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1 Introduction

Structure learning and causal inference have many important applications in different areas of science
such as genetics [5, 12], biology [13] and economics [7]. Bayesian networks (BN), which encode
conditional independencies using directed acyclic graphs (DAG), are powerful models which are
both interpretable and computationally tractable. Causal graphical models (CGM) [12] are BNs
which support interventional queries like: What will happen if someone external to the system
intervene on variable X? Recent work suggests that causality could partially solve challenges faced
by current machine learning systems such as robustness to out-of-distribution samples, adaptability
and explainability [8, 6]. However, structure and causal learning are daunting tasks due to both
the combinatorial nature of the space of structures and the question of structure identifiability [12].
Nevertheless, these graphical models known qualities and promises of improvement for machine
intelligence renders the quest for structure/causal learning appealing. The problem of structure
learning can be seen as an inverse problem in which the learner tries to infer the causal structure
which has generated the observation.

In this work, we propose a novel score-based method [5, 12] for structure learning named GraN-DAG
which makes use of a recent reformulation of the original combinatorial problem of finding an
optimal DAG into a continuous constrained optimization problem. In the original method named
NOTEARS [18], the directed graph is encoded as a weighted adjacency matrix W which represents
coefficients in a linear structural equation model (SEM) [7]. To enforce acyclicity, the authors
propose a constraint which is both efficiently computable and easily differentiable.

Most popular score-based methods for DAG learning usually tackle the combinatorial nature of
the problem via greedy search procedures relying on multiple heuristics [3, 2, 11]. Moving toward
the continuous paradigm allows one to use gradient-based optimization algorithms instead of hand-
designed greedy search algorithms.

Our first contribution is to extend the work of [18] to deal with nonlinear relationships between
variables using neural networks (NN) [4]. GraN-DAG is general enough to deal with a large variety
of parametric families of conditional probability distributions. To adapt the acyclicity constraint
to our nonlinear model, we use an argument similar to what is used in [18] and apply it first at the
level of neural network paths and then at the level of graph paths. Our adapted constraint allows us
to exploit the full flexibility of NNs. On both synthetic and real-world tasks, we show GraN-DAG
outperforms other approaches which leverage the continuous paradigm, including DAG-GNN [16], a
recent nonlinear extension of [18] independently developed which uses an evidence lower bound as
score.

Our second contribution is to provide a missing empirical comparison to existing methods that support
nonlinear relationships but tackle the optimization problem in its discrete form using greedy search
procedures such as CAM [2]. We show that GraN-DAG is competitive on the wide range of tasks we
considered.
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2 Background

2.1 Causal graphical models

We suppose the natural phenomenon of interest can be described by a random vector X ∈ Rd entailed
by an underlying CGM (PX ,G) where PX is a probability distribution over X and G = (V,E) is
a DAG [12]. Each node i ∈ V corresponds to exactly one variable in the system. Let πGi denote
the set of parents of node i in G and let XπG

i
denote the random vector containing the variables

corresponding to the parents of i in G. We assume there are no hidden variables. In a CGM, the
distribution PX is said to be Markov to G which means we can write the probability density function
(pdf) as p(x) =

∏d
i=1 pi(xi|xπG

i
) where pi(xi|xπG

i
) is the conditional pdf of variable Xi conditioned

on XπG
i

. A CGM can be thought of as a BN in which directed edges are given a causal meaning,
allowing it to answer queries regarding interventional distributions [5].

2.2 Structure identifiability

In general, it is impossible to recover G only given samples from PX . It is, however, customary to
rely on a set of assumptions to render the structure fully or partially identifiable.

Definition 1. Given a set of assumptions A on a CGMM = (PX ,G), its graph G is said to be
identifiable from PX if there exists no other CGM M̃ = (P̃X , G̃) satisfying all assumptions in A
such that G̃ 6= G and P̃X = PX .

There are many examples of graph identifiability results for continuous variables [11, 9, 14, 17]
as well as for discrete variables [10]. Those results are obtained by assuming that the conditional
pdf pi ∀i belongs to a specific parametric family P . For example, if one assumes that

Xi|XπG
i
∼ N (fi(XπG

i
), σ2

i ) ∀i (1)

where fi is a nonlinear function satisfying some mild regularity conditions, then G is identifiable from
PX (see [11] for the complete theorem and its proof). We will make use of this results in Section 4.

2.3 NOTEARS: Continuous optimization for structure learning

Structure learning is the problem of learning G using a data set of n samples {x(1), ..., x(n)} from PX .
Score-based approaches [12] cast this estimation problem as an optimization problem over the space
of DAGs, i.e. Ĝ = argmaxG∈DAG Score(G). The score is usually the maximum likelihood of your
data given a certain model. Most score-based methods embrace the combinatorial nature of the
problem via greedy search procedures [3, 2]. We now present the work of [18] which approaches the
problem from a continuous optimization perspective.

To cast the combinatorial optimization problem into a continuous constrained one, [18] proposes
to encode the graph G on d nodes as a weighted adjacency matrix U = [u1| . . . |ud] ∈ Rd×d which
represents (possibly negative) coefficients in a linear structural equation model (SEM) [7] of the form
Xi := u>i X +Ni ∀i where Ni is a noise variable. Let GU be the directed graph associated with the
SEM and let AU be the (binary) adjacency matrix associated with GU . One can see that the following
equivalence holds:

(AU )ij = 0 ⇐⇒ Uij = 0 (2)

To make sure GU is acyclic, the authors propose the following constraint on U :

Tr eU�U − d = 0 (3)

where eM ,
∑∞
k=0

Mk

k! is the matrix exponential and � is the Hadamard product. It can be shown
that GU is acyclic iff the constraint is satisfied (see [18] for a proof).

The authors propose to use a regularized negative least square score (maximum likelihood for a
Gaussian noise model). The resulting continuous constrained problem is

max
U
S(U,X) , − 1

2n
‖X−XU‖2F − λ‖U‖1 s.t. Tr eU�U − d = 0 (4)
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where X ∈ Rn×d is the design matrix containing all n samples. The nature of the problem has
been drastically changed: we went from a combinatorial to a continuous problem. The difficulties
of combinatorial optimization have been replaced by those of non-convex optimization, since the
feasible set is non-convex. Nevertheless, a standard numerical solver for constrained optimization
such has an augmented Lagrangian method (AL) [1] can be applied to get an approximate solution.

3 GraN-DAG: Gradient-based neural DAG learning

We propose a new nonlinear extension to the framework presented in Section 2.3. For each
variable Xi, we learn a fully connected neural network with L hidden layers parametrized by
φ(i) , {W

(1)
(i) , . . . ,W

(L+1)
(i) } where W (`)

(i) is the `th weight matrix of the ith NN. Each NN takes as
input X−i ∈ Rd, i.e. the vector X with the ith component masked to zero, and outputs θ(i) ∈ Rm,
the m-dimensional parameter vector of the desired distribution family for variable Xi. The fully
connected NNs have the following form

θ(i) ,W
(L+1)
(i) g(. . . g(W

(2)
(i) g(W

(1)
(i) X−i)) . . . ) ∀i (5)

where g is a nonlinearity applied element-wise. Let φ , {φ(1), . . . , φ(d)} represents all parameters
of all d NNs. Without any constraint on its parameter φ(i), neural network i models the conditional
pdf pi(xi|x−i;φ(i)). Note that the product

∏d
i=1 pi(xi|x−i;φ(i)) is not a valid joint pdf since it does

not decompose according to a DAG. We now show how one can constrain φ to make sure the product
of all conditionals outputted by the NNs is a valid joint pdf. The idea is to define a new weighted
adjacency matrix Aφ similar to the matrix U encountered in Section 2.3, which can be directly used
inside the constraint of Equation 3 to enforce acyclicity.

3.1 Neural network connectivity

Before defining the weighted adjacency matrix Aφ, we need to focus on how one can make some NN
outputs unaffected by some inputs. Since we will discuss properties of a single NN, we drop the NN
subscript (i) to improve readability.

We will use the term neural network path to refer to a computation path in a NN. For example, in a
NN with two hidden layers, the sequence of weights (W (1)

h1j
,W

(2)
h2h1

,W
(3)
kh2

) is a NN path from input
j to output k. We say that a NN path is inactive if at least one weight along the path is zero. We can
loosely interpret the path product |W (1)

h1j
||W (2)

h2h1
||W (3)

kh2
| ≥ 0 as the strength of the NN path, where a

path product equal to zero if and only if the path is inactive. Note that if all NN paths from input j
to output k are inactive (i.e. the sum of their path products is zero), then output k does not depend
on input j anymore since the information in input j will never reach output k. The sum of all path
products from every input j to every output k can be easily computed by taking the product of all the
weight matrices in absolute value.

C , |W (L+1)| . . . |W (2)||W (1)| ∈ Rm×d≥0 (6)

where |W | is the element-wise absolute value of W . It can be verified that Ckj is the sum of all NN
path products from input j to output k. To have θ independent of variable Xj , it is sufficient to have∑m
k=1 Ckj = 0. This is useful since, to render our architecture acyclic, we need to force some neural

network inputs to be inactive (this corresponds to removing edges in our graph).

3.2 A weighted adjacency matrix

We now define a weighted adjacency matrix Aφ that can be used in constraint of Equation 3.

(Aφ)ji ,

{ ∑m
k=1

(
C(i)

)
kj
, if i 6= j

0, otherwise
(7)

where C(i) denotes the connectivity matrix of the NN associated with variable Xi.

As the notation suggests, Aφ ∈ Rd×d≥0 depends on all weights of all NNs. Moreover, it can effectively
be interpreted as a weighted adjacency matrix similarly to what we presented in Section 2.3, since we
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have that

(Aφ)ij = 0 =⇒ θ(j) does not depend on variable Xi (8)

We note Gφ to be the directed graph entailed by parameter φ. We can now write our adapted acyclicity
constraint:

h(φ) , Tr eAφ − d = 0 (9)

This guarantees acyclicity. The argument is identical to the linear case, except that now we rely on
implication (8) instead of (2).

3.3 A differentiable score and its optimization

We propose solving the maximum likelihood optimization problem

max
φ

EX∼PX
d∑
i=1

log pi(Xi|Xπφi
; θ(i)) s.t. Tr eAφ − d = 0 (10)

where πφi denotes the set of parents of variable i in graph Gφ. Note that
∑d
i=1 log pi(Xi|Xπφi

; θ(i))

is a valid log-likelihood function when constraint (9) is satisfied.

As suggested in [18], we apply an augmented Lagrangian approach to get an approximate solution to
program (10). Augmented Lagrangian methods consist of optimizing a sequence of subproblems
for which the exact solutions are known to converge to a stationary point of the constrained problem
under some regularity conditions [1]. We approximately solve each subproblem using RMSprop [15],
a stochastic gradient descent variant popular for NN.

4 Experiments

We empirically compare GraN-DAG to various baselines (both in the continuous and combinatorial
paradigm), namely DAG-GNN [16], NOTEARS [18], RESIT

We first present a comparison on synthetic data sets. We sampled 10 graphs (e.g. with 50 nodes and an
average of 200 edges) and data distributions of the form Xi|XπG

i
∼ N (fi(XπG ), σ2

i ) with fi ∼ GP
and evaluated different methods using SHD and SID (we report the average and the standard deviation
over those data sets). Note that we are in the identifiable case presented in Section 2.2. GraN-DAG,
NOTEARS and CAM all make the correct gaussian assumption in their respective models. In Table 1
we report a subset of our results. GraN-DAG outperforms other continuous approaches while being
competitive with the best performing discrete approach we considered.

In addition, we considered a well known real world data set which measures the expression level of
different proteins and phospholipids in human cells [13] (the ground truth graph has 11 nodes and 17
edges). We found GraN-DAG to be competitive with other approaches.

Table 1: Evaluation of different methods for structure learning. The synthetic experiment has 50
nodes and an average of 200 edges. We have more experiments which show roughly this same
ranking.

Synthetic Protein data set

SHD SID SHD SID

Continuous
GraN-DAG 102.6±21.2 1060.1±109.4 13 47
DAG-GNN 191.9±15.2 2146.2±64 16 44
NOTEARS 202.3±14.3 2149.1±76.3 21 44

Discrete CAM 98.8±20.7 1197.2±125.9 12 55

RANDOM 708.4±234.4 1921.3±203.5 21 60

Our implementation of GraN-DAG can be found here.
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