to the loss
in order to reduce the generalization gap.6 Different incarnations of a similar idea have appeared
in the following decades (Simard et al., 1992; Mitchell and Thrun, 1993; Aires et al., 1999; Rifai
et al., 2011; Gulrajani et al., 2017; Yoshida and Miyato, 2017; Czarnecki et al., 2017; Jakubovitz
and Giryes, 2018). Among them, Jacobian regularization as formulated herein was proposed by Gu
and Rigazio (2014) to combat against adversarial attacks. However, the authors did not implement
it due to a computational concern – resolved by us in Section 2 – and instead layer-wise Jacobians
were penalized. Unfortunately, minimizing layer-wise Jacobians puts a stronger constraint on model
capacity than minimizing the input-output Jacobian. In fact, several authors subsequently claimed
that the layer-wise regularization degrades test performance on clean data (Goodfellow et al., 2014;
Papernot et al., 2016b) and results in marginal improvement of robustness (Carlini and Wagner,
2017).

Very recently, full Jacobian regularization was implemented in Sokolić et al. (2017), but in an
inefficient manner whose computational overhead for computing gradients scales linearly with the
number of output classes C compared to unregularized optimization, and thus they had to resort
back to the layer-wise approximation above for the task with a large number of output classes. This
computational problem was resolved by Varga et al. (2017) in exactly the same way as our approach
(referred to as spherical SpectReg in Varga et al. (2017)). As emphasized in Section 2, we performed
more thorough theoretical and empirical convergence analysis and showed that there is practically no
difference in model solution quality between the exact and random projection method in terms of test
accuracy and stability. Further, both of these two references deal only with the generalization property
and did not fully explore strong distributional shifts and noise/adversarial defense. In particular, we
have visualized (Figure 1) and quantitatively borne out (Section 3) the stabilizing effect of Jacobian
regularization on classification margins of a nonlinear neural network.

5We also tried the defensive distillation technique of Papernot et al. (2016b). While the model trained with
distillation temperature T = 100 and attacked with T = 1 appeared robust against FGSM/PGD adversaries, it
was fragile once attacked at T = 100 and thus cannot be robust against white-box attacks. This is in line with
the numerical precision issue observed by Carlini and Wagner (2016).

6This approach was slightly generalized in Lyu et al. (2015) in the context of adversarial defense; see also
Ororbia II et al. (2016); Ross and Doshi-Velez (2018).

8

Under review as a conference paper at ICLR 2020

5 CONCLUSION

In this paper, we motivated Jacobian regularization as a task-agnostic method to improve stability of
models against perturbations to input data. Our method is simply implementable in any open source
automatic differentiation system, and additionally we have carefully shown that the approximate
nature of the random projection is virtually negligible. Furthermore, we have shown that Jacobian
regularization enlarges the size of decision cells and is practically effective in improving the gen-
eralization property and robustness of the models, which is especially useful for defense against
input-data corruption. We hope practitioners will combine our Jacobian regularization scheme with
the arsenal of other tricks in machine learning and prove it useful in pushing the (decision) boundary
of the field and ensuring stable deployment of models in everyday life.

REFERENCES

Othmar H Amman, Theodore von Kármán, and Glenn B Woodruff. The failure of the Tacoma
Narrows bridge. Report to the Federal Works Agency, 1941.

Richard P Feynman and Ralph Leighton. “What do you care what other people think?": further
adventures of a curious character. WW Norton & Company, 2001.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2574–2582, 2016.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram
Swami. The limitations of deep learning in adversarial settings. In 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 372–387. IEEE, 2016a.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533, 2016.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In IEEE
Symposium on Security and Privacy (SP), 2017.

Justin Gilmer, Ryan P Adams, Ian Goodfellow, David Andersen, and George E Dahl. Motivating the
rules of the game for adversarial example research. arXiv preprint arXiv:1807.06732, 2018.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297,
1995.

Geoffrey E Hinton. Learning translation invariant recognition in a massively parallel networks. In
International Conference on Parallel Architectures and Languages Europe, pages 1–13. Springer,
1987.

Anders Krogh and John A Hertz. A simple weight decay can improve generalization. In Advances in
neural information processing systems, pages 950–957, 1992.

Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of weight decay
regularization. arXiv preprint arXiv:1810.12281, 2018.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

9

Under review as a conference paper at ICLR 2020

Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel RD Rodrigues. Robust large margin deep
neural networks. IEEE Transactions on Signal Processing, 65(16):4265–4280, 2017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: a large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee, 2009.

Dániel Varga, Adrián Csiszárik, and Zsolt Zombori. Gradient regularization improves accuracy of
discriminative models. arXiv preprint arXiv:1712.09936, 2017.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In Neural Information Processing Symposium, 2017.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pages 249–256, 2010.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-
Dickstein. Sensitivity and generalization in neural networks: an empirical study. arXiv preprint
arXiv:1802.08760, 2018.

Jonathan J Hull. A database for handwritten text recognition research. IEEE Trans. Pattern Anal.
Mach. Intell., 16(5):550–554, 1994.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as a
defense to adversarial perturbations against deep neural networks. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 582–597. IEEE, 2016b.

Nicholas Carlini and David Wagner. Defensive distillation is not robust to adversarial examples.
arXiv preprint arXiv:1607.04311, 2016.

Harris Drucker and Yann LeCun. Double backpropagation increasing generalization performance. In
IJCNN-91-Seattle International Joint Conference on Neural Networks, volume 2, pages 145–150.
IEEE, 1991.

Harris Drucker and Yann LeCun. Improving generalization performance using double backpropaga-
tion. IEEE Transactions on Neural Networks, 3(6):991–997, 1992.

Chunchuan Lyu, Kaizhu Huang, and Hai-Ning Liang. A unified gradient regularization family for
adversarial examples. In 2015 IEEE International Conference on Data Mining, pages 301–309.
IEEE, 2015.

Alexander G Ororbia II, C Lee Giles, and Daniel Kifer. Unifying adversarial training algorithms with
flexible deep data gradient regularization. arXiv preprint arXiv:1601.07213, 2016.

Andrew Slavin Ross and Finale Doshi-Velez. Improving the adversarial robustness and interpretability
of deep neural networks by regularizing their input gradients. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

Patrice Simard, Bernard Victorri, Yann LeCun, and John Denker. Tangent prop–a formalism for spec-
ifying selected invariances in an adaptive network. In Advances in neural information processing
systems, pages 895–903, 1992.

Tom M Mitchell and Sebastian B Thrun. Explanation-based neural network learning for robot control.
In Advances in neural information processing systems, pages 287–294, 1993.

10

Under review as a conference paper at ICLR 2020

Filipe Aires, Michel Schmitt, Alain Chedin, and Noëlle Scott. The “weight smoothing" regularization
of MLP for Jacobian stabilization. IEEE Transactions on Neural Networks, 10(6):1502–1510,
1999.

Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Contractive auto-
encoders: explicit invariance during feature extraction. In Proceedings of the 28th International
Conference on International Conference on Machine Learning, pages 833–840. Omnipress, 2011.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of Wasserstein GANs. In Advances in Neural Information Processing Systems,
pages 5767–5777, 2017.

Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generalizability
of deep learning. arXiv preprint arXiv:1705.10941, 2017.

Wojciech M Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz, and Razvan Pascanu.
Sobolev training for neural networks. In Advances in Neural Information Processing Systems,
pages 4278–4287, 2017.

Daniel Jakubovitz and Raja Giryes. Improving DNN robustness to adversarial attacks using Jacobian
regularization. In Proceedings of the European Conference on Computer Vision (ECCV), pages
514–529, 2018.

Shixiang Gu and Luca Rigazio. Towards deep neural network architectures robust to adversarial
examples. arXiv preprint arXiv:1412.5068, 2014.

Benoît Collins and Piotr Śniady. Integration with respect to the Haar measure on unitary, orthogonal
and symplectic group. Communications in Mathematical Physics, 264(3):773–795, 2006.

Benoît Collins and Sho Matsumoto. On some properties of orthogonal Weingarten functions. Journal
of Mathematical Physics, 50(11):113516, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Computer Vision and Pattern Recognition (CVPR), 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015.

11

Under review as a conference paper at ICLR 2020

Figure S1: Cross sections of decision cells in the input space for LeNet’ models trained on the
MNIST dataset along random hyperplanes. Figure specifications are same as in Figure 1. (Left)
No regularization. (Middle) L2 regularization with λWD = 0.0005 . (Right) Jacobian regularization
with λJR = 0.01.

A GALLERY OF DECISION CELLS

We show in Figure S1 plots similar to the ones shown in Figure 1 in the main text, but with different
seeds for training models and around different test data points. Additionally, shown in Figure S2
are similar plots but with different scheme for hyperplane slicing, based on adversarial directions.
Interestingly, the adversarial examples constructed with unprotected model do not fool the model
trained with Jacobian regularization.

12

Under review as a conference paper at ICLR 2020

Figure S2: Cross sections of decision cells in the input space for LeNet’ models trained on the
MNIST dataset along adversarial hyperplanes. Namely, given a test sample (black dot), the
hyperplane through it is spanned by two adversarial examples identified through FGSM, one for the
model trained with L2 regularization λWD = 0.0005 and dropout rate 0.5 but no defense (dark-grey
dot; left figure) and the other for the model with the same standard regularization methods plus
Jacobian regularization λJR = 0.01 and adversarial training (white-grey dot; right figure).

13

Under review as a conference paper at ICLR 2020

B ADDITIONAL DETAILS FOR EFFICIENT ALGORITHM

Let us denote by Ev̂∼SC−1 [F (v̂)] the average of the arbitrary function F over C-dimensional
vectors v̂ sampled uniformly from the unit sphere SC−1. As in Algorithm 1, such a unit vector can
be sampled by first sampling each component vc from the standard normal distribution N (0, 1) and
then normalizing it as v̂ ≡ v/||v||. In our derivation, the following formula proves useful:

Ev̂∼SC−1 [F (v̂)] =

∫
dµ(O)F (Oe) , (11)

where e is an arbitrary C-dimensional unit vector and
∫

dµ(O) [. . .] is an integral over orthogonal
matrices O over the Haar measure with normalization

∫
dµ(O) [1] = 1.

First, let us derive Equation (7). Using Equation (11), the square of the Frobenius norm can then be
written as

||J(x)||2F = Tr
(
JJT

)
,

=

∫
dµ(O)Tr

(
OJJTOT

)
,

=

∫
dµ(O)

∑
{e}

eOJ JTOTeT ,

=
∑
{e}

Ev̂∼SC−1

[
v̂JJTv̂T

]
,

= C Ev̂∼SC−1

[
v̂JJTv̂T

]
, (12)

where in the second line we insert the identity matrix in the form I = OTO and make use of the
cyclicity of the trace; in the third line we rewrite the trace as a sum over an orthonormal basis {e}
of the C-dimensional output space; in the forth line Equation (11) was used; and in the last line we
note that the expectation no longer depends on the basis vectors e and perform the trivial sum. This
completes the derivation of Equation (7).

Next, let us compute the variance of our estimator. Using tricks as before, but in reverse order, yields

var
(
C v̂JJTv̂T

)
≡ C2 Ev̂∼SC−1

[(
v̂JJTv̂T

)2]− ||J(x)||4F , (13)

= C2

∫
dµ(O)

[
eOJJTOTeTeOJJTOTeT

]
− ||J(x)||4F .

In this form, we use the following formula (Collins and Śniady, 2006; Collins and Matsumoto, 2009)
to evaluate the first term7∫

dµ(O)Oc1c5O
T
c6c2Oc3c7O

T
c8c4 = (14)

C + 1

C(C − 1)(C + 2)

(
δc1c2δc3c4δc5c6δc7c8 + δc1c3δc2c4δc5c7δc6c8 + δc1c4δc2c3δc5c8δc6c7

)
− 1

C(C − 1)(C + 2)

(
δc1c2δc3c4δc5c7δc6c8 + δc1c2δc3c4δc5c8δc6c7 + δc1c3δc2c4δc5c6δc7c8

+δc1c3δc2c4δc5c8δc6c7 + δc1c4δc2c3δc5c6δc7c8 + δc1c4δc2c3δc5c7δc6c8

)
.

After the dust settles with various cancellations, the expression for the variance simplifies to

var
(
C v̂JJTv̂T

)
=

2C

(C + 2)
Tr
(
JJTJJT

)
− 2

(C + 2)
||J(x)||4F . (15)

We can strengthen our claim by using the relation ||AB||2F ≤ ||A||2F||B||2F with A = J and B = JT,
which yields Tr

(
JJTJJT

)
≤ ||J(x)||4F and in turn bounds the variance divided by the square of

the mean as
var
(
C v̂JJTv̂T

)
[mean (C v̂JJTv̂T)]

2 ≤ 2

(
C − 1

C + 2

)
. (16)

7We thank Nick Hunter-Jones for providing us with the inelegant but concretely actionable form of this
integral.

14

Under review as a conference paper at ICLR 2020

The right-hand side is independent of J and thus independent of the details of model architecture and
particular data set considered.

In the end, the relative error of the random-projection estimate for ||J(x)||2F with nproj random
vectors will diminish as some order-one number divided by n−1/2

proj . In addition, upon averaging
||J(x)||2F over a mini-batch of samples of size |B|, we expect the relative error of the Jacobian
regularization term to be additionally suppressed by ∼ 1/

√
|B|.

Finally, we speculate that in the large-C limit – possibly relevant for large-class datasets such as the
ImageNet (Deng et al., 2009) – there might be additional structure in the Jacobian traces (e.g. the
central-limit concentration) that leads to further suppression of the variance.

C CYCLOPROPAGATION FOR JACOBIAN REGULARIZATION

It is also possible to derive a closed-form expression for the derivative of the Jacobian regularizer,
thus bypassing any need for random projections while maintaining computational efficiency. The
expression is here derived for multilayer perceptron, though we expect similar computations may be
done for other models of interest. We provide full details in case one may find it practically useful to
implement explicitly in any open-source packages or generalize it to other models.

Let us denote the input xi and the output zc = z
(L)
c where (identifying {i} = {i0} = {1, . . . , I} and

{c} = {iL} = {1, . . . , C})

z
(0)
i0

≡ xi0 , (17)

ẑ
(`)
i`

=

∑
i`−1

w
(`)
i`,i`−1

z
(`−1)
i`−1

+ b
(`)
i`

for ` = 1, . . . , L (18)

z
(`)
i`

= σ
(
ẑ

(`)
i`

)
for ` = 1, . . . , L . (19)

Defining the layer-wise Jacobian as

J
(`)
i`,i`−1

≡
∂z

(`)
i`

∂z
(`−1)
i`−1

= σ′
(
ẑ

(`)
i`

)
w

(`)
i`,i`−1

(no summation) , (20)

the total input-output Jacobian is given by

JiL,i0 ≡
∂z

(L)
iL

∂zi0
=
[
J (L)J (L−1) · · · J (1)

]
iL,i0

. (21)

The Jacobian regularizer of interest is defined as (up to the magnitude coefficient λJR)

RJR ≡
1

2
||J ||2F ≡

1

2

∑
i0,iL

(JiL,i0)
2

=
1

2
Tr
[
JTJ

]
. (22)

Its derivatives with respect to biases and weights are denoted as

B̃
(`)
j`

≡ ∂RJR

∂b
(`)
j`

, (23)

W̃
(`)
j`,j`−1

≡ ∂RJR

∂w
(`)
j`,j`−1

. (24)

Some straightforward algebra then yields

B̃
(`)
j`

=

[
B̃(`+1)

σ′(ẑ(`+1))
J (`+1)

]
j`

σ′(ẑ
(`)
j`

) +
σ′′
(
ẑ

(`)
j`

)
σ′
(
ẑ

(`)
j`

) [J (`) · · · J (1) · JT · J (L) · · · J (`+1)
]
j`,j`

,

(25)

15

Under review as a conference paper at ICLR 2020

and

W̃
(`)
j`,j`−1

= B̃
(`)
j`
z

(`−1)
j`−1

+ σ′
(
ẑ

(`)
j`

) [
J (`−1) · · · J (1) · JT · J (L) · · · J (`+1)

]
j`−1,j`

, (26)

where we have set
B̃

(L+1)
jL+1

= J
(L+1)
jL+1

= 0 . (27)

Algorithmically, we can iterate the following steps for ` = L,L− 1, . . . , 1:

1. Compute8

Ω
(`)
j`−1,j`

≡
[
J (`−1) · · · J (1) · JT · J (L) · · · J (`+1)

]
j`−1,j`

. (28)

2. Compute

∂R

∂b
(`)
j`

= B̃
(`)
j`

=

[
B̃(`+1)

σ′(ẑ(`+1))
J (`+1)

]
j`

σ′(ẑ
(`)
j`

) + σ′′
(
ẑ

(`)
j`

)∑
j`−1

w
(`)
j`,j`−1

Ω
(`)
j`−1,j`

. (29)

3. Compute
∂R

∂w
(`)
j`,j`−1

= W̃
(`)
j`,j`−1

= B̃
(`)
j`
z

(`−1)
j`−1

+ σ′
(
ẑ

(`)
j`

)
Ω

(`)
j`−1,j`

. (30)

Note that the layer-wise Jacobians, J (`)’s, are calculated within the standard backpropagation
algorithm. The core of the algorithm is in the computation of Ω

(`)
j`−1,j`

in Equation (28). It is
obtained by first backpropagating from `− 1 to 1, then forwardpropagating from 1 to L, and finally
backpropagating from L to `+ 1. It thus makes the cycle around `, hence the name cyclopropagation.

D DETAILS FOR MODEL ARCHITECTURES

In order to describe architectures of our convolutional neural networks in detail, let us associate a
tuple [F,Cin → Cout, S, P ;M] to a convolutional layer with filter width F , number of in-channels
Cin and out-channels Cout, stride S, and padding P , followed by nonlinear activations and then a
max-pooling layer of width M (note that M = 1 corresponds to no pooling). Let us also associate a
pair [Nin → Nout] to a fully-connected layer passing Nin inputs into Nout units with activations and
possibly dropout.

With these notations, our LeNet’ model used for the MNIST experiments consists of a (28, 28, 1)
input followed by a convolutional layer with [5, 1→ 6, 1, 2; 2], another one with [5, 6→ 16, 1, 0; 2],
a fully-connected layer with [2100 → 120] and dropout rate pdrop, another fully-connected layer
with [120→ 84] and dropout rate pdrop, and finally a fully-connected layer with [84→ 10], yielding
10-dimensional output logits. For our nonlinear activations, we use the hyperbolic tangent.

For the CIFAR-10 dataset, we use the model architecture specified in the paper on defensive dis-
tillation (Papernot et al., 2016b), abbreviated as DDNet. Specifically, the model consists of a
(32, 32, 3) input followed by convolutional layers with [3, 3 → 64, 1, 0; 1], [3, 64 → 64, 1, 0; 2],
[3, 64→ 128, 1, 0; 1], and [3, 128→ 128, 1, 0; 2], and then fully-connected layers with [3200→ 256]
and dropout rate pdrop, with [256→ 256] and dropout rate pdrop, and with [256→ 10], again yielding
10-dimensional output logits. All activations are rectified linear units.

In addition, we experiment with a version of ResNet-18 (He et al., 2016) modified for the 32-by-32
input size of CIFAR-10 and shown to achieve strong performance on clean image recognition.9 For
this architecture, we use the standard PyTorch initialization of the parameters. Data preproceessing
and optimization hyperparameters for both architectures are specified in the next section.

For our ImageNet experiments, we use the standard ResNet-18 model available within PyTorch
(torchvision.models.resnet) together with standard weight initialization.

Note that there is typically no dropout regularization in the ResNet models but we still examine the
effect of L2 regularization in addition to Jacobian regularization.

8For ` = 1, the part J(`−1) · · · J(1) is vacuous. Similarly, for ` = L, the part J(L) · · · J(`+1) is vacuous.
9Model available at: https://github.com/kuangliu/pytorch-cifar.

16

https://github.com/kuangliu/pytorch-cifar

Under review as a conference paper at ICLR 2020

Table 3: Generalization on clean test data. DDNet models learned with varying amounts of training
samples per class are evaluated on CIFAR-10 test set. Jacobian regularizer substantially reduces the
norm of the Jacobian. Errors indicate 95% confidence intervals over 5 distinct runs for full training
and 15 for sub-sample training.

Test Accuracy (↑) ||J ||F (↓)

Samples per class

Regularizer 1 3 10 30 All All

No regularization 12.9 ± 0.7 15.5 ± 0.7 20.5 ± 1.3 26.6 ± 1.0 76.8 ± 0.4 115.1 ± 1.8
L2 13.9 ± 1.0 14.6 ± 1.1 20.5 ± 1.0 26.6 ± 1.2 77.8 ± 0.2 29.4 ± 0.5
Dropout 12.9 ± 1.4 17.8 ± 0.6 24.4 ± 1.0 31.4 ± 0.5 80.7 ± 0.4 184.2 ± 4.8
Jacobian 14.9 ± 1.0 18.3 ± 1.0 23.7 ± 0.8 30.0 ± 0.6 75.4 ± 0.2 4.0 ± 0.0
All Combined 15.0 ± 1.1 19.6 ± 0.9 26.1 ± 0.6 33.4 ± 0.6 78.6 ± 0.2 5.2 ± 0.0

E RESULTS FOR CIFAR-10

Following specifications apply throughout this section for CIFAR-10 experiments with DDNet and
ResNet-18 model architectures (see Appendix D).

• Datasets: the CIFAR-10 dataset consists of color images of objects – divided into ten
categories – with 32-by-32 pixels in each of 3 color channels, each pixel ranging in [0, 1],
partitioned into 50,000 training and 10,000 test samples (Krizhevsky and Hinton, 2009).
The images are preprocessed by uniformly subtracting 0.5 and multiplying by 2 so that each
pixel ranges in [−1, 1].

• Optimization: essentially same as for the LeNet’ on MNIST, except the initial learning
rate for full training. Namely, model parameters θ are initialized at iteration t = 0 by the
Xavier method (Glorot and Bengio, 2010) for DDNet and standard PyTorch initialization for
ResNet-18, along with the zero initial velocity v(t = 0) = 0. They evolve under the SGD
dynamics with momentum ρ = 0.9, and for the supervised loss we use cross-entropy with
one-hot targets. For training with the full training set, mini-batch size is set as |B| = 100, and
the learning rate η is initially set to η0 = 0.01 for the DDNet and η0 = 0.1 for the ResNet-18
and in both cases quenched ten-fold after each 50,000 SGD iterations; each simulation is
run for 150,000 SGD iterations in total. For few-shot learning, training is carried out using
full-batch SGD with a constant learning rate η = 0.01, and model performance is evaluated
after 10,000 iterations.

• Hyperparameters: the same values are inherited from the experiments for LeNet’ on the
MNIST and no tuning was performed. Namely, the weight decay coefficient λWD = 5·10−4;
the dropout rate pdrop = 0.5; the Jacobian regularization coefficient λJR = 0.01; and
adversarial training with uniformly drawn FGSM amplitude εFGSM ∈ [0, 0.01].

The results relevant for generalization properties are shown in Table S3. One difference from
the MNIST counterparts in the main text is that dropout improves test accuracy more than L2

regularization. Meanwhile, for both setups the order of stability measured by ||J ||F on the test set
more or less stays the same. Most importantly, turning on the Jacobian regularizer improves the
stability by orders of magnitude, and combining it with other regularizers do not compromise this
effect.

The results relevant for robustness against input-data corruption are plotted in Figures S3 and S4. The
success of the Jacobian regularizer is retained for the white-noise and CW adversarial attack. For the
PGD attack results are mixed at high degradation level when Jacobian regularization is combined
with adversarial training. This might be an artifact stemming from the simplicity of the PGD search
algorithm, which overestimates the shortest distance to adversarial examples in comparison to the
CW attack (see Appendix F), combined with Jacobian regularization’s effect on simplifying the loss
landscape with respect to the input space that the attack methods explore.

17

Under review as a conference paper at ICLR 2020

(a) White noise (b) PGD (c) CW

Figure S3: Robustness against random and adversarial input perturbations for DDNet models
trained on the CIFAR-10 dataset. Shades indicate standard deviations estimated over 5 distinct
runs. (a) Comparison of regularization methods for robustness to white noise perturbations. (b,c)
Comparison of different defense methods against adversarial attacks (all models here equipped with
L2 and dropout regularization).

(a) White noise (b) PGD (c) CW

Figure S4: Robustness against random and adversarial input perturbations for ResNet-18 mod-
els trained on the CIFAR-10 dataset. Shades indicate standard deviations estimated over 5 distinct
runs. (a) Comparison of regularization methods for robustness to white noise perturbations. (b,c)
Comparison of different defense methods against adversarial attacks (all models here equipped with
L2 regularization but not dropout: see Appendix D).

18

Under review as a conference paper at ICLR 2020

(a) Undefended; MNIST;
LeNet’

(b) Undefended; CIFAR-10;
DDNet

(c) Undefended; CIFAR-10;
ResNet-18

(d) Defended; MNIST;
LeNet’

(e) Defended; CIFAR-10;
DDNet

(f) Defended; CIFAR-10;
ResNet-18

Figure S5: Effects on test accuracy incurred by various modes of attacks. (a,d) LeNet’ on
MNIST, (b,e) DDNet on CIFAR-10, and (c,f) ResNet-18 on CIFAR-10 trained (a,b,c) without defense
and (d,e,f) with defense – Jacobian regularization magnitude λJR = 0.01 and adversarial training
with εFGSM ∈ [0, 0.01] – all also include L2 regularization λWD = 0.0005 and (except ResNet-18)
dropout rate 0.5.

F WHITE NOISE VS. FGSM VS. PGD VS. CW

In Figure S5, we compare the effects of various input perturbations on changing model’s decision.
For each attack method, fooling L2 distance in the original input space – before preprocessing – is
measured between the original image and the fooling image as follows (for all attacks, cropping
is performed to put pixels in the range [0, 1] in the orignal space): (i) for the white noise attack, a
random direction in the input space is chosen and the magnitude of the noise is cranked up until
the model yields wrong prediction; (ii) for the FGSM attack, the gradient is computed at a clean
sample and then the magnitude εFGSM is cranked up until the model is fooled; (iii) for the PGD
attack, the attack step with εFGSM = 1/255 is iterated until the model is fooled [as is customary for
PGD and described in the main text, there is saturation constraint that demands each pixel value to
be within 32/255 (MNIST) and 16/255 (CIFAR-10) away from the original clean value]; and (iv)
the CW attack halts when fooling is deemed successful. Here, for the CW attack (see Carlini and
Wagner (2017) for details of the algorithm) the Adam optimizer on the logits loss (their f6) is used
with the learning rate 0.005, and the initial value of the conjugate variable, c, is set to be 0.01 and
binary-searched for 10 iterations. For each model and attack method, the shortest distance is evaluated
for 1,000 test samples, and the test error (= 100%− test accuracy) at a given distance indicates the
amount of test examples misclassified with the fooling distance below that given distance.

Below, we highlight various notable features.

• The most important highlight is that, in terms of effectiveness of attacks, CW > PGD >
FGSM > white noise, duly respecting the complexity of the search methods for finding
adversarial examples. Compared to CW attack, the simple methods such as FGSM and
PGD attacks could sometime yield erroneous picture for the geometry of the decision cells,
especially regarding the closest decision boundary.

19

Under review as a conference paper at ICLR 2020

• The kink for PGD attack in Figure S5d is due to imposing saturation constraint that demands
each pixel value to be within 32/255 away from the original clean value. We think that this
constraint is unnatural, and impose it here only because it is customary.
• While the CW attack fools almost all the examples for LeNet’ on MNIST and DDNet

on CIFAR-10, it fails to fool some examples for ResNet-18 on CIFAR-10 (and later on
ImageNet: see Section H) beyond some distance. We have not carefully tuned the hyperpa-
rameters for CW attacks to resolve this issue in this paper.

G DEPENDENCE ON JACOBIAN REGULARIZATION MAGNITUDE

In this appendix, we consider the dependence of our robustness measures on the Jacobian regular-
ization magnitude, λJR. These experiments are shown in Figure S6. Cranking up the magnitude of
Jacobian regularization, λJR, generally increases the robustness of the model, with varying degree of
degradation in performance on clean samples. Typically, we can double the fooling distance without
seeing much degradation. This means that in practice modelers using Jacobian regularization can
determine the appropriate tradeoff between clean accuracy and robustness to input perturbations for
their particular use case. If some expectation for the amount of noises the model might encounter is
available, this can very naturally inform the choice of the hyperparameter λJR.

H RESULTS FOR IMAGENET

ImageNet (Deng et al., 2009) is a large-scale image dataset. We use the ILSVRC challenge
dataset (Russakovsky et al., 2015), which contains images each with a corresponding label
classified into one of thousand object categories. Models are trained on the training set and
performance is reported on the validation set. Data are preprocessed through subtracting the
mean = [0.485, 0.456, 0.406] and dividing by the standard deviation, std = [0.229, 0.224, 0.225],
and at training time, this preprocessing is further followed by random resize crop to 224-by-224 and
random horizontal flip.

ResNet-18 (see Appendix D) is then trained on the ImageNet dataset through SGD with mini-batch
size |B| = 256, momentum ρ = 0.9, weight decay λWD = 0.0001, and initial learning rate η0 = 0.1,
quenched ten-fold every 30 epoch, and we evaluate the model for robusness at the end of 100 epochs.
Our supervised loss equals the standard cross-entropy with one-hot targets, augmented with the
Jacobian regularizer with λJR = 0, 0.0001, 0.0003, and 0.001.

Preliminary results are reported in Figure S7. As is customary, the PGD attack iterates FGSM
with εFGSM = 1/255 and has a saturation constraint that demands each pixel is within 16/255 of
its original value; the CW attack hyperparameter is same as before and was not fine-tuned; [0, 1]-
cropping is performed as usual, but as if preprocessing were performed with RGB-uniform mean shift
0.4490 and standard deviation division 0.2260. The Jacobian regularizer again confers robustness to
the model, especially against adversarial attacks. Surprisingly, there is no visible improvement in
regard to white-noise perturbations. We hypothesize that this is because the model is already strong
against such perturbations even without the Jacobian regularizer, but it remains to be investigated
further.

20

Under review as a conference paper at ICLR 2020

(a) White; LeNet’ on MNIST (b) PGD; LeNet’ on MNIST (c) CW; LeNet’ on MNIST

(d) White; DDNet on CIFAR-10 (e) PGD; DDNet on CIFAR-10 (f) CW; DDNet on CIFAR-10

(g) White; ResNet-18 on CIFAR-10 (h) PGD; ResNet-18 on CIFAR-10 (i) CW; ResNet-18 on CIFAR-10

Figure S6: Dependence of robustness on the Jacobian regularization magnitude λJR. Accuracy
under corruption of input test data are evaluated for various models [base models all include L2

(λWD = 0.0005) regularization and, except for ResNet-18, dropout (rate 0.5) regularization]. Shades
indicate standard deviations estimated over 5 distinct runs.

(a) White; ResNet-18 on ImageNet (b) PGD; ResNet-18 on ImageNet (c) CW; ResNet-18 on ImageNet

Figure S7: Dependence of robustness on the Jacobian regularization magnitude λJR for Ima-
geNet. Accuracy under corruption of input test data are evaluated for ResNet-18 trained on ImageNet
[base models include L2 (λWD = 0.0001)] for a single run. For CW attack in (c), we used 10,000
test examples (rather than 1,000 used for other figures) to compensate for the lack of multiple runs.

21

	Introduction
	Method
	Stability Analysis and Input-Output Jacobian
	Robustness through Input-Output Jacobian Minimization
	Efficient Approximate Algorithm

	Experiments
	Evaluating Generalization
	Evaluating under Data Corruption

	Related Work
	Conclusion
	Gallery of Decision Cells
	Additional Details for Efficient Algorithm
	Cyclopropagation for Jacobian Regularization
	Details for Model Architectures
	Results for CIFAR-10
	White noise vs. FGSM vs. PGD vs. CW
	Dependence on Jacobian Regularization magnitude
	Results for ImageNet

