
Published as a conference paper at ICLR 2020

DEEPHOYER: LEARNING SPARSER NEURAL
NETWORK WITH DIFFERENTIABLE SCALE-INVARIANT
SPARSITY MEASURES

Huanrui Yang, Wei Wen, Hai Li
Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708
{huanrui.yang, wei.wen, hai.li}@duke.edu

ABSTRACT

In seeking for sparse and efficient neural network models, many previous works
investigated on enforcing `1 or `0 regularizers to encourage weight sparsity during
training. The `0 regularizer measures the parameter sparsity directly and is invariant
to the scaling of parameter values. But it cannot provide useful gradients and
therefore requires complex optimization techniques. The `1 regularizer is almost
everywhere differentiable and can be easily optimized with gradient descent. Yet it
is not scale-invariant and causes the same shrinking rate to all parameters, which is
inefficient in increasing sparsity. Inspired by the Hoyer measure (the ratio between
`1 and `2 norms) used in traditional compressed sensing problems, we present
DeepHoyer, a set of sparsity-inducing regularizers that are both differentiable
almost everywhere and scale-invariant. Our experiments show that enforcing
DeepHoyer regularizers can produce even sparser neural network models than
previous works, under the same accuracy level. We also show that DeepHoyer can
be applied to both element-wise and structural pruning. The codes are available at
https://github.com/yanghr/DeepHoyer.

1 INTRODUCTION

The use of deep neural network (DNN) models has been expanded from handwritten digit recogni-
tion (LeCun et al., 1998) to real-world applications, such as large-scale image classification (Simonyan
& Zisserman, 2014), self driving (Makantasis et al., 2015) and complex control problems (Mnih
et al., 2013). However, a modern DNN model like AlexNet (Krizhevsky et al., 2012) or ResNet (He
et al., 2016) often introduces a large number of parameters and computation load, which makes
the deployment and real-time processing on embedded and edge devices extremely difficult (Han
et al., 2015b;a; Wen et al., 2016). Thus, model compression techniques, especially pruning methods
that increase the sparsity of weight matrices, have been extensively studied to reduce the memory
consumption and computation cost of DNNs (Han et al., 2015b;a; Wen et al., 2016; Guo et al., 2016;
Louizos et al., 2017b; Luo et al., 2017; Zhang et al., 2018; Liu et al., 2015).

Most of the previous works utilize some form of sparsity-inducing regularizer in searching for sparse
neural networks. The `1 regularizer, originally proposed by Tibshirani (1996), can be easily optimized
through gradient descent for its convex and almost everywhere differentiable property. Therefore it
is widely used in DNN pruning: Liu et al. (2015) directly apply `1 regularization to all the weights
of a DNN to achieve element-wise sparsity; Wen et al. (2016; 2017) present structural sparsity via
group lasso, which applies an `1 regularization over the `2 norms of different groups of parameters.
However, it has been noted that the value of the `1 regularizer is proportional to the scaling of
parameters (i.e. ||αW ||1= |α|·||W ||1), so it “scales down” all the elements in the weight matrices
with the same speed. This is not efficient in finding sparsity and may sacrifice the flexibility of the
trained model. On the other hand, the `0 regularizer directly reflects the real sparsity of weights and is
scale invariant (i.e. ||αW ||0= ||W ||0,∀α 6= 0), yet the `0 norm cannot provide useful gradients. Han
et al. (2015b) enforce an element-wise `0 constraint by iterative pruning a fixed percentage of smallest
weight elements, which is a heuristic method and therefore can hardly achieve optimal compression
rate. Some recent works mitigate the lack of gradient information by integrating `0 regularization
with stochastic approximation (Louizos et al., 2017b) or more complex optimization methods (e.g.

1

https://github.com/yanghr/DeepHoyer

Published as a conference paper at ICLR 2020

ADMM) (Zhang et al., 2018). These additional measures brought overheads to the optimization
process, making the use of these methods on larger networks difficult. To achieve even sparser neural
networks, we argue to move beyond `0 and `1 regularizers and seek for a sparsity-inducing regularizer
that is both almost everywhere differentiable (like `1) and scale-invariant (like `0).

Beyond the `1 regularizer, plenty of non-convex sparsity measurements have been used in the field
of feature selection and compressed sensing (Hurley & Rickard, 2009; Wen et al., 2018). Some
popular regularizers like SCAD (Fan & Li, 2001), MDP (Zhang et al., 2010) and Trimmed `1 (Yun
et al., 2019) use a piece-wise formulation to mitigate the proportional scaling problem of `1. The
piece-wise formulation protects larger elements by having zero penalty to elements greater than a
predefined threshold. However, it is extremely costly to manually seek for the optimal trimming
threshold, so it is hard to obtain optimal result in DNN pruning by using these regularizers. The
transformed `1 regularizer formulated as

∑N
i=1

(a+1)|wi|
a+|wi| manages to smoothly interpolate between

`1 and `0 by tuning the hyperparameter a (Ma et al., 2019). However, such an approximation is close
to `0 only when a approaches infinity, so the practical formulation of the transformed `1 (i.e. a = 1)
is still not scale-invariant.

Particularly, we are interested in the Hoyer regularizer (Hoyer, 2004), which estimates the sparsity
of a vector with the ratio between its `1 and `2 norms. Comparing to other sparsity-inducing
regularizers, Hoyer regularizer achieves superior performance in the fields of non-negative matrix
factorization (Hoyer, 2004), sparse reconstruction (Esser et al., 2013; Tran et al., 2018) and blend
deconvolution (Krishnan et al., 2011; Repetti et al., 2015). We note that Hoyer regularizer is both
almost everywhere differentiable and scale invariant, satisfying the desired property of a sparsity-
inducing regularizer. We therefore propose DeepHoyer, which is the first Hoyer-inspired regularizers
for DNN sparsification. Specifically, the contributions of this work include:

• Hoyer-Square (HS) regularizer for element-wise sparsity: We enhance the original Hoyer
regularizer to the HS regularizer and achieve element-wise sparsity by applying it in the
training of DNNs. The HS regularizer is both almost everywhere differentiable and scale
invariant. It has the same range and minima structure as the `0 norm. Thus, the HS regularizer
presents the ability of turning small weights to zero while protecting and maintaining those
weights that are larger than an induced, gradually adaptive threshold;
• Group-HS regularizer for structural sparsity, which is extended from the HS regularizer;
• Generating sparser DNN models: Our experiments show that the proposed regularizers beat

state-of-the-arts in both element-wise and structural weight pruning of modern DNNs.

2 RELATED WORK ON DNN PRUNING

It is well known that high redundancy pervasively exists in DNNs. Consequently, pruning methods
have been extensively investigated to identify and remove unimportant weights. Some heuristic
pruning methods (Han et al., 2015b; Guo et al., 2016) simply remove weights in small values to
generate sparse models. These methods usually require long training time without ensuring the
optimality, due to the lack of theoretical understanding and well-formulated optimization (Zhang
et al., 2018). Some works formulate the problem as a sparsity-inducing optimization problem, such
as `1 regularization (Liu et al., 2015; Park et al., 2016) that can be optimized using standard gradient-
based algorithms, or `0 regularization (Louizos et al., 2017b; Zhang et al., 2018) which requires
stochastic approximation or special optimization techniques. We propose DeepHoyer regularizers in
this work, which belong to the line of sparsity-inducing optimization research. More specific, the
proposed Hoyer-Square regularizer for element-wise pruning is scale-invariant and can serve as an
differentiable approximation to the `0 norm. Furthermore, it can be optimized by gradient-based
optimization methods in the same way as the `1 regularization. With these properties, the Hoyer-
Square regularizer achieves a further 38% and 63% sparsity improvement on LeNet-300-100 model
and LeNet-5 model respectively comparing to previous state-of-the-arts, and achieves the highest
sparsity on AlexNet without accuracy loss.

Structurally sparse DNNs attempt to create regular sparse patterns that are friendly for hardware
execution. To achieve the goal, Li et al. (2016) propose to remove filters with small norms; Wen
et al. (2016) apply group Lasso regularization based methods to remove various structures (e.g.,
filters, channels, layers) in DNNs and the similar approaches are used to remove neurons (Alvarez &

2

Published as a conference paper at ICLR 2020

Figure 1: Comparing the `1 and the Hoyer regularizer of a 2-D vector. Their contours
are shown in the left 2 subplots (darker color corresponds to a lower value). The right 2
subplots compare their negative gradients.

Salzmann, 2016); Liu et al. (2017) and Gordon et al. (2018) (MorphNet) enforce sparsity-inducing
regularization on the scaling parameters within Batch Normalization layers to remove the corre-
sponding channels in DNNs; ThiNet (Luo et al., 2017) removes unimportant filters by minimizing
the reconstruction error of feature maps; and He et al. (2017) incorporate both Lasso regression
and reconstruction error into the optimization problem. Bayesian optimization methods have also
been applied for neuron pruning (Louizos et al., 2017a; Neklyudov et al., 2017), yet these methods
are not applicable in large-scale problems like ImageNet. We further advance the DeepHoyer to
learn structured sparsity (such as reducing filters and channels) with the newly proposed “Group-HS”
regularization. The Group-HS regularizer further improves the computation reduction of the LeNet-5
model by 8.8% from the `1 based method (Wen et al., 2016), and by 110.6% from the `0 based
method (Louizos et al., 2017b). Experiments on ResNet models reveal that the accuracy-speedup
tradeoff induced by Group-HS constantly stays above the Pareto frontier of previous methods. More
detailed results can be found in Section 5.

3 MEASURING SPARSITY WITH THE HOYER MEASURE

Sparsity measures provide tractable sparsity constraints for enforcement during problem solving and
therefore have been extensively studied in the compressed sensing society. In early non-negative
matrix factorization (NMF) research, a consensus was that a sparsity measure should map a n-
dimensional vector X to a real number S ∈ [0, 1], such that the possible sparsest vectors with only
one nonzero element has S = 1, and a vector with all equal elements has S = 0 (Hoyer, 2004).
Unders the assumption, the Hoyer measure was proposed as follows

S(X) =

√
n− (

∑
i|xi|)/

√∑
i x

2
i√

n− 1
. (1)

It can be seen that

1 ≤
∑

i|xi|√∑
i x

2
i

≤
√
n, ∀X ∈ Rn. (2)

Thus, the normalization in Equation (1) fits the measure S(X) into the [0, 1] interval. According to
the survey by Hurley & Rickard (2009), among the six desired heuristic criteria of sparsity measures,
the Hoyer measure satisfies five, more than all other commonly applied sparsity measures. Given its
success as a sparsity measure in NMF, the Hoyer measure has been applied as a sparsity-inducing
regularizer in optimization problems such as blind deconvolution (Repetti et al., 2015) and image
deblurring (Krishnan et al., 2011). Without the range constraint, the Hoyer regularizer in these works
adopts the form R(X) =

∑
i|xi|√∑

i x
2
i

directly, as the ratio of the `1 and `2 norms.

Figure 1 compares the Hoyer regularizer and the `1 regularizer. Unlike the the `1 norm with a single
minimum at the origin, the Hoyer regularizer has minima along axes, the structure of which is very
similar to the `0 norm’s. Moreover, the Hoyer regularizer is scale-invariant, i.e. R(αX) = R(X),
because both the `1 norm and the `2 norm are proportional to the scale of X . The gradients of the
Hoyer regularizer are purely radial, leading to “rotations” towards the nearest axis. These features
make the Hoyer regularizer outperform the `1 regularizer on various tasks (Esser et al., 2013; Tran

3

Published as a conference paper at ICLR 2020

et al., 2018; Krishnan et al., 2011; Repetti et al., 2015). The theoretical analysis by Yin et al. (2014)
also proves that the Hoyer regularizer has a better guarantee than the `1 norm on recovering sparse
solutions from coherent and redundant representations.

4 MODEL COMPRESSION WITH DEEPHOYER REGULARIZERS

Inspired by the Hoyer regularizer, we propose two types of DeepHoyer regularizers: the Hoyer-Square
regularizer (HS) for element-wise pruning and the Group-HS regularizer for structural pruning.

4.1 HOYER-SQUARE REGULARIZER FOR ELEMENT-WISE PRUNING

Since the process of the element-wise pruning is equivalent to regularizing each layer’s weight with
the `0 norm, it is intuitive to configure the sparsity-inducing regularizer to have a similar behavior
as the `0 norm. As shown in Inequality (2), the value of the original Hoyer regularizer of a N -
dimensional nonzero vector lies between 1 and

√
N , while its `0 norm is within the range of [1, N].

Thus we propose to apply the square of Hoyer regularizer, namely Hoyer-Square (HS), to the weights
W of a layer, like

HS(W) =
(
∑

i|wi|)2∑
i w

2
i

. (3)

The proposed HS regularizer behaves as a differentiable approximation to the `0 norm. First, both
regularizers now have the same range of [1, N]. Second,HS is scale invariant asHS(αW) = HS(W)
holds for ∀α 6= 0, so as the `0 norm. Moreover, as the squaring operator monotonously increases
in the range of [1,

√
N], the Hoyer-Square regularizer’s minima remain along the axes as the Hoyer

regularizer’s do (see Figure 1). In other words, they have similar minima structure as the `0 norm.
At last, the Hoyer-Square regularizer is also almost everywhere differentiable and Equation (4)
formulates the gradient of HS w.r.t. an element wj in the weight matrix W :

∂wjHS(W) = 2sign(wj)

∑
i|wi|

(
∑

i w
2
i)

2
(
∑
i

w2
i − |wj |

∑
i

|wi|). (4)

Very importantly, this formulation induces a trimming effect: when HS(W) is being minimized

through gradient descent, wj moves towards 0 if |wj |<
∑

i w
2
i∑

i|wi| , otherwise moves away from 0. In
other words, unlike the `1 regularizer which tends to shrink all elements, our Hoyer-Square regularizer
will turn weights in small value to zero meanwhile protecting large weights. Traditional trimmed
regularizers (Fan & Li, 2001; Zhang et al., 2010; Yun et al., 2019) usually define a trimming threshold
as a fixed value or percentage. Instead, the HS regularizer can gradually extend the scope of pruning
as more weights coming close to zero. This behavior can be observed in the gradient descent path
shown in Figure 2.

4.2 GROUP-HS REGULARIZER FOR STRUCTURAL PRUNING

Beyond element-wise pruning, structural pruning is often more preferred because it can construct
the sparsity in a structured way and therefore achieve higher computation speed-up on general
computation platforms (Wen et al., 2016). The structural pruning is previously empowered by the
group lasso (Yuan & Lin, 2006; Wen et al., 2016), which is the sum (i.e. `1 norm) of the `2 norms of
all the groups within a weight matrix like

RG(W) =

G∑
g=1

||w(g)||2, (5)

where ||W ||2=
√∑

i w
2
i represents the `2 norm, w(g) is a group of elements in the weight matrix

W which consists of G such groups.

Following the same approach in Section 4.1, we use the Hoyer-Square regularizer to replace the `1
regularizer in the group lasso formulation and define the Group-HS (GH) regularizer in Equation (6):

GH(W) =
(
∑G

g=1||w(g)||2)2∑G
g=1||w(g)||22

=
(
∑G

g=1||w(g)||2)2

||W ||22
. (6)

4

Published as a conference paper at ICLR 2020

Figure 2: Minimization path of Hoyer-Square regularizer during gradient descent, with
W ∈ R20 initialized as i.i.d. N (0, 1). The figure shows the path of each element wi during
the minimization, with the black dash line showing the induced trimming threshold.

Note that the second equality holds when and only when the groups cover all the elements of W
without overlapping with each other. Our experiments in this paper satisfy this requirement. However,
the Group-HS regularizer can always be used in the form of the first equality when overlapping
exists across groups. The gradient and the descent path of the Group-HS regularizer are very similar
to those of the Hoyer-Square regularizer, and therefore we omit the detailed discussion here. The
derivation of the Group-HS regularizer’s gradient shall be found in Appendix A.

4.3 APPLY DEEPHOYER REGULARIZERS IN DNN TRAINING

The deployment of the DeepHoyer regularizers in DNN training follows the common layer-based
regularization approach (Wen et al., 2016; Liu et al., 2015). For element-wise pruning, we apply
the Hoyer-Square regularizer to layer weight matrix W (l) for all L layers, and directly minimize it
alongside the DNN’s original training objective L(W (1:L)). The `2 regularizer can also be added to
the objective if needed. Equation (7) presents the training objective with HS defined in Equation (3).
Here, α and β are pre-selected weight decay parameters for the regularizers.

min
W (1:L)

L(W (1:L)) +

L∑
l=1

(αHS(W
(l)) + β||W (l)||2). (7)

For structural pruning, we mainly focus on pruning the columns and rows of fully connected layers
and the filters and channels of convolutional layers. More specific, we group a layer in filter-wise and
channel-wise fashion as proposed by Wen et al. (2016) and then apply the Group-HS regularizer to
the layer. The resulted optimization objective is formulated in Equation (8).

min
W (1:L)

L(W (1:L)) +

L∑
l=1

(αn

(
∑Nl

nl=1||w
(l)
nl,:,:,:||2)2

||W (l)||22
+ αc

(
∑Cl

cl=1||w
(l)
:,cl,:,:||2)2

||W (l)||22
+ β||W (l)||2). (8)

HereNl is the number of filters andCl is the number of channels in the lth layer if it is a convolutional
layer. If the lth layer is fully connected, then Nl and Cl is the number of rows and columns
respectively. αn, αc and β are pre-selected weight decay parameters for the regularizers.

The recent advance in stochastic gradient descent (SGD) method provides satisfying results under
large-scale non-convex settings (Sutskever et al., 2013; Kingma & Ba, 2014), including DNNs with
non-convex objectives (Auer et al., 1996). So we can directly optimize the DeepHoyer regularizers
with the same SGD optimizer used for the original DNN training objective, despite their nonconvex
formulations. Our experiments show that the tiny-bit nonconvexity induced by DeepHoyer does not
affect the performance of DNNs.

The pruning is conducted by following the common three-stage operations: (1) train the DNN with the
DeepHoyer regularizer, (2) prune all the weight elements smaller than a predefined small threshold,
and (3) finetune the model by fixing all the zero elements and removing the DeepHoyer regularizer.

5

Published as a conference paper at ICLR 2020

Table 1: Element-wise pruning results on LeNet-300-100 model @ accuracy 98.4%

Nonzero wights left after pruning

Method Total FC1 FC2 FC3

Orig 266.2k 235.2k 30k 1k

(Han et al., 2015b) 21.8k (8%) 18.8k (8%) 2.7k (9%) 260 (26%)
(Zhang et al., 2018) 11.6k (4.37%) 9.4k (4%) 2.1k (7%) 120 (12%)

(Lee et al., 2019) 13.3k (5.0%) Not reported in (Lee et al., 2019)
(Ma et al., 2019)1 6.4k (2.40%) 5.0k (2.11%) 1.2k (4.09%) 209 (20.90%)

Hoyer 6.0k (2.27%) 5.3k (2.25%) 672 (2.24%) 82 (8.20%)
Hoyer-Square 4.6k (1.74%) 3.7k (1.57%) 768 (2.56%) 159 (15.90%)

Table 2: Element-wise pruning results on LeNet-5 model @ accuracy 99.2%

Nonzero wights left after pruning

Method Total CONV1 CONV2 FC1 FC2

Orig 430.5k 500 25k 400k 5k

(Han et al., 2015b) 36k (8%) 330 (66%) 3k (12%) 32k (8%) 950 (19%)
(Zhang et al., 2018) 6.1k (1.4%) 100 (20%) 2k (8%) 3.6k (0.9%) 350 (7%)

(Lee et al., 2019) 8.6k (2.0%) Not reported in (Lee et al., 2019)
(Ma et al., 2019)1 5.4k (1.3%) 100 (20%) 690 (2.8%) 4.4k (1.1%) 203 (4.1%)

Hoyer 4.0k (0.9%) 53 (10.6%) 613 (2.5%) 3.2k (0.8%) 136 (2.7%)
Hoyer-Square 3.5k (0.8%) 67 (13.4%) 848 (3.4%) 2.4k (0.6%) 234 (4.7%)

5 EXPERIMENT RESULT

The proposed DeepHoyer regularizers are first tested on the MNIST benchmark using the LeNet-
300-100 fully connected model and the LeNet-5 CNN model (LeCun et al., 1998). We also conduct
tests on the CIFAR-10 dataset (Krizhevsky & Hinton, 2009) with ResNet models (He et al., 2016)
in various depths, and on ImageNet ILSVRC-2012 benchmark (Russakovsky et al., 2015) with the
AlexNet model (Krizhevsky et al., 2012) and the ResNet-50 model (He et al., 2016). All the models
are implemented and trained in the PyTorch deep learning framework (Paszke et al., 2017), where
we match the model structure and the benchmark performance with those of previous works for the
fairness of comparison. The experiment results presented in the rest of this section show that the
proposed DeepHoyer regularizers consistently outperform previous works in both element-wise and
structural pruning. Detailed information on the experiment setups and the parameter choices of our
reported results can be found in Appendix B.

5.1 ELEMENT-WISE PRUNING

Table 1 and Table 2 summarize the performance of the proposed Hoyer-square regularizer on the
MNIST benchmark, with comparisons against state of the art (SOTA) element-wise pruning methods.
Without losing the testing accuracy, training with the Hoyer-Square regularizer reduces the number of
nonzero weights by 54.5× on the LeNet-300-100 model and by 122× on the LeNet-5 model. Among
all the methods, ours achieves the highest sparsity: it is a 38% improvement on the LeNet-300-100
model and a 63% improvement on the LeNet-5 model comparing to the best available methods.
Additional results in Appendix C.1 further illustrates the effect of the Hoyer-Square regularizer on
each layer’s weight distribution during the training process.

The element-wise pruning performance on the AlexNet model testing on the ImageNet benchmark is
presented in Table 3. Without losing the testing accuracy, the Hoyer-Square regularizer improves

1We implement the transformed `1 regularizer in (Ma et al., 2019) ourselves because the experiments in the
original paper are under different settings. Implementation details can be found in Appendix B.

6

Published as a conference paper at ICLR 2020

Table 3: Element-wise pruning results on AlexNet model.

Method Top-5 error increase #Parameters Percentage left

Orig +0.0% 60.9M 100%

(Han et al., 2015b) -0.1% 6.7M 11.0%
(Guo et al., 2016) +0.2% 3.45M 5.67%
(Dai et al., 2017) -0.1% 3.1M 6.40%
(Ma et al., 2019)1 +0.0% 3.05M 5.01%

(Zhang et al., 2018) +0.0% 2.9M 4.76%

Hoyer +0.0% 3.62M 5.94%
Hoyer-Square +0.0% 2.85M 4.69%

Table 4: Structural pruning results on LeNet-300-100 model

Method Accuracy #FLOPs Pruned structure

Orig 98.4% 266.2k 784-300-100

Sparse VD (Molchanov et al., 2017) 98.2% 67.3k (25.28%) 512-114-72
BC-GNJ (Louizos et al., 2017a) 98.2% 28.6k (10.76%) 278-98-13
BC-GHS (Louizos et al., 2017a) 98.2% 28.1k (10.55%) 311-86-14
`0hc

(Louizos et al., 2017b) 98.2% 26.6k (10.01%) 266-88-33
Bayes `1trim (Yun et al., 2019) 98.3% 20.5k (7.70%) 245-75-25

Group-HS 98.2% 16.5k (6.19%) 353-45-11

the compression rate by 21.3×. This result is the highest among all methods, even better than the
ADMM method (Zhang et al., 2018) which requires two additional Lagrange multipliers and involves
the optimization of two objectives. Considering that the optimization of the Hoyer-Square regularizer
can be directly realized on a single objective without additional variables, we conclude that the
Hoyer-Square regularizer can achieve a sparse DNN model with a much lower cost. A more detailed
layer-by-layer sparsity comparison of the compressed model can be found in Appendix C.2.

We perform the ablation study for performance comparison between the Hoyer-Square regularizer
and the original Hoyer regularizer. The results in Tables 1, 2 and 3 all show that the Hoyer-Square
regularizer always achieves a higher compression rate than the original Hoyer regularizer. The
layer-wise compression results show that the Hoyer-Square regularizer emphasizes more on the layers
with more parameters (i.e. FC1 for the MNIST models). This corresponds to the fact that the value
of the Hoyer-Square regularizer is proportional to the number of non-zero elements in the weight.
These observations validate our choice to use the Hoyer-Square regularizer for DNN compression.

5.2 STRUCTURAL PRUNING

This section reports the effectiveness of the Group-HS regularizer in structural pruning tasks. Here
we mainly focus on the number of remaining neurons (output channels for convolution layers and
rows for fully connected layers) after removing the all-zero channels or rows in the weight matrices.
The comparison is then made based on the required float-point operations (FLOPs) to inference with
the remaining neurons, which indeed represents the potential inference speed of the pruned model. As
shown in Table 4, training with the Group-HS regularizer can reduce the number of FLOPs by 16.2×
for the LeNet-300-100 model with a slight accuracy drop. This is the highest speedup among all
existing methods achieving the same testing accuracy. Table 5 shows that the Group-HS regularizer
can reduce the number of FLOPs of the LeNet-5 model by 12.4×, which outperforms most of the
existing work—an 8.8% increase from the `1 based method (Wen et al., 2016) and a 110.6% increase
from the `0 based method (Louizos et al., 2017b). Only the Bayesian compression (BC) method with
the group-horseshoe prior (BC-GHS) (Louizos et al., 2017a) achieves a slightly higher speedup on
the LeNet-5 model. However, the complexity of high dimensional Bayesian inference limits BC’s
capability. It is difficult to apply BC to ImageNet-level problems and large DNN models like ResNet.

7

Published as a conference paper at ICLR 2020

Table 5: Structural pruning result on LeNet-5 model

Method Accuracy #FLOPs Pruned structure

Orig 99.2% 2293k 20-50-800-500

Sparse VD (Molchanov et al., 2017) 99.0% 660.2k (28.79%) 14-19-242-131
GL (Wen et al., 2016) 99.0% 201.8k (8.80%) 3-12-192-500

SBP (Neklyudov et al., 2017) 99.1% 212.8k (9.28%) 3-18-284-283
BC-GNJ (Louizos et al., 2017a) 99.0% 282.9k (12.34%) 8-13-88-13
BC-GHS (Louizos et al., 2017a) 99.0% 153.4k (6.69%) 5-10-76-16
`0hc

(Louizos et al., 2017b) 99.0% 390.7k (17.04%) 9-18-26-25
Bayes `1trim (Yun et al., 2019) 99.0% 334.0k (14.57%) 8-17-53-19

Group-HS 99.0% 169.9k (7.41%) 5-12-139-13

Figure 3: Comparisons of accuracy-#FLOPs tradeoff on ImageNet and CIFAR-10, black dash lines
mark the Pareto frontiers. The exact data for the points are listed in Appendix C.3.

In contrast, the effectiveness of the Group-HS regularizer can be easily extended to deeper models
and larger datasets, which is demonstrated by our experiments. We apply the Group-HS regularizer
to ResNet models (He et al., 2016) on the CIFAR-10 and the ImageNet datasets. Pruning ResNet
has long been considered difficult due to the compact structure of the ResNet model. Since previous
works usually report the compression rate at different accuracy, we use the “accuracy-#FLOPs” plot
to represent the tradeoff. The tradeoff between the accuracy and the FLOPs are explored in this
work by changing the strength of the Group-HS regularizer used in training. Figure 3 shows the
performance of DeepHoyer constantly stays above the Pareto frontier of previous methods.

6 CONCLUSIONS

In this work, we propose DeepHoyer, a set of sparsity-inducing regularizers that are both scale-
invariant and almost everywhere differentiable. We show that the proposed regularizers have similar
range and minima structure as the `0 norm, so it can effectively measure and regularize the sparsity
of the weight matrices of DNN models. Meanwhile, the differentiable property enables the proposed
regularizers to be simply optimized with standard gradient-based methods, in the same way as the
`1 regularizer is. In the element-wise pruning experiment, the proposed Hoyer-Square regularizer
achieves a 38% sparsity increase on the LeNet-300-100 model and a 63% sparsity increase on the
LeNet-5 model without accuracy loss comparing to the state-of-the-art. A 21.3× model compression
rate is achieved on AlexNet, which also surpass all previous methods. In the structural pruning
experiment, the proposed Group-HS regularizer further reduces the computation load by 24.4% from
the state-of-the-art on LeNet-300-100 model. It also achieves a 8.8% increase from the `1 based
method and a 110.6% increase from the `0 based method of the computation reduction rate on the
LeNet-5 model. For CIFAR-10 and ImageNet dataset, the accuracy-FLOPs tradeoff achieved by
training ResNet models with various strengths of the Group-HS regularizer constantly stays above
the Pareto frontier of previous methods. These results prove that the DeepHoyer regularizers are
effective in achieving both element-wise and structural sparsity in deep neural networks, and can
produce even sparser DNN models than previous works.

8

Published as a conference paper at ICLR 2020

ACKNOWLEDGMENTS

The authors would like to thank Feng Yan for his help on computation resources throughout this
project. Our work was supported in part by NSF SPX-1725456 and NSF CNS-1822085.

REFERENCES

Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons in deep networks. In
Advances in Neural Information Processing Systems, pp. 2270–2278, 2016.

Peter Auer, Mark Herbster, and Manfred K Warmuth. Exponentially many local minima for single
neurons. In Advances in neural information processing systems, pp. 316–322, 1996.

Xiaoliang Dai, Hongxu Yin, and Niraj K. Jha. Nest: A neural network synthesis tool based on a
grow-and-prune paradigm. CoRR, abs/1711.02017, 2017. URL http://arxiv.org/abs/
1711.02017.

Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong Han. Centripetal sgd for pruning very
deep convolutional networks with complicated structure. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4943–4953, 2019.

Ernie Esser, Yifei Lou, and Jack Xin. A method for finding structured sparse solutions to nonnegative
least squares problems with applications. SIAM Journal on Imaging Sciences, 6(4):2010–2046,
2013.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American statistical Association, 96(456):1348–1360, 2001.

Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and Edward Choi.
Morphnet: Fast & simple resource-constrained structure learning of deep networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1586–1595, 2018.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. In Advances
In Neural Information Processing Systems, pp. 1379–1387, 2016.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems, pp. 1135–1143,
2015b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. arXiv preprint arXiv:1808.06866, 2018a.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 1389–1397, 2017.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 784–800, 2018b.

Patrik O Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of machine
learning research, 5(Nov):1457–1469, 2004.

Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks. In
Proceedings of the European Conference on Computer Vision (ECCV), pp. 304–320, 2018.

Niall Hurley and Scott Rickard. Comparing measures of sparsity. IEEE Transactions on Information
Theory, 55(10):4723–4741, 2009.

9

http://arxiv.org/abs/1711.02017
http://arxiv.org/abs/1711.02017

Published as a conference paper at ICLR 2020

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Dilip Krishnan, Terence Tay, and Rob Fergus. Blind deconvolution using a normalized sparsity
measure. In CVPR 2011, pp. 233–240. IEEE, 2011.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: SINGLE-SHOT NETWORK
PRUNING BASED ON CONNECTION SENSITIVITY. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=B1VZqjAcYX.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Tuanhui Li, Baoyuan Wu, Yujiu Yang, Yanbo Fan, Yong Zhang, and Wei Liu. Compressing
convolutional neural networks via factorized convolutional filters. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3977–3986, 2019.

Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue Huang, and Baochang Zhang. Accel-
erating convolutional networks via global & dynamic filter pruning. In IJCAI, pp. 2425–2432,
2018.

Shaohui Lin, Rongrong Ji, Yuchao Li, Cheng Deng, and Xuelong Li. Toward compact convnets via
structure-sparsity regularized filter pruning. IEEE transactions on neural networks and learning
systems, 2019.

Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. Sparse convolu-
tional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 806–814, 2015.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 2736–2744, 2017.

Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep learning. In
Advances in Neural Information Processing Systems, pp. 3288–3298, 2017a.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
l_0 regularization. arXiv preprint arXiv:1712.01312, 2017b.

Jian-Hao Luo and Jianxin Wu. Autopruner: An end-to-end trainable filter pruning method for efficient
deep model inference. arXiv preprint arXiv:1805.08941, 2018.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE international conference on computer vision,
pp. 5058–5066, 2017.

Rongrong Ma, Jianyu Miao, Lingfeng Niu, and Peng Zhang. Transformed `1 regularization for
learning sparse deep neural networks. Neural Networks, 2019.

Konstantinos Makantasis, Konstantinos Karantzalos, Anastasios Doulamis, and Nikolaos Doulamis.
Deep supervised learning for hyperspectral data classification through convolutional neural net-
works. In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp.
4959–4962. IEEE, 2015.

10

https://openreview.net/forum?id=B1VZqjAcYX

Published as a conference paper at ICLR 2020

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pp. 2498–2507. JMLR. org, 2017.

Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and Dmitry P Vetrov. Structured bayesian
pruning via log-normal multiplicative noise. In Advances in Neural Information Processing
Systems, pp. 6775–6784, 2017.

Jongsoo Park, Sheng Li, Wei Wen, Ping Tak Peter Tang, Hai Li, Yiran Chen, and Pradeep Dubey.
Faster cnns with direct sparse convolutions and guided pruning. arXiv preprint arXiv:1608.01409,
2016.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Audrey Repetti, Mai Quyen Pham, Laurent Duval, Emilie Chouzenoux, and Jean-Christophe Pesquet.
Euclid in a taxicab: Sparse blind deconvolution with smoothed `1/`2 regularization. IEEE signal
processing letters, 22(5):539–543, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Pravendra Singh, Vinay Kumar Verma, Piyush Rai, and Vinay P Namboodiri. Leveraging filter
correlations for deep model compression. arXiv preprint arXiv:1811.10559, 2018.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In International conference on machine learning, pp. 1139–1147,
2013.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996.

Armenak Petrosyan Tran, Clayton Webster, et al. Reconstruction of jointly sparse vectors via manifold
optimization. arXiv preprint arXiv:1811.08778, 2018.

Fei Wen, Lei Chu, Peilin Liu, and Robert C Qiu. A survey on nonconvex regularization-based sparse
and low-rank recovery in signal processing, statistics, and machine learning. IEEE Access, 6:
69883–69906, 2018.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep
neural networks. In Advances in neural information processing systems, pp. 2074–2082, 2016.

Wei Wen, Yuxiong He, Samyam Rajbhandari, Minjia Zhang, Wenhan Wang, Fang Liu, Bin Hu, Yiran
Chen, and Hai Li. Learning intrinsic sparse structures within long short-term memory. arXiv
preprint arXiv:1709.05027, 2017.

Penghang Yin, Ernie Esser, and Jack Xin. Ratio and difference of l1 and l2 norms and sparse
representation with coherent dictionaries. Commun. Inform. Systems, 14(2):87–109, 2014.

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei Gao,
Ching-Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron importance score
propagation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 9194–9203, 2018.

11

Published as a conference paper at ICLR 2020

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006.

Jihun Yun, Peng Zheng, Eunho Yang, Aurelie Lozano, and Aleksandr Aravkin. Trimming the `1
regularizer: Statistical analysis, optimization, and applications to deep learning. In International
Conference on Machine Learning, pp. 7242–7251, 2019.

Cun-Hui Zhang et al. Nearly unbiased variable selection under minimax concave penalty. The Annals
of statistics, 38(2):894–942, 2010.

Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad, and Yanzhi Wang.
A systematic dnn weight pruning framework using alternating direction method of multipliers. In
Proceedings of the European Conference on Computer Vision (ECCV), pp. 184–199, 2018.

Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou Huang,
and Jinhui Zhu. Discrimination-aware channel pruning for deep neural networks. In Advances in
Neural Information Processing Systems, pp. 875–886, 2018.

12

Published as a conference paper at ICLR 2020

A DERIVATION OF DEEPHOYER REGULARIZERS’ GRADIENTS

In this section we provide detailed derivation of the gradient of the Hoyer-Square regularizer and the
Group-GS regularizer w.r.t. an element wj in the weight matrix W .

The gradient of the Hoyer-Square regularizer is shown in Equation (9). The formulation shown in
Equation (4) is achieved at the end of the derivation.

∂wj
HS(W) =

[∂wj ((
∑

i|wi|)2)]
∑

i w
2
i − [∂wj (

∑
i w

2
i)](

∑
i|wi|)2

(
∑

i w
2
i)

2

=
2[∂wj (|wj |)]

∑
i|wi|

∑
i w

2
i − 2wj(

∑
i|wi|)2

(
∑

i w
2
i)

2

= 2

∑
i|wi|

(
∑

i w
2
i)

2
(sign(wj)

∑
i

w2
i − sign(wj)|wj |

∑
i

|wi|)

= 2sign(wj)

∑
i|wi|

(
∑

i w
2
i)

2
(
∑
i

w2
i − |wj |

∑
i

|wi|).

(9)

The gradient of the Group-HS regularizer is shown in Equation (10). For simplicity we use the form
shown in the second equality of Equation (6), where there is no overlapping between the groups.
Here we assume that wj belongs to group w(ĝ).

∂wj
GH(W) = ∂wj

(
∑G

g=1||w(g)||2)2∑
i w

2
i

=
[∂wj

((
∑G

g=1||w(g)||2)2)]
∑

i w
2
i − [∂wj

(
∑

i w
2
i)](

∑G
g=1||w(g)||2)2

(
∑

i w
2
i)

2

=
2[∂wj

(||w(ĝ)||2)]
∑G

g=1||w(g)||2
∑

i w
2
i − 2wj(

∑G
g=1||w(g)||2)2

(
∑

i w
2
i)

2

= 2

∑G
g=1||w(g)||2
(
∑

i w
2
i)

2
(

wj

||w(ĝ)||2

∑
i

w2
i − wj

G∑
g=1

||w(g)||2)

= 2
wj

||w(ĝ)||2

∑
i|wi|

(
∑

i w
2
i)

2
(
∑
i

w2
i − ||w(ĝ)||2

G∑
g=1

||w(g)||2).

(10)

B DETAILED EXPERIMENT SETUP

B.1 MNIST EXPERIMENTS

The MNIST dataset (LeCun et al., 1998) is a well known handwritten digit dataset consists of grey-
scale images with the size of 28× 28 pixels. We use the dataset API provided in the “torchvision”
python package to access the dataset. In our experiments we use the whole 60,000 training set images
for the training and the whole 10,000 testing set images for the evaluation. All the accuracy results
reported in the paper are evaluated on the testing set. Both the training set and the testing set are
normalized to have zero mean and variance one. Adam optimizer (Kingma & Ba, 2014) with learning
rate 0.001 is used throughout the training process. All the MNIST experiments are done with a single
TITAN XP GPU.

Both the LeNet-300-100 model and the LeNet-5 model are firstly pretrained without the sparsity-
inducing regularizer, where they achieve the testing accuracy of 98.4% and 99.2% respectively.
Then the models are further trained for 250 epochs with the DeepHoyer regularizers applied in the
objective. The weight decay parameters (αs in Equation (7) and (8)) are picked by hand to reach
the best result. In the last step, we prune the weight of each layer with threshold proportional to the
standard derivation of each layer’s weight. The threshold/std ratio is chosen to achieve the highest
sparsity without accuracy loss. All weight elements with a absolute value smaller than the threshold

13

Published as a conference paper at ICLR 2020

Table 6: Hyper parameter used for MNIST benchmarks

Model LeNet-300-100 LeNet-5

Regularizer Decay Threshold/std Decay Threshold/std

Hoyer 0.02 0.05 0.01 0.08
Hoyer-Square 0.0002 0.03 0.0001 0.03

Group-HS 0.002 0.8 0.1 0.008

Transformed `1 2e-5 0.3 2e-5 0.6

is set to zero and is fixed during the final finetuning. The pruned model is finetuned for another 100
steps without DeepHoyer regularizers and the best testing accuracy achieved is reported. Detailed
parameter choices used in achieving the reported results are listed in Table 6.

B.2 IMAGENET AND CIFAR-10 EXPERIMENTS

The ImageNet dataset is a large-scale color-image dataset containing 1.2 million images of 1000
categories (Russakovsky et al., 2015), which has long been utilized as an important bench-
mark on image classification problems. In this paper, we use the “ILSVRC2012” version of
the dataset, which can be found at http://www.image-net.org/challenges/LSVRC/
2012/nonpub-downloads. We use all the data in the provided training set to train our model,
and use the provided validation set to evaluate our model and report the testing accuracy. We follow
the data reading and preprocessing pipeline suggested by the official PyTorch ImageNet example
(https://github.com/pytorch/examples/tree/master/imagenet). For training
images, we first randomly crop the training images to desired input size, then apply random horizontal
flipping and finally normalize them before feeding them into the network. Validation images are
first resized to 256× 256 pixels, then center cropped to desired input size and normalized in the end.
We use input size 227 × 227 pixels for experiments on the AlexNet, and input size 224 × 224 for
experiments on the ResNet-50. All the models are optimized with the SGD optimizer Sutskever et al.
(2013), and the batch size is chosen as 256 for all the experiments. Two TITAN XP GPUs are used in
parallel for the AlexNet training and four are used for the ResNet-50 training.

One thing worth noticing is that the AlexNet model provided in the “torchvision” package is not the
ordinary version used in previous works Han et al. (2015b); Wen et al. (2016); Zhang et al. (2018).
Therefore we reimplement the AlexNet model in PyTorch for fair comparison. We pretrain the
implemented model for 90 epochs and achieve 19.8 % top-5 error, which is the same as reported in
previous works. In the AlexNet experiment, the reported result in Table 3 is achieved by applying
the Hoyer-Square regularizer with decay parameter 1e-6. Before the pruning, the model is firstly
train from the pretrained model with the Hoyer-Square regularizer for 90 epochs, where an initial
learning rate 0.001 is used. An `2 regularization with 1e-4 decay is also applied. We then prune
the convolution layers with threshold 1e-4 and the FC layers with threshold equal to 0.4× of their
standard derivations. The model is then finetuned until the best accuracy is reached. The learning rate
is decayed by 0.1 for every 30 epochs of training. The training process with the Hoyer regularizer
and the T`1 regularizer (Ma et al., 2019) is the same as the HS regularizer. For the reported result,
we use decay 1e-3 and FC threshold 0.8× std for the Hoyer regularizer, and use decay 2e-5 and FC
threshold 1.0× std for the T`1 regularizer.

For the ResNet-50 experiments on ImageNet, the model architecture and pretrained model provided
in the “torchvision” package is directly utilized, which achieves 23.85% top-1 error and 7.13% top-5
error. All the reported results in Figure 3 and Table 8 are achieved with 90 epochs of training with
the Group-HS regularizer from the pretrained model using initial learning rate 0.1. All the models are
pruned with 1e-4 as threshold and finetuned to the best accuracy. We only tune the decay parameter
of the Group-HS regularizer to explore the accuracy-FLOPs tradeoff. The exact decay parameter
used for each result is specified in Table 8.

We also use the CIFAR-10 dataset (Krizhevsky & Hinton, 2009) to evaluate the structural pruning
performance on ResNet-56 and ResNet-110 models. The CIFAR-10 dataset can be directly accessed
through the dataset API provided in the “torchvision” python package. Standard preprocessing,

14

http://www.image-net.org/challenges/LSVRC/2012/nonpub-downloads
http://www.image-net.org/challenges/LSVRC/2012/nonpub-downloads
https://github.com/pytorch/examples/tree/master/imagenet

Published as a conference paper at ICLR 2020

Figure 4: Histogram of nonzero weight elements of each layer in the LeNet-300-100
model. From top to bottom corresponds to layer FC1, FC2, FC3 respectively. The original
pretrained model is shown in column 1, column 2 shows the model achieved after HS

regularization, column 3 shows the final model after pruning and finetuning.

including random crop, horizontal flip and normalization is used on the training set to train the model.
We implemented the ResNet models for CIFAR-10 following the description in (He et al., 2016),
and pretrain the models for 164 epochs. Learning rate is set to 0.1 initially, and decayed by 0.1 at
epoch 81 and epoch 122. The pretrained ResNet-56 model reaches the testing accuracy of 93.14 %,
while the ResNet-110 model reaches 93.62 %. Similar to the ResNet-50 experiment, we start with
the pretrained models and train with the Group-HS regularizer. Same learning rate scheduling is used
for both pretraining and training with Group-HS. All the models are pruned with 1e-4 as threshold
and finetuned to the best accuracy. The decay parameters of the Group-HS regularizer used to get the
result in Figure 3 is specified in Table 9 and Table 10.

C ADDITIONAL EXPERIMENT RESULTS

C.1 WEIGHT DISTRIBUTION AT DIFFERENT STAGES

Here we demonstrate how will the weight distribution change in each layer at different stages of
our element-wise pruning process. Since most of the weight elements will be zero in the end, we
only plot the histogram of nonzero weight elements for better observation. The histogram of each
layer of the LeNet-300-100 model and the LeNet-5 model are visualized in Figure 4 and Figure 5
respectively. It can be seen that majority of the weights will be concentrated near zero after applying
the HS regularizer during training, while rest of the weight elements will spread out in a wide range.
The weights close to zero are then set to be exactly zero, and the model is finetuned with zero weights
fixed. The resulted histogram shows that most of the weights are pruned away, only a small amount
of nonzero weights are remaining in the model.

15

Published as a conference paper at ICLR 2020

Figure 5: Histogram of nonzero weight elements of each layer in the LeNet-5 model. From
top to bottom corresponds to layer CONV1, CONV2, FC1, FC2 respectively. The original
pretrained model is shown in column 1, column 2 shows the model achieved after HS

regularization, column 3 shows the final model after pruning and finetuning.

C.2 LAYER-BY-LAYER COMPARISON OF ELEMENT-WISE PRUNING RESULT OF ALEXNET

Table 7 compares the element-wise pruning result of the Hoyer-Square regularizer on AlexNet
with other methods in a layer-by-layer fashion. It can be seen that the Hoyer-Square regularizer
achieves high pruning rates on the largest layers (i.e. FC1-3). This observation is consistent with the
observation made on the element-wise pruning performance of models on the MNIST dataset.

C.3 DETAILED RESULTS OF THE RESNET EXPERIMENTS

In this section we list the data used to plot Figure 3. Table 8 shows the result of pruning ResNet-50
model on ImageNet, Table 9 shows the result of pruning ResNet-56 model on CIFAR-10 and Table 10
shows the result of pruning ResNet-110 model on CIFAR-10. For all the tables, the results of previous
works are listed on the top, and are ordered based on publication year. Results achieved with the
Group-HS regularizer are listed below, marked with the regularization strength used for the training.

16

Published as a conference paper at ICLR 2020

Table 7: Element-wise pruning results on AlexNet without accuracy loss. Refer to Table 3
for the full reference of the mentined methods.

Layer Nonzero wights left after pruning

Baseline Han et al. Zhang et al. Ma et al. Hoyer HS

CONV1 34.8K 29.3K 28.2K 24.2K 21.3K 31.6K
CONV2 307.2K 116.7K 61.4K 109.9K 77.2K 148.4K
CONV3 884.7K 309.7K 168.1K 241.2K 192.0K 299.3K
CONV4 663.5K 245.5K 132.7K 207.4K 182.6K 275.6K
CONV5 442.2K 163.7K 88.5K 134.7K 116.6K 197.1K

FC1 37.7M 3.40M 1.06M 0.763M 1.566M 0.781M
FC2 16.8M 1.51M 0.99M 1.070M 0.974M 0.650M
FC3 4.10M 1.02M 0.38M 0.505M 0.490M 0.472M
Total 60.9M 6.8M 2.9M 3.05M 3.62M 2.85M

Table 8: Structural pruning result of the ResNet-50 model on imageNet.

Model Top-1 acc Top-5 acc #FLOPs reduction

Orig 76.15% 92.87% 1.00×
Channel pruning (He et al., 2017) N/A 90.80% 2.00×

ThiNet-70 (Luo et al., 2017) 72.04% 90.67% 1.58×
ThiNet-50 (Luo et al., 2017) 71.01% 90.02% 2.26×
ThiNet-30 (Luo et al., 2017) 68.42% 88.30% 3.51×
SSS (Huang & Wang, 2018) 74.18% 91.91% 1.45×

SFP (He et al., 2018a) 74.61% 92.06% 1.72×
CFP (Singh et al., 2018) 73.4% 91.4% 1.98×

Autopruner (Luo & Wu, 2018) 74.76% 92.15% 2.05×
GDP (Lin et al., 2018) 71.89% 90.71% 2.05×

DCP (Zhuang et al., 2018) 74.95% 92.32% 2.26×
SSR-L2 (Lin et al., 2019) 71.47% 90.19% 2.26×

C-SGD-70 (Ding et al., 2019) 75.27% 92.46% 1.58×
C-SGD-50 (Ding et al., 2019) 74.93% 92.27% 1.86×
C-SGD-30 (Ding et al., 2019) 74.54% 92.09% 2.26×
CNN-FCF-A (Li et al., 2019) 76.50% 93.13% 1.41×
CNN-FCF-B (Li et al., 2019) 75.68% 92.68% 1.85×
CNN-FCF-C (Li et al., 2019) 74.55% 92.18% 2.33×
CNN-FCF-D (Li et al., 2019) 73.54% 91.50% 2.96×

Group-HS 1e-5 76.43% 93.07% 1.89×
Group-HS 2e-5 75.20% 92.52% 3.09×
Group-HS 3e-5 73.19% 91.36% 4.68×
Group-HS 4e-5 71.08% 90.21% 5.48×

17

Published as a conference paper at ICLR 2020

Table 9: Structural pruning result of the ResNet-56 model on CIFAR-10.

Model Base acc Acc gain #FLOPs reduction

Pruning-A (Li et al., 2016) 93.04% +0.06% 1.12×
Pruning-B (Li et al., 2016) 93.04% +0.02% 1.38×

Channel pruning (He et al., 2017) 92.8% -1.0% 2.00×
NISP-56 (Yu et al., 2018) N/A -0.03% 1.77×

SFP (He et al., 2018a) 93.59% +0.19% 1.70×
AMC (He et al., 2018b) 92.8% -0.9% 2.00×

C-SGD-5/8 (Ding et al., 2019) 93.39% +0.23% 2.55×
CNN-FCF-A (Li et al., 2019) 93.14% +0.24% 1.75×
CNN-FCF-B (Li et al., 2019) 93.14% -1.22% 3.44×

Group-HS 2e-4 93.14% +0.44% 2.38×
Group-HS 2.5e-4 93.14% +0.31% 3.07×
Group-HS 3e-4 93.14% -0.24% 3.52×
Group-HS 5e-4 93.14% -0.91% 5.63×

Table 10: Structural pruning result of the ResNet-110 model on CIFAR-10.

Model Base acc Acc gain #FLOPs reduction

Pruning-A (Li et al., 2016) 93.53% -0.02% 1.19×
Pruning-B (Li et al., 2016) 93.53% -0.23% 1.62×
NISP-110 (Yu et al., 2018) N/A -0.18% 1.78×

SFP (He et al., 2018a) 93.68% +0.18% 1.69×
C-SGD-5/8 (Ding et al., 2019) 94.38% +0.03% 2.56×
CNN-FCF-A (Li et al., 2019) 93.58% +0.09% 1.76×
CNN-FCF-B (Li et al., 2019) 93.58% -0.62% 3.42×

Group-HS 7e-5 93.62% +0.44% 2.30×
Group-HS 1e-4 93.62% +0.18% 3.09×

Group-HS 1.5e-4 93.62% -0.08% 4.38×
Group-HS 2e-4 93.62% -0.65% 5.84×

18

	Introduction
	Related work on DNN pruning
	Measuring sparsity with the Hoyer measure
	Model compression with DeepHoyer regularizers
	Hoyer-Square regularizer for element-wise pruning
	Group-HS regularizer for structural pruning
	Apply DeepHoyer regularizers in DNN training

	Experiment result
	Element-wise pruning
	Structural pruning

	Conclusions
	Derivation of DeepHoyer regularizers' gradients
	Detailed experiment setup
	MNIST experiments
	ImageNet and CIFAR-10 experiments

	Additional experiment results
	Weight distribution at different stages
	Layer-by-layer comparison of element-wise pruning result of AlexNet
	Detailed results of the ResNet experiments

