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Abstract

Comparing the inferences of diverse candidate models is an essential part of model checking
and escaping local optima. To enable efficient comparison, we introduce an amortized
variational inference framework that can perform fast and reliable posterior estimation
across models of the same architecture. Our Any Parameter Encoder (APE) extends the
encoder neural network common in amortized inference to take both a data feature vector
and a model parameter vector as input. APE thus reduces posterior inference across
unseen data and models to a single forward pass. In experiments comparing candidate
topic models for synthetic data and product reviews, our Any Parameter Encoder yields
comparable posteriors to more expensive methods in far less time, especially when the
encoder architecture is designed in model-aware fashion.
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1. Introduction

We consider the problem of approximate Bayesian inference for latent variable models,
such as topic models (Blei et al., 2003), embedding models (Mohamed et al., 2009), and
dynamical systems models (Shumway and Stoffer, 1991). An important step in using such
probabilistic models to extract insight from large datasets is model checking and comparison.
While many types of comparison are possible (Gelman et al., 2013), we focus on a problem
that we call within-model comparison. Given several candidate parameter vectors 0, 60s, . . .,
all from the same space © C RP, our goal is to efficiently determine which parameter 6,, is
best at explaining a given dataset of N examples {z,}2_;.

Multiple ways exist to rank candidate parameters, including performance on heldout
data or human-in-the-loop inspection. A principled choice is to select the parameter that
maximizes the data’s marginal likelihood: 25:1 log p(2,|0,,). For our latent variable mod-
els of interest, computing this likelihood requires marginalizing over a hidden variable h:
p(zn|0m) = [ p(zn|hn, 0m)p(hn|0m)dhy,. This integral is challenging even for a single ex-
ample n and model m. One promising solution is variational inference (VI). Using VI, we
can estimate an approximate posterior q(hy|x,,0,,) over hidden variables. Approximate
posteriors ¢ can be used to compute lower bounds on marginal likelihood, and can also be
helpful for human inspection of model insights and uncertainties. However, it is expensive
to estimate a separate g at each example n and model m. In this paper, we develop new
VI tools' that enable rapid-yet-effective within-model comparisons for large datasets.
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The need for within-model comparison (and our methods) is present in many practical
modeling tasks. Here we discuss two possible scenarios, with some details specialized to our
intended topic modeling applications (Blei, 2012). First, in human-in-the-loop scenarios, a
domain expert may inspect some estimated parameter # and then suggest an alternative
parameter 6’ that improves interpretability. In topic modeling, this may mean removing
“Intruder words” to make topics more coherent (Chang et al., 2009). Second, in automated
parameter learning scenarios, many algorithms propose data-driven transformations of the
current solution @ into a new candidate #’, in order to escape the local optima common in
non-convex optimization objectives for latent variable models (Roberts et al., 2016), Exam-
ples include split-merge proposal moves (Ueda and Ghahramani, 2002; Jain and Neal, 2004)
or evolutionary algorithms (Sundararajan and Mengshoel, 2016). Across both these scenar-
ios, new candidates 0’ arise repeatedly over time, and estimating approximate posteriors
for each is essential to assess fitness yet expensive to perform for large datasets.

Our contribution is the Any Parameter Encoder (APE), which amortizes posterior in-
ference across models 6, and data x,. We are inspired by efforts to scale a single model
to large datasets by using an encoder neural network (NN) to amortize posterior inference
across data examples (Rezende et al., 2014; Kingma and Welling, 2014). Our key idea is
that to additionally generalize across models, we feed model parameter vector 6, and data
feature vector x, as input to the encoder. APE is applicable to any model with continuous
hidden variables for which amortized inference is possible via the reparameterization trick.

2. Methods

We consider a general family of probabilistic models that use parameter vector 6,, to gen-
erate a dataset of N continuous hidden variables h,, and observations z, via a factorized
distribution: T[2_, p(7n|0m)p(#n|hn, Om). Our goal is fast-yet-accurate estimation of each
example’s local posterior p(hy, |y, 0,,) for a range of model parameters 61,65, ... € O.

Topic Models. As a sample application, we focus on the Logistic Normal topic model
from Srivastava and Sutton (2017). Given known vocabulary size V, we observe N docu-
ments represented by count vectors z,, (vector of size V' counting the types of all T}, words in
document n). We model each z,, as a mixture of K possible topics. Let hidden variable h,
be the probability that a word in document n is produced by topic k. Thus, h, € AK is a
non-negative vector of size K that sums to one. We model h,, with a Logistic Normal prior,
with mean and covariance set to be similar to a sparse Dirichlet(0.01) prior (Hennig et al.,
2012) for interpretability. Given h,,, we model the observed word-count vector for document
n with a Multinomial likelihood: z,, ~ Mult(T,,, szl hniBy). This is a document-specific
mixture of topics, where each topic k is defined by a word probability vector 6, € AY. Our
parameter of interest is the topic-word probability vector 6 = {Hk}é(:l.

VI Approximations for the Single Example Posterior. While the true posterior
p(hn|Tn, O) is usually intractable, we use variational inference (VI) (Wainwright and Jor-
dan, 2008) to approximate it. We choose a simpler density q(h,|\,) and optimize parameter
An to minimize KL divergence from the true posterior. Inference reduces to the well-known
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evidence lower bound (ELBO) optimization problem given example x,, and model 6,,:
Inference: A, «+ arg max E, [log p(zn, hn|0m) — log q(hn|An)], (1)

Given several parameters of interest, we can perform model comparison by solving the above
optimization problem separately for each 6,,. However, this is expensive. Solving Eq. (1)
for a model 6, requires dozens of iterative updates of gradient ascent for each example.

VI Amortized across Data Examples. Previously, Rezende et al. (2014) and Kingma
and Welling (2014) have sped up inference by setting per-example variational parameters
An to the output of an encoder neural network (NN) instead of an iterative optimization
procedure. The “Standard” encoder, with weights parameters ¢, takes input data x,, and
produces variational parameters )\EN(@"”). Inference for example n reduces to one fast

forward pass: A\, < )\EN(a:n). While encoders often produce A, with worse ELBO scores
than optimal solutions to Eq. (1) (Krishnan et al., 2018), they are preferred for their speed.
However, for our model comparison goals the standard encoder is expensive, because for
each parameter 6, of interest we must train separate specialized NN weights ¢,,.

Contribution: VI Amortized over Model Parameters. Our goal is to enable rapid
estimation of posteriors p(hy|zy,0y,) for many possible parameters 61,6s,... € © (not all
known in advance). We thus consider a family of approximating densities ¢ that explicitly
conditions on both a given data vector z, and the query parameter vector #,,. Again,
we use a neural network to transform these inputs into the variational parameters, A, <
)\EN(mn, 0,). We call this the Any Parameter Encoder. Unlike the earlier Standard Encoder,
which trains ¢ for one specific 6, our approach can directly generalize to many 6.

Encoder Architecture Design for Topic Models. Given the difficulty of posterior
inference even for a single parameter 6, developing an effective Any Parameter Encoder
requires careful selection of a NN architecture that can transform its two inputs, data x,
and model 6, to produce accurate approximate posteriors. Following previous work (Kingma
and Welling, 2014), we use multi-layer perceptrons. We further suggest that an architecture
designed to capture structure in the generative model should improve results further.

Our baseline “naive” architecture defines the input of the neural net as simply the
concatenation of vector x, and vector #. While simple, we suggest this will be difficult
to train effectively given the size of the input ((K + 1)V for the topic model) and lack of
inductive bias to prioritize the model’s needed interactions between entries of x,, and 6.

As an improvement, we consider a model-aware encoder architecture. Our design is
motivated by a view of posterior inference as roughly moment-matching when data is plen-
tiful. For our topic model, each document’s Multinomial likelihood has a mean vector equal
to > j hnkbr = Ohy, writing 6 as a V' x K matrix. This mean vector should be (roughly)
equal to the observed word-frequency vector T%an If py, is the mean of g(h,) and used as

a plug-in estimate for h,, then we want to satisfy Tinxn ~ Ouy,. Solving for p, via least

squares, we get [, ~ T%(HTH)AOT:C”, which we might simplify to a non-linear function of

6T x,,. Thus, we suggest using the following model-aware encoder architecture:

q(hpl|xn, 0) = LogisticNormal(,ugN(QT:Un), diag(agN 0Tz,))) (2)
This model-aware architecture has encoder input dimension K, which is much smaller than
(K 4+ 1)V for the naive approach (and thus hopefully easier to train). Furthermore, this
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Synthetic Data (K = 20 topics) Product Reviews (K = 30 topics)
Test Likelihood. Time (sec.)  Agreement Test Likelihood Time (sec.)  Agreement
Standard Encoder —9.3672 + 0.0436 0.01 26/45 58% | —6.1966 & 0.0254 0.05 13/45 29%
APE Encoder (Naive Arch.) —5.9508 £ 0.0170 0.11 28/45  62% | —5.4006 + 0.0016 0.22 14/45  31%
APE Encoder (Model-aware Arch.) | —4.2384 £ 0.0029 0.04 43/45  96% | —5.2450 £ 0.0142 0.05 34/45  75%
VI (non-amortized) —3.9047 + 0.0023 5.09 45/45 100% | —4.9758 & 0.0058 216.30 45/45 100%
NUTS —4.0888 £+ 0.0018 2044.91 - —5.0803 + 0.0008 23148.40 -

Table 1: Comparison of per-word posterior predictive log likelihood (higher is better) and
inference time (lower is better) for heldout test sets of 300 document-model combinations.
’Agreement’ measures how often a method’s ELBO ranking of pairs 6,0’ matches VI’s ranking.

should provide desirable inductive bias to produce useful mean and covariance estimates.
We emphasize that this design is specialized to the topic model, and further work is needed
to develop model-aware architecture design strategies for general latent variable models.

Training the Encoder. Training our encoder parameters ¢ requires an available set of
M parameter vectors {0, }2_, of interest. We choose these to be representative of the
subset of © we wish to generalize well to. We then maximize ELBO across all M models:

maxy B | S50y S0 108 p(an, hnlOm) — 10g q(hn NN (2, Om)) (3)
We use stochastic gradient ascent to solve for ¢, using the reparameterization trick to
estimate gradients for a minibatch of examples and models at each step. We can interpret
this objective as an expectation over samples 6,, from a target distribution over parameters.

Related Work. Recent meta-learning VAEs (Wu et al., 2019; Gordon et al., 2019) also try
to generalize across models, but their encoders take sampled datasets from a model as input,
not model parameters 6. Other work focuses on inverting the structure of the graphical
model to improve amortization (Webb et al., 2018). Our approach offers a simpler, more
direct approach to model comparison. For topic models, Yao et al. (2009) present early
amortization efforts, and Srivastava and Sutton (2017) first used VAE approaches.

3. Experiments: Topic Models for Synthetic Data and Product Reviews

We compare our proposed Any Parameter Encoder (APE) to several other inference meth-
ods on two topic modeling tasks. For all VI methods, we choose ¢ to be a Logistic Normal
parameterized by a mean and a diagonal covariance. The appendix has complete details.

APE. We consider both naive and model-aware encoder architectures described above.
Both use MLPs with 2 layers with 100 units per hidden layer, selected via grid search.

Baselines. We consider three baselines implemented in Pyro (Bingham et al., 2018) and
PyTorch (Paszke et al., 2017). First, Variational Inference (VI) uses gradient ascent to
optimize Eq. (1). Second, we use Standard encoder VAEs for topic models (Srivastava
and Sutton, 2017). This encoder is specialized to a single parameter , with architecture size
selected via grid search (similar to APE). Finally, we run Pyro’s off-the-shelf implementation
of Hamiltonian Monte Carlo with the No U-Turn Sampler (NUTS) (Hoffman and Gelman,
2014), though we expect specialized implementations to be more performant.

Synthetic Data Experiments. We consider a V' = 100 vocabulary dataset inspired by
the “toy bars” of Griffiths and Steyvers (2004). Using K = 20 true topics 6*, we sample
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Figure 1: Left: ELBO vs. elapsed time for VI on a test set of 300 document-6,,, combinations
on synthetic data. We show a randomly-initialized run (black) and a warm-started run (green)
initialized via our Any-Parameter Encoder (red “X”). The randomly-initialized VI would require
over 400 milliseconds (vertical line) to reach the quality our APE achieved in <20 ms. Right:
Kernel Density Estimation of absolute difference between encoder ELBO and VI ELBO across
different topics. APE results (red) are closer to VI (i.e. less error).

a 500-document dataset. We consider M = 50,000 possible model parameters {Gm}%[zl,

sampled from a symmetric, sparse Dirichlet prior over the vocabulary. Typical 6,, look
unlike the true topics 6*, as shown in the supplement, so inference must handle diversity
well. We train our APE on 25 million possible document-6 pairs for two epochs, then
evaluate on unseen document-# pairs drawn from the same generative process.

Product Reviews. We model 6,343 text documents of consumer product reviews (Blitzer
et al., 2007). We use the V' = 3000 most frequent vocabulary terms and K = 30 topics.
We generate training topics in the same way as in the synthetic data experiments, and we
evaluate on test topics found via Gibbs sampling with several separately initialized runs.

Results: Encoder Design. Results comparing naive and model-aware encoder architec-
tures are in Table 1. Our proposed model-aware input layer yields better heldout likelihoods
than the naive alternative, which we suggest is due to its more effective inductive bias.

Results: Quality-vs-Time Tradeoff. Comparing results across Table 1 and Fig. 1, we
see that while the Standard Encoder understandably fails to generalize across models, our
Any Parameter Encoder achieves quality close to non-amortized VI and NUTS with a speed
up factor of over 100-1000x. APE can also provide a useful warm start initialization to VL.

Results: Agreement in model comparison. Motivated by the need to rapidly assess
proposal moves that escape local optima, we gather 10 different models and measure whether
each encoder’s ranking of a pair 6, 6’ on the test set agrees with VI's ranking. Table 1 shows
that APE agrees with VI in 75% of 45 cases in the real data scenario, while Standard Encoder
agrees just 29% of the time. This suggests APE may be trustworthy for accept/reject
decisions, though further work is needed to improve this number further.

4. Conclusion

Across two datasets and many model parameters, our Any Parameter Encoder produces
posterior approximations that are nearly as good as expensive VI, but over 100x faster. Fu-
ture opportunities include simultaneous training of parameters and encoders, and handling
Bayesian nonparametric models where 6 changes size during training (Hughes et al., 2015).
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Appendix A. Method Details

A.1. Topic Model Prior Details

Hidden variable h,j defines the probability that any word in document n is produced by
topic k. Thus, h, is a non-negative vector of size K that sums to one. Commonly, h,
is given a symmetric Dirichlet prior with concentration o > 0. Smaller « values lead to
sampled vectors h, with more sparsity. Instead, we model h, with a Logistic Normal
prior (Aitchison and Shen, 1980), and choose the mean and covariance to be close (in a KL
sense) to a Dir(«) prior, as in (Hennig et al., 2012)).

hy, ~ LogisticNormal ([pu1 () ... pr ()], diag([vi(@) ... vk(a)])) (4)
pula) =log . — - logan,  uela) = (1= 1)+ 3 > (5)
k

We set o, = 0.01 for all topics k. The choice of Logistic Normal prior enables the use of the
reparameterization trick (Kingma and Welling, 2014), which produces unbiased and lower
variance Monte Carlo estimation of the ELBO objective and its gradient with respect to
encoder parameters.

We compare our Any-Parameter Encoder (APE) inference method to several baseline
methods, all implemented for Logistic Normal topic models using Pyro (Bingham et al.,
2018) with PyTorch backend (Paszke et al., 2017). We use CPU for all methods during

evaluation for a consistent time comparison across methods.

A.2. Inference Implementation Details.

Approximate Posterior Family. For all variational methods, we chose approximate
posterior ¢ to belong to the Logistic Normal family parameterized by a mean vector u,, € RE
and a diagonal covariance matrix with diagonal o2 € Rf .

q(hn| An={pin, on}) = LogisticNormal s (., diag(c2)) (6)
For encoder methods, the parameters {j,,logo2} are the output of a shared encoder NN.
For VI, these are free parameters of the optimization problem.

Variational Inference (VI). We perform using gradient ascent to maximize the objec-
tive in Eq. (1), learning a per-example mean and variance variational parameter. We run
gradient updates until our moving average loss (window of 10 steps) has improved by less
than 0.001% of its previous value. For our VI runs from random initializations, we use the
Adam optimizer with an initial learning rate of .01, decaying the rate by 50% every 5000
steps. For our warm-started runs, we use an initial learning rate of 0.0005. In practice, we
ran VI multiple times with different learning rate parameters and took the best one. Table
1 only reports the time to run the best setting, not the total time which includes various
restarts.

Standard encoder. We use a standard encoder that closely matches the VAE for topic
models in Srivastava and Sutton (2017). The only architectural difference is the addition
of a temperature parameter on the u, vector before applying the softmax to ensure the
means lie on the simplex. We found that the additional parameter sped up training by
allowing the peakiness of the posterior to be directly tuned by a single parameter. We use a
feedforward encoder with two hidden layers, each 100 units. We chose the architecture via
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hyperparameter sweeps. The total number of trainable parameters in the model is 24,721
on the synthetic data and 316,781 on the real data; this is compared to 16,721 and 19,781
parameters for model-aware APE.

NUTS. For the Hamiltonian Monte Carlo (HMC) with the No U-Turn Sampler (NUTS)
(Hoffman and Gelman, 2014), we use a step size of 1 adapted during the warmup phase
using Dual Averaging scheme. Upon inspection, we find that the method’s slightly lower
posterior predictive log likelihood relative to VI is due to its wider posteriors. We also find
that the Pyro implementation is (understandably) quite slow and consequently warm-start
the NUTS sampler using VI to encourage rapid mixing. We are aware that there exist
faster, more specialized implementations, but we decided to keep our tooling consistent for
scientific purposes.

Appendix B. Experiment Details
B.1. Synthetic Data Generation

We generate a set of different models {6y, 01, ...05/} from a symmetric Dirichlet prior with
a = 0.1. We train our Any-Parameter Encoder in random batches of document-topic
combinations. With 500 documents and 50,000 topics (i.e. D = 500, M = 50,000), we have
25 million combinations in total.

The topics used to generate the synthetic data represent “toy bars”, inspired by (Griffiths
and Steyvers, 2004). See Figure 2 for a visualization. We use this same toy bars-biased prior
to generate all our topics in the holdout set, though the order of the topics is random. See
Figures 2(a) and 2(b) for a visualization of the true topics #* and a representative model 6 in
the training set, respectively. Figure 2(c) shows sample reconstructions from each inference
technique (rows) on different document-topic combinations (columns). The reconstructions
are a qualitative assessment of the ability of the inference method to generate good posteriors
and demonstrate the ability of APE to reach close-to comparable results with more expensive
methods.

B.2. Encoder Training Details

For training both APE and the Standard encoder on the synthetic data, we use Adam
with an exponential decay learning schedule, a starting learning rate of 0.01, and a decay
rate of .8 every 50,000 steps. We find that this schedule tends to be fairly robust; these
hyperparameters were used for both APE and the Standard encoder on both the synthetic
and real data. We chose our initial learning rate via a learning rate finder posed in Smith
(2017), and we train for 2 epochs with a batch size of 100.

We train our standard VAE encoder on a single model with parameters 6 drawn ran-
domly from a symmetric Dirichlet prior with o = 0.1. To train the standard encoder, we pass
in our model of interest to the decoder, holding its weights fixed as we perform stochastic
backpropagation to update the encoder weights. The same thing happens for APE, though
the same topics are additionally included as part of the input into the encoder.
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RAPID MODEL COMPARISON BY AMORTIZING ACROSS MODELS
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(¢) Reconstructions of the documents. Rows (from top to bottom): Original document,
No U-Turn Sampler, Variation inference, Any-Parameter encoder, Standard encoder.
Columns are different document topic pairs. The Any-Parameter Encoder produces
reconstructions close to comparable with the other more expensive procedures, while
the Standard encoder fails to generalize to sensical posteriors.

Figure 2: Toy Bars Qualitative Visualizations. We represent document and the individual
topics of a model by a 10x10, where each pixel in the plot represents a word in the vocabulary.
The darkness of each pixel represents the density of the word (for topics) or the relative oc-
currence of the word (for documents). (a) and (b) show topics, and (¢) shows documents and
corresponding reconstructions from posteriors obtained through the various methods.

B.3. TLDR

We develop VAEs where the encoder takes a model parameter vector as additional input,
so we can do rapid inference for many models
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