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Abstract

We propose and analyze the problems of community goodness-of-fit and two-
sample testing for stochastic block models (SBM), where changes arise due to
modification in community memberships of nodes. Motivated by practical applica-
tions, we consider the challenging sparse regime, where expected node degrees are
constant, and the inter-community mean degree (b) scales proportionally to intra-
community mean degree (a). Prior work has sharply characterized partial or full
community recovery in terms of a “signal-to-noise ratio” (SNR) based on a and
b. For both problems, we propose computationally-efficient tests that can succeed
far beyond the regime where recovery of community membership is even possible.
Overall, for large changes, s≫ √n, we need only SNR = O(1) whereas a naïve
test based on community recovery with O(s) errors requires SNR = Θ(log n).
Conversely, in the small change regime, s ≪ √n, via an information theoretic
lower bound, we show that, surprisingly, no algorithm can do better than the naïve
algorithm that first estimates the community up to O(s) errors and then detects
changes. We validate these phenomena numerically on SBMs and on real-world
datasets as well as Markov Random Fields where we only observe node data rather
than the existence of links.

While community detection and recovery for the stochastic block model (SBM) [Abb18] and, more
generally, inference of community structures underlying large-scale network data [GN02; New06;
For10] has received significant interest across the machine learning, statistics and information theory
literatures, there has been limited work on the important problem of testing changes in community
structures. The general problem of testing changes in networks naturally arises in a number of
applications such as discovering statistically significant topological changes in gene regulatory net-
works [Zha+08] or differences in brain networks between healthy and diseased individuals [Bas+08].
Building upon this perspective, we propose testing of differences in the underlying community struc-
ture of a network, which can encompass scenarios such as detecting structural changes over time in
social networks [AG05; For10], determining whether a set of genes belong to different communities
in disease and normal states [JTZ04], and deciding whether there are changes in functional modules,
which represent communities, in protein-protein networks [CY06].

Testing structural changes in networks is statistically challenging due to the fact that we may have rel-
atively few independent samples to evaluate combinatorially-many potential changes. In this paper,
we propose methods for goodness-of-fit (GoF) testing and two-sample testing (TST) for detecting
changes in community memberships under the SBM. The SBM naturally captures the community
structures commonly observed in large-scale networks, and serves as a baseline model for more com-
plex networks. Specifically, there are n nodes partitioned into two equal-sized communities, and the
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network is observed as a random n × n adjacency matrix, representing the instantaneous pairwise
interactions among individuals in the population. Both intra- and inter-community interactions are
allowed. Members within the same community interact with uniform probability a/n, while mem-
bers belonging to different communities with a smaller probability b/n. We restrict attention to the
commonly-considered and practically-relevant setting of a/b = Θ(1).

For our testing problems, we assume that the network samples are aligned on n ≫ 1 vertices,
and that the latent communities are either the same, or they differ in at least some s ≪ n nodes.
We pose the GoF problem as: Decide whether or not the observed random incidence matrix is an
instantiation of a given community structure. For the TST problem, we ask: Given two random
incidence matrices, decide whether or not their latent community structure is identical.

Sparse vs. Dense Graphs. We focus on scenarios where the observed random incidence matrices
are sparse with average node degree bounded by a constant independent of the network size. Within
this context we develop minimax optimal methods for GoF and TST in this context. We are moti-
vated by both practical and theoretical concerns. Practically, as observed in [Chu10], realistic graphs
such as social networks are sparse (friendships do not grow with network size); in temporal settings,
at any given time, only a small subset of interactions are observed; and in other cases ascertaining
the presence or absence of each edge in the network being observed is an expensive process, and it
makes sense to understand the fundamental limits for when testing is even possible.

From a theoretical standpoint, the sparse setting is challenging due to signal-to-noise ratio (SNR)
constraints that do not arise in the dense case. Recovery of the latent community with up to s errors
is possible iff Λ & log(n/s) [CRV15; ZZ16; FC19], where Λ is a SNR parameter that, in the setting
a/b = Θ(1), scales linearly with the mean degree. In particular, for Λ of constant order, recovery
with sublinear distortion fails. The question of whether testing is possible when recovery fails is
mathematically intriguing. Further, this is the only theoretically interesting setting. Indeed, if test-
ing for s changes requires a graph dense enough to allow recovery with ∼ s errors, then one might
as well recover these communities and compare them.

Our Contributions. We show that optimal tests exhibit a surprising two-phase behavior:

1. For s≫ √n, or ‘large changes,’ we propose computationally-efficient schema for GoF and TST
that succeed with Λ = O(1) - far below the SNR threshold for recovery. For GoF, this requirement
is even weaker - we only need Λ & n/s2, which vanishes with n since s≫ √n. Further, we match
these bounds up to constants with information-theoretic lower bounds.

2. In contrast, we show via an information-theoretic lower bound that for s ≪ √
n, or ‘small

changes,’ both testing problems require Λ = Ω(log(n)) for reliable testing. This means that the
naïve strategy of recovering communities and comparing them is tight up to constants in this regime.

We complement the above theoretical study by three experiments: the first implements the above
tests on synthetic SBMs, and the second on the political blogs dataset - a popular real world dataset
for community detection [AG05]. Both of these experiments show excellent agreement with the
theoretical predictions. The third experiment casts a wider net, and instead studies the related prob-
lem of testing the underlying community structure of a Gaussian Markov Random Field that has
precision matrix I+γG for G drawn from an SBM. This experiment explores the more realistic set-
ting where instead of receiving a graph, we obtain observations at each node of a hidden graph, and
wish to reason about the underlying structure. Remarkably, a simple adaptation of our procedure for
SBMs shows excellent performance for this problem. This indicates that our observations are not
restricted to raw SBMs, but may signal a more general phenomenon that merits exploration.

Related Work. For work on recovery communities we refer to the survey [Abb18]. However, we
explicitly point out the papers [CRV15; ZZ16; FC19], which provide various schemes and necessary
conditions that show that the partial recovery problem with distortion s can be solved with vanishing
error probability if and only if Λ & log(n/s). We further point out the lower bounds of [MNS15;
DAM17], which assert that if Λ < 2, then asymptotically, the best possible distortion for partial
recovery (or weak recovery, as it is referred to in this constant SNR regime) is n/2 − o(n). Note
that reporting a uniformly random community achieves distortion of s = n/2−O(

√
n).

Ours is the first work to study GoF and TST where both hypothesized models are SBMs. Neverthe-
less, both GoF and TST in the context of network data as well as SBMs have been studied. Below
we highlight the key differences in modeling assumptions and the ensuing technical implications,
which renders much of the prior work inapplicable to our setting.

With regards to GoF, [AV14; VA15] study the problem of detecting if a graph is an unstructured
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Erdős-Rényi (ER) graph, or if it has a planted dense subgraph, providing detailed characterizations
of the feasiblity regions and statistical phase transitions in this setting. While this work is aligned
with ours in the techniques used, the modeled setting and problem there are different (ER vs. planted
dense subgraph), and TST is not explored. Particularly, the dense subgraph model and the SBM are
qualitatively different, and conclusions from one cannot be transferred to the other directly.

A number of papers, including [Lei16; BS16; Ban+16; GL17] study various techniques and regimes
of determining if a graph is a SBM or an unstructured ER graph, and if the former, the number of
communities in the model. Of these, [GL17] approach the problem by counting small motifs in
the graphs, [Ban+16] propose a simple scan and [Lei16; BS16] propose testing of the number of
communities on the basis of the top singular values of the graph.

[Tan+17] study TST of the model parameters in random dot product graphs, and propose the dis-
tance between aligned spectral embeddings of the two graphs as a statistic to do so. They use this to
test equality against various transformations of the underlying models, and in particular for SBMs,
test if the connectivity probabilities (a/n, b/n) are identical or not for two graphs with latent com-
munities that are randomly drawn. [LL18] adapt these tests by considering the same distance, but
weighted by the corresponding singular values of one of the graphs, and use this to study two-sample
testing of equality of the latent communities in the graphs - as in this paper.

In contrast to the low-rank structure assumptions in the above work, [Gho+17a; Gho+17b; GL18]
study two-sample testing of inhomogeneous ER graphs (i.e., ER graphs where each edge may have
a distinct probability of existing). Within this setting, they provide a number of statistics based both
on estimates of the Frobenius and operator norms of the differences of the expected graph adjacency
matrices, as well as those based on motifs such as triangles, and explore the limits of these tests.

A fundamental drawback of these approaches, in our context, is their reliance on singular values,
spectral norms and Frobenius norms. Singular embeddings are particularly sensitive to noise, and
stable embeddings require significant edge density (particularly when a sublinear number of alter-
ations to the communities are to be tested). Indeed, in this context, we note that, in contrast to our
low SNR, sparse setting, [LL18] require both a degree of n1/2−ǫ and an SNR of log(n) correspond-
ing to a high SNR, high edge-density regime, where full community recovery is possible.

Similarly, Frobenius and Spectral norms based tests of [GL18; Gho+17a] are not stable enough to
test a sublinear number of changes in a low SNR regime. Functionally, this can be seen by the fact
that the square-Frobenius norm of the difference of two graphs is equal to the number of edges that
appear in one graph but not the other, and for sparse graphs, most edges appear in only one of the
two graphs. Similarly, arguments about spectral norms rely on concentration of the same for ER
graphs, but the best known concentration radius [LLV17] is far too large to allow testing of small
differences in sparse graphs. Indeed, for any of the statistics of [GL18] to have power in our setting,
the results of the paper require that the expected degree diverges with n, and that Λ & n/s, which is
exponentially above the SNR required to recover communities up to distortion s/2.

1 Definitions

The Stochastic Block Model. A vector x ∈ {±1}n is said to be a balanced community vector (or
partition) if

∑
xi = 0. The stochastic block model is defined as a random, simple, undirected graph

G on n nodes such that all edges are drawn mutually independently given x, and

P ({i, j} ∈ G|x) = a+ b

2n
+

a− b

2n
xixj .

Note that we treat x as a deterministic but unknown quantity, and thus, P (·|x) is a slight abuse of
notation. The parameters (a, b) may vary with n, and we focus on the setting a, b = O(log n), with
emphasis on O(1)1, and a/b = Θ(1). For technical convenience, we require that a+ b < n/4.

The signal-to-noise ratio (SNR) of an SBM is the quantity Λ :=
(a− b)2

a+ b
, which characterises the

recovery problem, as described in earlier discussions.

1While our main interest is in the constant degree regime, we also show that testing for small changes is
impossible in this setting (e.g Thm 1), and instead logarithmic degrees are needed. Thus, to present our results
completely, we must allow a, b to vary at least in the range [Ω(1), O(log(n))], or, more succinctly O(log n).
Large scales are not of interest since exact recovery is possible at the logarithmic scale.
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Note that the partitions x and −x induce the same distribution. Accordingly, the distortion between
partitions x and y is d(x, y) := min(dH(x, y), dH(x,−y)), where dH is the Hamming distance.

Minimax Testing Problems. We formally define two minimax hypothesis testing problems.

Goodness-of-Fit. We are given a balanced partition x0 and a parameter s. We receive a graph
G ∼ P (G|x), where x is an unknown balanced partition that is either exactly equal to x0 or differs
in at least s places. Our goal is to solve the hypothesis test:

H0 : d(x, x0) = 0 vs. H1 : d(x, x0) ≥ s

We measure the minimax risk of this problem by

RGoF(n, s, a, b) := inf
φ

sup
x0

{
P (FA) + sup

x
P (MD(x))

}
(1)

where φ(G) outputs either 0 or 1, P (FA) := P (φ(G) = 1 | x0), P (MD(x)) := P (φ(G) = 0 | x),
are respectively the false alarm and missed detection probabilities, and the second supremum is over
all x such that d(x, x0) ≥ s.

Two-Sample Testing. We are given a parameter s and two independent graphs G ∼ P (G|x), H ∼
P (H|y), where x and y are unknown balanced communities satisfying d(x, y) ∈ {0} ∪ [s : n/2].
The goal is to solve the following (composite null) testing problem:

H0 : d(x, y) = 0 vs. H1 : d(x, y) ≥ s,

with the measure of risk

RTST(n, s, a, b) := inf
φ

sup
x,y

P
(
φ(G,H) 6= 1{x = y} |x, y

)
, (2)

where φ(G,H) outputs either 0 or 1 and the supremum is over balanced x, y such that d(x, y) ∈
{0} ∪ [s : n/2].

As we vary n and (s, a, b) with n as some functions (sn, an, bn), the above define a sequence
of hypothesis tests. We say that the GoF problem can be solved reliably for such a sequence if
RGoF(n, sn, an, bn) → 0 as n ր ∞, and similarly for TST. Below, we will target O(1/n) bounds.
For conciseness, we will suppress the dependence of risks on (n, s, a, b), writing just RGoF/RTST.

On balance: The strict balance assumption above can be relaxed to only requiring that both com-
munities are of size linear in n, at the cost of weakening some of the constants left implicit in the
theorem statements. While the majority of the analysis in the paper will assume exact balance, we
briefly discuss unbalanced but linearly sized communities whilst detailing the proofs. Note that
since the communities are no longer balanced, the differences between x and y can be ‘one-sided’
i.e., more nodes can move from, say, + to −, than in the other direction. We do not require any
control on these other than the total number of changes is at least s.

On constants: We use C and c, and their modifications, as unspecified constants that may change
from line to line. While these can be explicitly bounded, we do not expect them to be tight.

2 Community Goodness-of-Fit

We begin by stating our main results regarding the community goodness-of-fit problem.

Theorem 1. Community goodness-of-fit testing is possible with risk RGoF ≤ δ if sΛ ≥ C log(2/δ)

and Λ ≥ C
n

s2
log(2/δ) for some constant C > 0.

Conversely, in order to attain RGoF ≤ δ ≤ 0.25, we must have that sΛ ≥ C ′ log(1/δ) and Λ ≥
C ′ log

(
1 +

n

s2

)
for some constant C ′ > 0.

These bounds reveal the following behavior in terms of large and small changes:

• For large changes (s ≥ n1/2+c for some c > 0), since n/s2 ≤ 1 and log(1 + x) ≥ x/2 for
x ≤ 1, the second converse bound behaves as Λ ≥ Cn/s2, matching the sufficient condition up
to a constant.

• For small changes (s ≤ n1/2−c for some c > 0), since n/s2 ∼ n2c, the second converse bound
instead behaves as Λ & log n. In this regime, community recovery up to s/2 errors requires

4



Λ ≥ C log 2n/s = C̃ log n. Thus, estimating x from G and comparing it to x0 is optimal up to
constants.

• The above indicate a phase transition in the GoF testing problem at σ := logn(s) = 1/2. Consider
the thermodynamic limit of n ր ∞. For σ < 1/2, the problem is ‘hard’ in that the SNR Λ is
required to diverge to∞, while for σ > 1/2, the SNR can tend to zero.

Proof Sketch for the Achievability. Let us begin with an intuitive development of the test. Since we
start with a partition x0 in hand to test, it is natural to look at the edges across and within the cut
defined by x0. We thus define the number of edgess across and within this cut:

Nx0

a (G) := |{(i, j) ∈ G : x0,i 6= x0,j}| =
1

4
xT

0 (D(G)−G)x0

Nx0

w (G) := |{(i, j) ∈ G : x0,i = x0,j}| =
1

4
xT

0 (D(G) +G)x0

(3)

where the latter expressions treat G as an adjacency matrix and D(G) = diag(degree(i))i∈[1:n].
2 In

the null case, these are respectively Bin(n2/4, b/n) and Bin(2
(
n/2
2

)
, a/n) random variables, while

in the alternate case some s/2 · (n− s)/2 of each behave like edges of the opposite polarity (i.e. as
b/n instead of a/n and vice versa), leading to a excess/deficit of edges of this type. Note that while
the ‘average signal strength’, i.e., the amount by which edges are over- or underrepresented is the
same in both cases (∼ s|a− b|), the group with the larger null parameter suffers greater fluctuations.
Thus, we base our test only on edges of smaller bias. This reduces the SNR by at most a factor of 4.

We now define the test. C1 below is the constant implicit in Lemma 3 in Appendix A.1.

• If a > b, we use the test Nx0

a (G)
H1

≷
H0

bn

4
+ C1 max

(√
nb log(1/δ), log(1/δ)

)
.

• If b > a, we use the test Nx0

w (G)
H1

≷
H0

an

4
− a

2
+ C1 max

(√
na log(1/δ), log(1/δ)

)
.

The risks of these tests can be controlled by separating the null and alternate ranges using Bernstein’s
inequality. Indeed, the threshold above is just the the expectation plus the concentration radius of the
statistic under the null distribution. Let us briefly develop the statistic’s behaviour in the alternate -
considering only the case a > b, we find that under the alternate,

(
n−s
2

)
+
(
s
2

)
of the edges in Nx0

a

continue to behave like Bern(b/n) bits, while the remaining s(n− s)/2 edges behave as Bern(a/n)
bits. Thus, the expectation of Nx0

a is increased by an amount greater than s(n−s)a−b
2n ≥ s(a−b)/4.

Next, Bernstein’s inequality controls the fluctuations at scale
√
max(nb, s(a− b)) log(2/δ). The

conclusion is straightforward to draw from here, and the proof is carried out in Appendix A.13.

Proof Sketch for the Converse. The proof is relegated to Appendix A.2, and we discuss the strategy
here. The converse proof follows Le Cam’s method, which lower bounds the minimax risk by the
Bayes risk for conveniently chosen priors - which can be expressed using the TV distance.

To show Λ & log(1 + n/s2), we pick the null x0 to be any balanced community, and choose the
uniform prior on communities that are exactly s-far from x0 (in fact, we only use a subset of these in
order to facilitate easier computations). This is an obvious choice for this setting - we are interested
in balanced communities that are at least s far, and choosing a large number of them allows for a
greater ‘confusion’ in the testing problem due to a richer alternate hypothesis. The bound follows
by invoking inequalities between TV and χ2 divergences and a lengthy calculation due to the com-
binatorial objects involved.

To show sΛ & − log(δ), we again pick the null to be any balanced community, and pick the alternate
to be an s-far singleton. We then proceed to control dTV by the Hellinger divergence.

3 Two-Sample Testing

We again begin with the main results on community two-sample testing problem.

2Note that D(G)−G is the Laplacian of the graph.
3The same also describes the extention of the claims to linearly sized communities
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Theorem 2. Assume, for some γ > 0, s ≥ n
1
2
+γ . There exist constants C,C ′ such that if C ′ ≤

a, b ≤ (n/2)1/3, then two-sample testing of s changes with RTST ≤ 4/n is possible if the SNR
satisfies Λ ≥ C.

Conversely, for n ≥ 200, there exist constants c, c′ such that if s < ( 12 − c′)n, then two-sample
testing of s changes cannot be carried out with RTST ≤ 1/4 unless Λ ≥ c.

Large Changes. The above theorem makes an achievability claim for the setting of large changes.
Notice that in this regime the stated upper and lower bounds match up to constants. Specifically, if

n
1
2
+γ < s < ( 12 − c′)n, two-sample testing can be solved iff Λ & 1. Further, the condition a, b & 1

is also tight, as it follows from a/b = Θ(1), and the necessary condition Λ & 1, since Λ ≤ a+ b.
This leaves the condition max(a, b) ≤ (n/2)1/3, which we suspect is an artifact of the proof

technique and conjecture that, even for our proposed test, it can be removed. In any case, observe
that this condition is irrelevant in the setting a, b = O(log n) considered in this paper. Further, if
a/b is bounded away from 1, then TST is directly possible when a, b = Ω(log n) by recovering the
communities and comparing them, demonstrating that this condition is not present in general.

Small Changes. We claim that for small changes - s < n
1
2
−γ for some γ > 0 - the naïve scheme of

recovering the communities and comparing them is minimax. To see this, note that that GoF testing
is reducible to TST - given a TST scheme of a known risk, one may construct a GoF tester of that
risk by feeding the TST algorithm the observed graph and a graph drawn from P (·|x0). Thus, the
lower bounds of Theorem 1 apply to TST, and for a/b = Θ(1), we find that it is necessary that
sΛ = ω(1) and that Λ & log(1 + n/s2) to attain vanishing RTST. For small s, the latter lower
bound is Ω(log n), the claim follows since recovery with up to s errors is possible if Λ & log n.

Efficiency. Finally, we point out that the above bounds can be attained with computationally efficient
tests. Further, for large changes, the test can be made agnostic to knowledge of (a, b). Instead, it

only requires one to be able to estimate n(a+b) to within an additive error of Õ(
√

n(a+ b)), which
can be done by simply counting the number of edges in the graphs.

Proof Sketch of the Achievability. We describe the proposed test, and sketch its risk analysis below,
completing the same in Appendix B.1. Recall the definition of Nz

w, N
z
a from (3) in §2, and let

T x̂(G) := N x̂
w(G)−N x̂

a (G). (4)

We show that the routine ‘TwoSampleTester’ below attains a risk smaller than 4/n. In words, the test
computes a partition x̂ for the graph G by using about half the edges in the graph. This is represented
in the ‘PartialRecovery’ step below, for which any such method may be used - concretely, that of
[CRV15]. Next, we compute the statistic T x̂ above for both the remaining part of the first graph, and

Algorithm 1: TwoSampleTester(G,H, δ)

1: G1 ← subsampling of edges of G at
rate 1/2 uniformly at random.

2: G̃← G−G1.
3: x̂← PartialRecovery(G1).

4: Compute T x̂(G̃), T x̂(H).

5: T ← |2T x̂(G̃)− T x̂(H)|.
6: Return T

H1

≷
H0

√
Cn(a+ b) log(6n).

for the second graph. Notice that unlike the GoF
statistic, which was only Na, T

x̂ takes the difference
of Na and Nw. This is necessary because the partition
x̂ derived from partial recovery cannot be very well
correlated with the true partition x. This means the
reduced fluctuations from only considering one part
does not apply, and we instead use the whole cut.

Since the edges within communities, and across com-
munities in the graph are (separately) exchangable,
the errors made in x̂ distribute uniformly over the two
communities4. This allows us to explicitly control the
behaviour of T as defined in the test provided x̂ is non-
trivially correlatd with x - i.e., given that it makes
< (1/2− c)n errors for some c > 0. The condition Λ & 1 in the theorem arises from this.

A complication in this strategy is that the remaining graph G̃ in the scheme is not independent of the
recovered community x̂. This is handled in the analysis by introducing an independent copy of G,

called G′, and arguing that T x̂(G̃) ≈ 1/2T x̂(G′). This step is the origin of the nuisance condition

max(a, b) . n1/3 in the theorem.

4For a proof: since x,−x induce the same law, and since the communities are balanced, for every real-
ization of G such that x̂ makes e+, e− errors in the community +,− respectively, there is a realization of
equal probability where it makes e−, e+ errors. Further, within community exchangability implies that errors
distribute uniformly.
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Lastly, we point out that while the above exploits the exact balance by using the description of the
error distribution it enables, one can derive the same results (but with weakened constants) even
without this assumption, so long as both communities are at of size linear in n. In this case, one can-
not rely on the errors distributing uniformly over the nodes, but the within-community uniformity
of errors, which follows due to within community exchangability, can be exploited in a similar way.
We describe this extension in Appendix B.1.1.

Proof Sketch of the Converse. The necessary condition is shown via Le Cam’s method, but with
the twist that the null model is chosen to be a two-step procedure - one that draws a balanced com-
munity uniformly at random, and then generates a graph according to it, while the alternate models
are drawn uniformly from the balanced communities that are at least s-far from the chosen null.
This allows a comparison to the unstructured Erdős-Rényi graph on n vertices with mean degree
(a + b)/2. Bounds can then be drawn in from the study of the so-called distinguishability problem
[Ban+16], and we invoke results from [WX18] to show that total variation distance between the null
and alternate distributions is small when Λ is a small enough constant, allowing us to conclude using
Neyman-Pearson. See Appendix B.3 for a detailed argument.

4 Experiments

We perform three different sets of numerical experiments. We first run our tests on SBMs with
1000 nodes. Next, we demonstrate that our tests perform similarly for a real dataset, specifically
the Political Blogs dataset [AG05]. Finally, we examine SBM-supported Gaussian Markov Random
Fields (GMRFs) as an example of a “node observation” model, where the SBM-generated edges
form the precision matrix for the Gaussian vector consisting of the random variables assigned to
each node. In particular, we need to determine if the underlying community of the graph has changed
without explicitly observing (or recovering) the edges of the graph. For the sake of brevity, precise
details of the experiments are moved to Appendix C.

4.1 SBM Experiments

We perform experiments implementing our GoF and TST strategies as well as the naïve scheme of
reconstructing communities and comparing. Recovery is performed by regularised spectral cluster-
ing, for which a detailed description is given in Appendix C.1. The graphs are drawn on n = 1000
nodes for a range of (s,Λ) pairs and the high and low risk regimes are plotted in Figure 1. First,

note that for ‘large changes,’ s ≥
√

n log(10) ≈ 50, our GoF and TST tests can succeed for lower

SNR values. In contrast, for ‘small changes,’ s <
√
n ≈ 30, the naïve test is more powerful in the

high SNR regime. Additionally, both tests fail for TST unless the SNR is larger than a constant, as
predicted by our lower bound in Theorem 2.
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Figure 1: Risks of the proposed tests from sections 2 and 3 for GoF and TST respectively, and the
performance of the naïve scheme, on synthetic SBMs with n = 1000, a/b = 3. Both schemes attain
high risk (> 1− δ) in the grey region, intermediate risk in the white, and the colours indicate which
of the schema attain low risk (< δ), where δ = 0.01 for GoF and δ = 0.1 for TST.
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4.2 Political Blogs Dataset [AG05]

The political blogs dataset [AG05] is canonical in the study of community detection, and consists of
n = 1222 nodes. Here, we vary the effective SNR by randomly subsampling the edges of the graphs
at rate ρ. See Appendix C.2 for further details. In this dataset, the ground truth partition xTrue is
available, which in turn yields accurate estimates of the connectivity probabilities (a, b). For this
graph a/b ≈ 10. Further, spectral clustering alone incurs ≈ 50 errors in this graph, which is larger

than
√
1222 ≈ 35. As a consequence, the behaviour in the ‘small changes’ regime where the test

relies on recovery - is not well illustrated in the following.
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Figure 2: Risks of the tests applied to the Political Blogs graphs - colour scheme is retained from
Fig. 1. The X-axis plots the sparsification factor, which serves as a proxy for SNR. Features similar
to Fig. 1 can be seen. The GoF plot improves since a/b is bigger, while the TST plot suffers since
the political blogs graph is not completely described as a 2-community SBM [Lei16].

Goodness-of-Fit. We determine the size of the test by running the GoF procedures against xTrue.
To determine power, we construct a partition y by relabelling a random set of nodes of size s, and
running the GoF procedures against y with the same graph.
Two-Sample Testing. We compare the political blogs graph G against two other graphs drawn from
SBMs. Size is detemined by drawing G′ according to an SBM of community xTrue and running
the TST procedure, and power is determined by drawing a y as above, generating H according
to an SBM of community y, and running the TST procedure. Note that this experiment is thus
semi-synthetic.

4.3 Gaussian Markov Random Fields (GMRFs)

Frequently instead of simply receiving a graph, one receives i.i.d. samples from a graph-structured
distribution, and it is of interest to be able to cluster nodes with respect to the latent graph. For
example, in large-scale calcium imaging, it is possible to simultaneously record the activity pattern
of thousands of neurons, but not their underlying synaptic connectivity [Pne+16]. Here, we explore
the behavior of our tests for GMRFs where the underlying graph structure is randomly drawn from
an SBM and and we only observe the nodes.

A heuristic reason for why our methods might succeed in such a situation arises from the local tree-
like property of sparse random graphs (see, e.g. [DM10]). For graphs with mean degree d ≪ n,
typical nodes do not lie in cycles shorter than ∼ logn

2 log d . In MRFs, this tree-like property induces

correlation decay: the correlation between two nodes decays geometrically up to graph-distance

∼ logn
2 log d . Thus, the covariance matrix closely approximates σ1G+

∑k
i=2(σ1G)i+σ011

T for some

σ0 ≪ σ1, small k, and G, the adjacency matrix of the graph. Since the local structure of the graph is
so expressed, both clustering and testing applied directly to the covariance matrix should be viable.

We report experimentation on the GMRF (see, e.g. [WJ08, Ch. 3]), which comprises random vectors
ζ ∼ N (0,Θ−1), where the non-zero entries of the precision matrix Θ encode the conditional depen-
dence structure of ζ. Following standard parametrisations [WWR10], we set Θ = I + γG, where
G ∼ P (G|x) is an adjacency matrix from an SBM with latent parameter x, and γ is a scalar. Below,
we fix the SBM parameters a, b and the level γ, and explore risks against s and sample size t.
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Following the above heuristic, we naïvely adapt community recovery and testing to this setting, by
replacing all instances of the graph adjacency matrix in previous settings with the sample covariance
matrix. Figure 3 presents our simulations of the risk of this test when n = 1000, and (a, b) ≈
(12.3 log n, 1.23 log n), at Λ ≈ 9 log(n) (for details see Appx. C.3). This large SNR is chosen
so that community recovery would be easy if the graph was recovered;5 this emphasizes the role
of the sample size, t. Importantly, in this implementation, the threshold for rejecting the null has
been fit using data (unlike in the previous sections). This is since we lack a rigorous theoretical
understanding of this problem, and have not analytically derived expressions for the thresholds. As
a result, these plots should be treated as speculative research intended to underscore the presence of
interesting testing effects in this scenario, and to encourage future work along these lines.
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Figure 3: Risks for adaptation of our tests to GMRFs - colour scheme is retained from Fig. 1. The
plots show structural similarity to Fig. 1, but with two differences - In GoF, we don’t find a high
risk region at the sample sizes considered, and the proposed scheme always outperforms the Naïve
scheme based on spectral clustering.

5 Directions for Future Work

The development of the recovery problem for SBMs suggests a number of directions for further work
on the testing problems considered above. For instance, one may investigate the exact constants in
the testing threshold that the above work suggests, or one may study the testing problem for SBMs
with k > 2 communities, which is a practically relevant setting since many real-world networks are
significantly better described as k-SBMs than as 2-SBMs. In the latter vein, testing problems such
as the above may be studied in richer random graph models, such as degree corrected SBMs, or
geometric block models. Additionally, testing of strongly imbalanced communities, where one of
the communities has size sublinear in n is conceptually unexplored and of interest.

One open problem that draws from the above exposition is if there exists an algorithm for TST in
the 2 community setting that does not pass through a partial recovery step and yet works for sparse
graphs. We expect that such a method would be necessary for determining exact testing thresh-
olds (for large changes), since the recovery step neccessarily requires some subsampling, which
reduces the effective SNR available for testing. In addition, this would be conceptually pleasant,
and would eliminate the dissonance in the above work where showing testing guarantees requires
passing through recovery guarantees. Such a scheme would also more generally allow study of the
testing problem for situations where partial recovery is ill understood.

Finally, we mention that more work is needed on the practical investigation of the effectiveness of the
above methods - while the experiments we have run validate the theory, the real-world applicability
of the methods above require deeper experimentation. A significant lacuna for this line is the lack
of a good real-world dataset for the testing of commumity changes.

5Note, however, we expect graph recovery to be impossible at these sample sizes. Lower bounds from
[WWR10] indicate this would require > 3300 samples theoretically.
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