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ABSTRACT

Generative adversarial network (GAN) is one of the best known unsupervised
learning techniques these days due to its superior ability to learn data distributions.
In spite of its great success in applications, GAN is known to be notoriously hard
to train. The tremendous amount of time it takes to run the training algorithm
and its sensitivity to hyper-parameter tuning have been haunting researchers in
this area. To resolve these issues, we need to first understand how GANs work.
Herein, we take a step toward this direction by examining the dynamics of GANs.
We relate a large class of GANSs including the Wasserstein GANs to max-min
optimization problems with the coupling term being linear over the discriminator.
By developing new primal-dual optimization tools, we show that, with a proper
stepsize choice, the widely used first-order iterative algorithm in training GANs
would in fact converge to a stationary solution with a sublinear rate. The same
framework also applies to multi-task learning and distributional robust learning
problems. We verify our analysis on numerical examples with both synthetic and
real data sets. We hope our analysis shed light on future studies on the theoretical
properties of relevant machine learning problems.

1 INTRODUCTION

Since it was first invented by Ian Goodfellow in his seminal work|Goodfellow et al.|(2014)), generative
adversarial networks (GANs) have been considered as one of the greatest discoveries in machine
learning community. It is an extremely powerful tool to estimate data distributions and generate
realistic samples. To train its implicit generative model, GAN uses a discriminator since traditional
Bayesian methods that require analytic density functions are no longer applicable. This novel
approach inspired by zero sum game theory leads to a significant performance boost; GANs are
able to generate samples in a fidelity level that is way beyond traditional Bayesian methods. During
the last few years, there have been numerous research articles in this area aiming at improving its
performance (Radford et al., 2015; [Zhao et al., [2016; Nowozin et al., 20165 |Arjovsky et al.,|2017;
Mao et al.,2017). GANs have now become one of most recognized unsupervised learning techniques
and have been widely used in a variety of domains such as image generation (Nguyen et al., [2017),
image super resolution (Ledig et al.,|2017), imitation learning (Ho & Ermon, |2016).

Despite the great progress of GANs, many essential problems remain unsolved. Why is GAN so
hard to train? How to tune the hyper-parameters to reduce instability in GAN training? How to
eliminate mode collapse and fake images that show up frequently in training (Arjovsky & Bottou,
2017)? Comparing with many other machine learning techniques, the properties of GANs are far
from being well understood. It is quite likely that the theoretical foundation of GANs will become a
longstanding problem. The theoretical difficulty of GANSs mainly lies in the following several aspects.
First, it is a non-convex optimization problem with a complicated landscape. It is unclear how to
solve such optimization problems efficiently. The first-order method widely used in the literature via
updating the generator and discriminator along descent/ascent direction does not seem to converge
all the time. Although some techniques were proposed to stabilize the training performance of the
network, e.g., spectral normalization [Miyato et al.|(2018)), in fact, there is no evidence that these
algorithms guarantee even local optimality. Second, even if there were an efficient algorithm to solve
this optimization problem, we do not know how well they generalize. After all, the optimization
formulation is based only on the samples generated by the underlying distribution but our goal is
to recover this underlying distribution. Of course, this is a problem faced by all machine learning
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techniques. Last, there are no reliable ways to evaluate the quality of trained models. There are a

number of works in this topic (Salimans et al., 2016} [Heusel et al, 2017), but human eyes inspection
remains the primary approach to judge a GAN model.

In the present work, we focus on the first problem and analyze the dynamics of GANs from an
optimization point of view. More precisely, we study the convergence properties of the first-order
method in GAN training. Our contributions can be summarized as follows. 1) We formulate a large
class of GAN problems as a primal-dual optimization problem with a coupling term that is linear
over discriminator (see Section [2]for the exact formulation); 2) We prove that the simple primal-dual
first-order algorithm converges to a stationary solution with a sublinear convergent rate O(1/t).

There have been a number of papers that study the dynamics of GANs from an optimization viewpoint.
These works can be roughly divided into three categories. In the first category, the authors focus
on high level idea using nonparametric models. This includes the original GAN paper|Goodfellow|
(2014), the Wasserstein GAN papers [Arjovsky & Bottou| (2017); [Arjovsky et al| (2017) and
many other works proposing new GAN structures. In the second category, the authors consider the
unrolled dynamics 2016), that is, the discriminator remains optimal or almost optimal
during the optimization processes. This is considerably different to the first-order iterative algorithm
widely used in GAN training. Recent works Heusel et al.[{(2017);|Li et al.|(2017); Sanjabi et al.[(2018))
provide global convergence analysis for this algorithm.

The last category is on the first-order primal-dual algorithm, in which both the discriminator and the
generator update via (stochastic) gradient descent. However, most of the convergence analysis are
local (Daskalakis et al.| [2017; Mescheder et al., 2017}, [Nagarajan & Kolter} 2017} [Li et al.}, [2018).
Other related work including the following: In |Qian et al.| (2018) the authors consider a gradient
descent/ascent algorithm for a special min-max problem arising from robust learning (min problem is
unconstrained, max problem has simplex constraints); In|Yadav et al.|(2018)) the GANs are treated as
convex-concave primal-dual optimization problems. This formulation is considerably different to our
setup where GANS, as they should be, are formulated as nonconvex saddle point problems. In|Farnia
[& Tse| (2018)), the authors investigated the properties of the optimal solutions, which is also different
from our work focusing on convergence analysis of the first-order primal-dual algorithm. In[Zhao]
(2018)), some unified framework covering several generative models, e.g., VAE, infoGAN, were
proposed in the Lagrangian framework. However, the dual variable in their problem is a Lagrangian
multiplier, while in our problem, it is the discriminator of GAN. Besides, the focus of their paper is not
the optimization algorithm. In[Chen et al](2018)), the authors related a class of GANs to constrained
convex optimization problems. More specifically, such GANs can be viewed as Lagrangian forms
of these convex optimization problems. The optimization variables in their formulation are the
probability density of the generator and the function values of the discriminator. Many issues like
nonconvexity do not show up. This is essentially a nonparametric model, which doesn’t apply to
cases when the discriminator and the generator are represented by parametric models. On the other
hand, our analysis is carried out on the parametric models directly and we have to deal with the
nonconvexity of neural networks. In[Hajinezhad & Hong| (2017) a primal-dual algorithm has been
studied for a non-convex linearly constrained problem (which can be reformulated into a min-max
problem, with the max problem being linear and unconstrained, and with linear coupling between
variables); In[Hamedani & Aybat| (2018)), (Chen et al.| 2013)) and the references therein, first-order
methods have been developed for convex-concave saddle point problems. Compared to these works,
our considered problem is more general, allowing non-convexity and non-smoothness in the objective,
non-convex coupling between variables, and can further include constraints. Moreover, we provide
global convergence rate analysis, which is much stronger than the local analysis mentioned above.

It turns out that the primal-dual framework we study in this paper can also be applied to the
distributional robust machine learning problems (Namkoong & Duchi, 2016) and the multi-task
learning problems [2018). In multi-task learning, the goal is to train a single neural
network that would work for several different machine learning tasks. Similarly, in distributional
robust learning, the purpose is to have a single model that would work for a set of data distributions.
In both problems, an adversarial layer is utilized to improve the worst case performance, which leads
to a primal-dual optimization structure that falls into the scope of problems we consider.

The rest of the paper is structured as follows. In Section 2] we introduce GAN and its primal-dual
formulation. We provide details of the algorithms with proof sketches in Section[3] The full proofs
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are relegated to the appendix. We highlight our theoretical results in Section ] via several numerical
examples, with both synthetic and real datasets.

2 GENERATIVE ADVERSARIAL NETWORKS AND MIN-MAX PROBLEMS

GAN is a type of deep generative model with implicit density functions. It consists of two critical
components: a generator and a discriminator. The generator takes random variables with known
distribution as input and outputs fake samples. The discriminator is trained to distinguish real samples
and fake samples.

2.1 GANSs

In the original form of GAN, the generator is a neural network and the discriminator is a standard
classifier with cross entropy cost. Denote the underlying probability distributions of the data sample
{y:}1*; C R? and the random seed x (a random variable in R¥) of the generative model by P, and
Py respectively. The original or vanilla GAN is of the form (Goodfellow et al.,[2014)

min max{E(log(F(y))) — E(log(1 — F(G(x))))}. (1)

Here G stands for the set of possible generators and F the set of possible discriminators.

There have been numerous modifications of the original GAN, among which the Wasserstein GAN
(Arjovsky et al.||2017) attracts a lot of attention. It has the form

min max{E(F(y)) - E(F(G(x)))}, ©)
where G is the set of parameterized generators and F is the set of Lipschitz functions with Lipschitz
constant 1. This is a special case of a more general class of GANs with the same structure but different
constraint set /. The inner maximization loop defines different notions of integral probability metrics
(Miiller, |1997)) depending on the choices of F. Other than Wasserstein GAN, one interesting example
with this structure is the generative moment matching networks (Li et al.| | 2015; |Arjovsky et al., 2017).
Wasserstein GAN can be extended to general optimal transport cost ¢(x, y), which results in saddle
point formulation

min max{E(y(y)) + E(¢(G(x)) | ¥(y) +¢(2) < c(x,y), Vo, y} 3)

Note that the discriminator now becomes two functions ), ¢ instead of one. When ¢(z,y) = ||z —y||,
the above reduces to the standard Wasserstein GAN in equation

2.2 NONCONVEX MIN-MAX PROBLEMS

We observe that, compared to vanilla GAN in equation[I] the Wasserstein GAN in equation [2]and
equation [3| has a special structure. In the nonparametric form, the coupling between the generator G
and the discriminator F' is linear on F' in Wasserstein GAN while nonlinear in vanilla GAN. Indeed,
replacing F' by aF'y + SF» in the coupling term E(F(G(x))) yields

E(F(G(x))) = E((aFy + fF5)(G(x))) = aB(F1(G(x))) + SE(F(G(x)))-
This structure motivates us to study the following min-max primal-dual optimization problem

minmax  A(X) + (9(X),Y) —I(Y) 4

with [ being strictly convex. the other two functions h and g can be non-convex. Here Y represents
the discriminator F' and X represents the generator G. Note that the coupling term (g(X),Y) is
linear over the discriminator Y, but nonlinear in X .In real applications, we need to parameterize the

discriminator and generator, which may lead to the loss of the property that the coupling is linear
over discriminator. Next, we present several cases where this linear structure stays.
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2.2.1 WASSERSTEIN GAN IN LQG SETTING

Wasserstein GAN in linear quadratic Gaussian (LQG) setting was proposed in [Feizi et al.|(2017)) to
understand GAN. In this simplified case, the data distribution is Gaussian, the cost is quadratic and
the generator is linear, namely,

1
c(@,y) = lle=yl* ¥ ~ N(0,3y), x ~ N(0, L), G(x) = bz

It can be shown that it suffice to consider discriminator of the form

1 1 1 1
o) = S llol* = 52" A, ¥(y) = Slll* - 5u" By

with A, B being positive definite.

The constraint ¢(x) + 1 (y) < 3|/ — y||* implies that B = A~'. Consequently, the discriminator
can be parametrized by a single variable A > 0. Additionally, G(x) is a zero mean Gaussian random
variable with covariance #6”. Therefore, the Wasserstein GAN in equation |3|then reduces to
: T T -1
,in, max Tr(Xy) + Tr(66") — Tr(A86") — Tr(A™ %), (5)
which is apparently in the form of equation 4 When only samples {x;}?_;,{y;}I-, of x,y are
available, this becomes

n

. 1 1 2 1 T A—1
— — i —_ = A i
min max E (2||y I Yi yi) +

1 - 1 2 1 TnT
I 5 n;gnean STl 07 Abz).  (©)

1=
2.2.2 GANS WITH DISCRIMINATORS LINEAR ON FEATURES

In general quadratic discriminators are not sufficient to distinguish complicate high dimension
distributions. In order to deal with more general data sets, we consider the setting where the
discriminator is a linear combination of predefined basis functions. More specifically, let { F;}1_; be
the basis functions, and F' = > a; F; with some constraint on «, then the above formulation becomes

Geg acRn

min max {Z o E(F(y)) — Z o, E(F;(G(x)) — Allallg} : (7

Here the term A||c||? with A > 0 is used to regularize , or equivalently, the discriminator.

Similarly, for GAN structure in equation 3] we can restrict our discriminators ¢ and ¢ to be linear
combinations of basis functions {¢;}? ; and {¢;}_,, thatis, ¢ = > ¢, ¥ = > Bith;. The
constraint ¢(z) + ¢ (y) < c(z,y) in equation [3|is difficult to impose precisely. Instead, we use a
regularization term [ and obtain

n n
i fE iC: @E i —1 s . 8
gelrglrg%X{Zi:a {4 (X))HZ:B {¢i(y)} =l 6)} ®)
Clearly, both equation [7]and equation [8are of the form equation[d] We remark that no constraint has
been imposed on the generator G; it can be any general neural network. The requirement that the
discriminator is a linear combination of predefined basis functions could be strong, but in principle,
any function can be approximated to an arbitrary precision with large enough bases.

3 ALGORITHM DESIGN AND CONVERGENCE ANALYSIS

In this work, we consider the following general min-max problem,

n

winmax FOGY)2 Y ((X) + {0:(X), V)~ 6(Y) ©)
=1

where X is a convex and compact set and the size of || X]|| is upper bounded by ox; h;(X) :
R? — R, Vi is a non-convex function and has Lipschitz continuous gradient with constant L x;
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1;(Y) : R* — R, Vi are strongly convex with modulus v > 0 and Lipschitz gradient constant Ly-;
the matrix function g;(X) : X — dim(Y") can also be non-convex, and it is assumed to be Lipschitz
and Lipschitz gradient continuous with constants L ; and L, ». We note that regardless of whether
Y is a bounded set or not, one can show that for all x € X', the maximizer Y * for the maximization
problem lies in a bounded set; see Lemma[3]in the appendix for proof.

We note that by allowing constraints in the form of x € X, and y € )/, one can also include
nonsmooth regularizers in the formulation. As an example, if we add A||X||; into the objective
function, one can introduce a new variable z, and consider an equivalent problem with the constraints
[ X1 < =z, with the objective function changed to £ 37" | (h;(X) + (:(X),Y) — [;(Y)) + 2.

The above formulation is quite general. Compared with the existing convex-concave saddle point
literature (Hamedani & Aybat, |2018)), (Chen et al., 2013), our formulation allows non-convexity in the
minimization, which is essential to modelling the neural network structure of generators in GANs and
general non-convex supervised tasks in multi-task learning; Compared with the non-convex linearly
constrained problems considered in (Hajinezhad & Hong| [2017)), it further allows non-linear and
non-convex function g(X) to couple with Y. Compared with the robust learning formulation given in
equation equation [9]can further include constraints and nonsmooth objective functions (thus can
include nonsmooth regularizers such as ¢; norm).

It is important to note that due to the generality of problem equation [9] developing performance
guaranteed first-order method, which only utilizing the gradient information about functions h;, g;, l;
is very challenging. To the best of our knowledge, there has been no such algorithm that can provably
compute even first-order stationary solutions for problem equation 9}

3.1 ALGORITHM DESCRIPTION

Our proposed gradient primal-dual algorithm of solving equation [J]is listed below, in which we
alternatingly perform first-order optimization to update X and Y":

I B
r+1 __ : - . r . T\ T oy ~ _yr)2
X arg)r(neu)l(<ni§_1 (Vxh(X")+Vx Tr(g;(X")Y"), X - X >+ 2HX X",

(10)

1 & 1
r+1 __ - . r . r4+1 _ r _ _ |2
Yyt = argr;12§<—n ;,1 Vyli(Y") 4+ g (X", Y - Y > —2p||Y Y7|°.

To be consistent with the optimization literature, we will refer to the X -step the “primal step” and
the Y -step as the “dual step”. We note that 1/ and p are two positive parameters, that represent
stepsizes of the two updates, and both of them should be small. A few remarks are ready.

Remark 1 (projected gradient). It can be easily verified that the updates of X™ and Y" can be
written down in closed form using the following alternating projected gradient descent/ascent steps:

Xr+1 _ pijX (X'r‘ o % <:‘l Z (VXhz(XT) +Vx Tr(gZ(XT)YT))>> ’
i=1

1 n
Y’r‘+1 — . YY" - (YT . X’r‘Jrl .
pr01y< +p<n;Vylz( )+ ai( )))

Remark 2 (stochastic vs deterministic algorithm). This work will be focused on the deterministic
algorithm given in equation [I0] because such an algorithm is representative of the primal-dual
first-order dynamics used in training GANs and optimizing robust ML problems, and it is already
challenging to analyze. However, we do want to remark that, it is relatively straightforward to
build upon our proof, by incorporating the standard technique in stochastic constrained optimization
(Ghadimi et al., |2016)) (such as using decreasing stepsizes, and certain randomization rule in picking
the final solutions), to analyze the stochastic version of the algorithm, in which mini-batches of the
component functions are randomly selected to update at each iteration. However, in order to keep the
discussion of the paper simple, we choose not to present such results.
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3.2 CONVERGENCE ANALYSIS

In this section, we present our main convergence results for the primal-dual first-order algorithm
given in equation[T0] We first present a few necessary lemmas.

Lemma 1. (Descent Lemma) Let (X", Y ") be a sequence generated by equation The descent of
the objective function can be quantified by

e R L R e L

1 1 Ly+1 B
o (v Lga+ 2 ) It v ey oy an
2 p 2

From Lemmal[T] it is not clear whether the objective function is decreased or not, since the primal step
will consistently decrease the objective value while the dual step will increase the objective value.

The key in our analysis is to identify a proper “potential function”, which can capture the essential
dynamics of the algorithm, and will be able to reduce in all iterations.

Lemma 2. When the following conditions are satisfied,
(Ly + Lg,1 + 5)((60y +1)Lx + Ly 2 +2pL 1)
v —pL3

p<l BZmaX{LgJJF

L2 ) 7LX + UYLg,Q
Y
(12)
then there exist c1, ca, c3,d > 0 such that potential function will monotonically decrease, i.e.,
737’4»1 _ PT S _cl||X1“+l _ XT”Q _ CQHYTJFl _ Y’r‘H2 _ C3||Yr _ YT71H2 (13)

where P+ & f(X"HL Y ) + 4O and

L 1 1 1 — pL?
g e (Bt By st e (g - T )y v

To state our main result, let us define the proximal gradient of the objective function as

X — projy[X — Vx f(X,Y)] ]

Y — projy Y + Vy f(X,Y)] (14

VL(X,Y) 2 [
where proj denotes the convex projection operator. Clearly, when VL(X,Y') = 0, then a first-order
stationary solution of the problem equation]is obtained.

Theorem 1. Suppose that the sequence (X",Y") is generated by equationand p, B satisfy the
conditions equation For a given small constant €, let T (€) denote the iteration index satisfying
the following inequality

T(e) £ min{r | |[VLX",Y")|? <e,r>1}. 15)
Then there exists some constant C > 0 such that
C’(P1 —P)
P 1
=70 (16)

where P denotes the lower bound of P".

The above result shows that our proposed algorithm converges to the first-order stationary point of
the original problem in a sublinear rate.

4 EXPERIMENTS

We conduct several experiments to illustrate our results. The first two examples are on GANs with
both synthetic data and MNIST dataset, and the last one (supplemental material) is on multi-task
learning with real data. Our intention is by no means to show our algorithm generates superior
samples than other methods. Our main goal is to show that our first-order primal-dual algorithm
would converge at least to a local solution. All experiments are implemented on a NVIDIA TITAN
Xp.
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Table 1: Comparison of time elapsed (in seconds) for different dimensions.

| [ 5D | 10D | 20D | 50D |
ours 130.27 | 134.76 | 135.47 | 380.98
Sanjabi etal. | 524.00 | 543.52 | 545.18 | 1603.68

4.1 GAN IN LQG SETTING

In the LQG setting, as discussed in Section|2.2.1] the generator is modeled by a linear map G(z) = 6z
with parameter 6 and the discriminator is parametrized by a positive definite matrix A. The seed
X is a zero-mean random variable with unit covariance. We randomly generate a positive definite

matrix X, as our covariance of the data samples. The solution to this GAN problem satisfies A = I,
00" =%,

We implement our algorithm with different step-sizes. The results are shown in Figure [T for 20
dimensional data, from which we see that the algorithm converges when the step-size is sufficiently
small, while diverges for a large step-size. We also compare our algorithm with the one proposed
in Sanjabi et al.| (2018]), which requires solving the inner maximization problem in each iteration.
As can be seen from the last plot of Figure[I] while these two algorithms take a similar number of
iterations to converge, the total time consumption is more for|Sanjabi et al.| (2018)) as it takes more
time to solve the maximization problem than to update the parameter one step along the gradient
direction. A detailed comparison is given in Table[T}

4000

2000000 g J — 6
77777 A
1000000{ [ 2000
— 0
oy A
~1000000 M -2000
~2000000

40000{ |

200001 |

Loss
o
Loss

—20000

Loss
o

—40000

0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
Number of iterations Number of iterations Number of iterations
(a) p = 0.0001, 8 = 10000 (b) p = 0.005, 8 = 1000 (c)|Sanjabi et al.{(2018)

Figure 1: (a) converge and (b) diverge show the effect of step-sizes; (c) is based on the algorithm in
Sanjabi et al.|(2018).

To visualize the effectiveness of LQG GAN, we consider the problem in 2 and 3 dimensional spaces.
We plot the samples corresponding to both the learned and the real covariance matrices in Figure 2}
Clearly, the learned models match the underlying truth.

()d=2 (byd=3

Figure 2: Real ( ) vs generated (red) samples
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4.2 GANS WITH DISCRIMINATORS LINEAR ON FEATURES

We test the GANs framework with discriminators linear on features (discussed in Section[2.2.2) on the
MNIST (LeCun et al} [1998) data of size 28 x 28. The network architecture of the generator is same
as DCGAN (Radford et al.,|2015)). To get the reasonable basis functions for the discriminator, we first
train a Wasserstein GAN model with a subset of the MNIST data for a small number (5k) of iterations.
We then use the last hidden layer of the discriminator as our bases. We implement our algorithm
with a different number of basis and the results are shown in Figures [3|and[d] We have two major
observations here: 1) the GANs with discriminators linear on features generate reasonable samples
and the performance improves as we increase the number of bases; ii) the algorithm converges with a
small step-size while diverges for a large step-size.
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Figure 3: Generated samples with different number (a) 128, (b) 1024, and (c) 4096 of basis functions.
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Figure 4: Effect of stepsizes: the algorithm converge for small stepsize and diverge for large stepsize

5 CONCLUSION

In this work, we presented a convergence result for a first-order algorithm on a class of non-convex
max-min optimization problems that arise in many machine learning applications such as generative
adversarial networks and multi-task learning. To the best of our knowledge, this is the first
convergence result for this type of primal-dual algorithms. Our results allow us to analyze GANs
with neural network generator as well as general multi-task non-convex supervised learning problems.
A critical assumption we made is that the inner maximization loop is a strictly convex problem.
For applications in GANS, our assumptions require the discriminator to be a linear combination of
predefined basis functions. Extending this to the most general cases where the discriminator is a
neural network requires further investigations and will be a future research topic.
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A  ROBUST MULTI-TASK MACHINE LEARNING

Multi-task machine learning (Qian et al.,|2018) aims at learning a single model that would work for
several different machine learning tasks. Let

mmi/nE{fl(Xlaw)}7 T mwlan{fn(x",W)}

be n Sllpel‘vlsed leal‘ning pl‘OblemS, then a multi-task formulatlon IS
IIll.Il E 7,E ”L Xl7 [/[/ 5 1;

where p is a probability vector to weight the tasks. A common choice is the uniform distribution
p=1[1/n,...,1/n]. To improve the worst case performance, one can change p adaptively and attain
the max-min formulation

mv[i/nmgx{ZpiE{fi(Xi, W)} = AD(p,p) + h(W)}, (18)
i=1

where D is a distance function to regularize p. Here we have also added an regularization term on W'

A closely related topic is the distributional robustness (Namkoong & Duchi, [2016) problem

n
i if (s, W 19
H%m;lea?gc;pzf(xu ) (19)
where P is a subset of the space of probability vectors. Relaxing the hard constraint on p points to a
regularized version

i i iy —AD »D)- 20
mvénmg)(;p fla;, W) (p,p) (20

While p represents weights on different tasks in multi-task learning, it describes data distribution
in distributional robustness. It beautifully incorporates data uncertainties in the learning problems.
This formulation has also applications in adversarial learning [Madry et al.| (2018)), where p; f (z;, W)
denotes the loss given by data x; after adversarial reweighing through the inner maximization problem.
The goal of the outer minimization is to learn a model with parameters W such that the worst case
loss is minimized.

A.1 NUMERICAL EXAMPLE

We consider two supervised learning tasks with MNIST (LeCun et al.| [1998)) dataset and CIFAR10
(Krizhevsky & Hinton, 2009) data set. We seek a single neural network that works for these two
completely unrelated problems (see Section [A). First, we convert the MNIST data from 28 x 28
gray images to 32 x 32 color images so that it is in the same format as CIFAR10. We use a standard
AlexNet (Krizhevsky et al., [2012) as our model. We train the model with the robust multi-task
learning framework and compare it to the results from three other methods: train with MNIST only,
train with CIFAR10 only and train with both data sets but with even weight [0.5, 0.5]. The batch size
we use is 128.

The results are presented in Table[2] The last row is the results for the robust multi-task learning, and
the “even mixture” in the second last row standards for uniform weight [0.5, 0.5] between the two
tasks. We see that the result of using robust multi-task learning framework is better than the one with
even weight. Moreover, its performance on each task is comparable to that trained from a single data
set alone. The optimal p is [0.205, 0.795], where the first value is for the MNIST dataset. We also
implement our algorithm with different levels A of regularizations. The results are shown in Figure
[5] where we display the loss functions in the first two plots and the weight for MNIST in the last
plot. Even though changing A doesn’t affect the convergence rate that much, it changes the optimal p
significantly.
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Table 2: Multi-task Learning: Comparison of Accuracies

Method MNIST CIFAR10
Training | Test Training | Test
MNIST 99.98 99.33 9.24 9.16
CIFARI0O 10.25 10.10 99.75 76.59
Even Mixture 99.96 99.40 99.42 74.97
OPT Mixture 99.98 99.35 99.85 76.29
2 — 2 —p 0.5
————— w "
} 1 * i 1 y £ 0.4
g0 g0 7 So0s
-1 -1 =
0.2
2 -2 N e s
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
Number of iterations (x 100) Number of iterations (x 100) Number of iterations (x 100)
(@ A=0.1 (b) A = 0.005 (c) The change of p across iterations

Figure 5: Effect of regularization. Here p is the weight, W is the parameter and X is the regularization
constant. The regularizer D is taken to be the Kullback-Leibler divergence.

B CONVERGENCE ANALYSIS OF THE PRIMAL DUAL ALGORITHM

In our convergence analysis of the primal-dual algorithm, we use the optimality conditions of X"-
and Y "-subproblems repeatedly so that the quantities of measuring the size of the difference of the
iterates, e.g., || X! — X"|| and ||[Y"*! — Y|, can be obtained. Also, for the simplicity of the
notation, we have the following definitions:

MO LSS, (02 Y g0, 2SS LY. @D

=1

Then, we give the optimality condition of X" -subproblem and Y " -subproblem as follows,

<Vh(X’“) + ) Vg (X7 4+ BXTH = X7), X7 — X> <0VXeX, (22
.k

Y™ =Y 4 pe T 4 p (g(XTT) = Vyl(YT)) . (23)
where —e" 1 denotes the subgradient of the convex indicator function 1(y" ! € ), Y/}, denotes the

entry at the j row and kth column of Y, and g, 5 (X") denotes the matrix value function mapping
from X" to the value at the jth row and kth column of g(X™). Note that equationis also equivalent
to

<—Vyl(YT) + (X — E(YT“ —Y"), Yy Y> >0, VY € ). (24)
P

Before going to the details, we will first introduce the following lemma that characterizes the upper
bound of ||V |.

Lemma 3. Let (X",Y™") be a sequence generated by equation The size of Y is upper bounded
by some constant number denoted by oy .
Proof. Let ((X,Y) 2 1(Y) — (9(X),Y). Define:

Y] £ arg {/nelg C(X1,Y) Yy Zarg glelg ((X3,Y) (25)
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From the optimality conditions, we know that
(Vy (X0, Y1), Y5 = Y) 20 (Vy((X2,Y5), Y —Y5) > 0. (26)
Adding these two inequalities, we have
<VYC(X11 Yl*) - VYC(X%Y;)’Y; - Y1*> >0, (27
which implies that
Lgall X1 = Xoll[IYy" = Y5
> (9(X2) — g(X1), Y7" = Y5)
= (Vy((X2,Y5") = Vy (X1, ¥5), V7" = Y5)
> (Vy (X1, Y7') = Vy (X3, Y5), Y1 = Y5)
= (VI(YY") = VI(Y7), Y = Y5)
> )Yy - Y5

where in the first inequality we used the Lipschitz continuity; in the last inequality we used the strong
convexity of function [(Y"). Therefore, we have

L
1Yy - Y5l < =22
-

Since X € X, with || X || bounded by ox, we have the claim that the distance between any two
Y;* and Y5* are bounded by 2L, 10x /7. In other words, Y3, VX" € X are within a compact sets,

where Y3, £ argminy ¢y ¢(X",Y) and the radius of the set is upper bounded by 2L, 10x /7.

| X1 — Xof|. (28)

Let Y"1 denote the 7 + 1th iterate of the projected gradient descent method of solving the dual
problem which is parameterized by X"+, Because the dual problem is strongly convex, it is standard
to show that

IV Y]l < YT = Yl (29)
This implies that the distance between the iterate and the set is not increasing. The proof is complete.
O

Throughout our analysis, we used oy > ||[Y "1, Vr where | Y]|; = >i; 1Yi ;| Note that [[Y]l, >
||Y|| - Based on this definition and the previous lemma, it is easy to check that the following holds

IVA(X,Y) = Vf(ZY)| < (Lx +oyLgp)|| X — Z| (30)

where Lx and L o are two constants defined after equation
B.1 PROOF oF LEMMAI[I]

B.1.1 PRIMAL PROBLEM

Define
FX,Y) 2 h(X) = U(Y) + (9(X),Y). 31)

First, suppose that we choose 3 large enough such that 3 > Lx + oy Lgy2. Then we have the
following estimate of the descent of the objective value:

f(XT—H,YT) o f(XT,YT)

=h(X™) + (g(X™),YT) = A(XT) = (g(X7),Y) (32)
(a) . L L
< <VXh(Xr) + ZVXgi,j(XT)}/;?:kaX7+l _ Xr) + WHX%H _ XT'HQ
i,j
® B

S o §||Xr+1 7X’l"H2

when in (a) we used the equation [30f In (b) wej used the optimality condition equation [22} and we
choose B > Lx + oy Lgo.
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B.1.2 DUAL PROBLEM

For the dual problem, we have

f(XT+1,YT+1) _ f(XT+1,YT)
_ _l(Yr-i-l) + <g(Xr+1)7Yr+1 _ Yr> + l(yr) _ (1(Yr+1 c y) _ 1(yr c y))

IN&

—(VyIl(Y") — ET,YrJrl —Y") + <g(XT+1),YT+1 —Ym)
= (Vyl(YT) — L YT+ Ty (et e Ly Ty (X7, YTy

1
(:) 7<yr+1 _ YT,YT-H _ Yr> _ <6r+1 _ GT,YT'H _ YT>

p
©1 r+1 r r+1 T 1 r+1 T2
< (Y oy Yyt oy 4 Ly+L1—f [y =y

p 2 p

L ,1 T r r r—
+EBX X g (T 2 Y- YR

1 L
3 ((Lr+ Lo ) Iy -y Bt - e

N |

1 1
TG Lt
2 p

where in (a) we used the convexity of both function /(X) and indicator function, i.e., [(Y" 1) +
1Y eY)—(UY")+1(Y" €Y) > (Vyl(Y") — €™, Y™ —Y7), in (b) we used equation 23]
and (c) is true because the following relations:

1. First, from equation 23] we have

Y=Y 4 p(g(XTH) = VI(YT) + €7, (33)
YT =Y 4 p(g(XT) = VIYTT) + €, (34

which imply
el — %(Yr+l_yr_(yr_yr—l))_ (g(Xr+1) _ g(XT))_’_VZ(Yr)_VZ(YT—l).
(35)

2. Second, we have
< 6T7y’r+1 )
*5W“Y”lyw—mx“rnamym;Yw
AV l(YT) — Vyl(YT1), YTy
S YT =Y = Y YT = STy L) VY
X+ X2 - }LY”Yr Y2

Ly,l
2

1
- §Lg71

1
> - ( (Ly+L 1- ) [yt —yr|? -
2 p

<LY+ )”YT Yr1||2>

where in (a) we used Cauchy—Schwarz inequality.

Xr+1 _ Xr||2
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Finally, combing the above results, we have
FXTHLYTHY — f(XTYT)

<= D1t = X g (T Lyt 1 ) IV - YR

primal descent

Lgq

+ == [ X7+ — X712+ <Ly + p) |[y™ -y 12 (36)

B.2 PROOF OF LEMMA[2

Proof. Let Wr+1 £ (X7+1 _ X7) — (X" — X"~1). Subtracting equation[22]at iteration » — 1 from
itself at the rth iteration, we have the successive difference of equation @ 1.e.,

(Vxh(X") = Vxh(X"1)

ng‘%k( ]k: ngj, XT 1 Y’f 1 +BWT+1,XT+1 _X’r‘> S 0. (37)

Apr
Similarly, from equation 23] we also have

Y’r‘+1 YT — (Yr o erl) = (ErJrl o ET)

évr+1

p(9(XT) = g(X") = p (VI(Y") = VI(Y™™H)) . (38)
B.2.1 INDUCTION OF THE SIZE OF THE SUCCESSIVE ITERATES

First, we note the following key inequality

T T T 1 T T 1 T rT— 1 T
(WrHt, X - X7) = S IX o XTP - SIXT =X 2+ L4 P2 (39)
Second, we can get the lower bound of (A", X"*1 — XT) as follows:
<Zngj,k< NI Xr> w
7,k
:<Zv9jk ) (Vi =ik 1),XT+1—X’“>
+ <Z (Vgiu(X") = V(X)) VI L X — X’“> (41)
7,k
= Vg (X7 (Vi = Vi) (X = X)
m,n jk
20 (Vi 0ik(X7) = Vi, gin (X)) VX - X0 ) @)
m,n j.k
= DV (X7). X7 = X7 (v - Vi)
7,k
AAT
+) (Vxgin(X") = Vxgin(X71), X = X7) Y7 (43)
7.k
277
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In the above derivation, we basically changed the order of summations.

From the mean value theorem, we know that there exits X (’;Eln) € [X", X"1] such that

9 (X7 = ginn(X7) = (Vg (K720 X1 = X7)). (44)
Hence, A7 becomes

Z<Vx9j RXT), X = XYY, =YY
72 Vxgik(X7) = Vxgin(X7H), X = XMV = V) (45)
+ Z ngj,k()?T+1)7Xr+1 _ XT>(}/JTk _ Y—]r];l)
gk
= D (Vg a(X7) = Vaegy (X7, X7 = X0 = V)
7.k
+ Y (95X = g (XY = Y
7.k

=Y =YX = XX - XL

r+1
+ <Vp F V(YY) = Vyl(YT), YT — Y’"—1> (e YT -y

r+1

(a) _ r r V r T— T rT—
2 Y =YX = XLy (Y V) = T,y v

_ <6r+1 o ET,YT o Yr71>

where in (a) we used Cauchy—Schwarz inequality.

Combining A7 and A5, we can get the lower bound of (A", X"+ — X7, i.e

<AT,XT+1 _ Xr>
r+1

— s s V s T — s T —
VoYX - XLy (T ) = T,y -y
e YT YT+ 3 (Vg (X)) — Vg (X)), X7 - Xy

7,k
r+1

—lyr = erl 1 Xr+1 _XT 2L 5+ o 6rJrl — YT — erl
| 9 ;
+(Vyl(Y") = Vyl(Y"1), Y =Y h)

1 r— T r— r T
= YR Dx (X7 = X712 4 X7 = X))

To further bound the above terms, we will give the upper bound of
(Yr=Yyr=L vl /p— (et —€")) and (Vyl(Y") — Vyl(Y"71),Y" — Y"~1) separately
in the following two steps.
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Step 1). First, we have

Vr+1
<Yr o Yr717 p o (€r+1 o ET)> (46)
r+1
— <Yr _ erl _ (Yr+1 _ Yr) + Yr+1 _ YT, 4 _ (6r+1 _ ET)> 47)
p
r+1 r+1 r+1
:p<V 7V _(6r+1_6r)>_<yr+l_yr’v_(67‘+1_67‘)>
p P P
(@) p yr+l 2 Y+l 2
Nt H H _ (6r+1 _ 6T> _ ||€7~+1 _ 67~||2
2 p p
1
_ ?p (||Yr+1 o Yr||2 o ”Yr o Yr71H2 4 HVT+1||2) + <Yr+1 _ Yr,6r+1 o 6r> (48)
<0
VT+1 T T ? 1 (s T 2 1 T rT— 2
SQH—@“—H b LA I L S| (49)
P 2p 2p
where in (a) we used
<_6r+1 _ (_er)’yr-‘rl _ Yr> >0 (50)

due to the fact that —e" 1 is the subgradient of the convex indicator function l(y”Jrl € Y), and also
the equality

— T 1 T T 1 T T— 1 '
e e e | e e -1 Ly RSN C)Y

Further, from the optimality condition of the Y subprolbem shown in equation 23] we know

V'r+1 —
, . (€r+1 — ) = g(Xr+1) — g(X7) = (Vyl(Y") = Vyl(Y" 1))7 (52)
which gives
p yrt r4+1 r ’ 2 r4+1 72 2 r r—12
3 7 — (€ =€)|| < pLyg X" = X7+ pLy YT =Y (53)

where we used the Lipschitz continuity.

Step 2). Next, we need to quantify the lower bound of (VyI(Y") — VyI(Y""1), Y —Y"~1). Since
I(Y") is strongly convex, we have

(Vyl(Y") = Vyl (Y 1), YT =Y >4y =Y (54)
Combining step 1 and step 2 and equation 46| we have the lower bound of (A", X"*1 — XT)

_ , i, 1o . i
<Ar’Xr+1_Xr>2_||Yr_Yr 1H1Lg,2||X +1_X H2_§”Y 1||1LXHX +1_X ”2
— YL X7 = X %IIYH1 —Y"|? - 72p||yr —yTY2

= L2 X XTI = pTE YT - YT Ay YT (55)
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Therefore, dividing equation [37]by /3 and combining equation 39} equation [55] we have
SIXTH - X7 =y -y (56)
2 208

1 1 1
< X’r‘ _ Xr—l 2 YT _ Y’r‘—l 2_ - WT+1 2
= 7+ 50l 2 2w

2L o||Y" = Y™ Yy + Lx||Y"™ Y1 + Lx + 2pL?
N g2l 1+ Lx|| |1+ Lx +2pLy X x|
2B
Lx||yr—1 L — pL?
+ XH ||1+ XHXr_Xr—1||2_’Y 4 YHYr_Yr—1||2
2p B
(@)1 1 — pL?
giHXr_Xr—lHQ_’_THyr_Yr—1||2_7 14 YHyr_Yr—IHQ
pB B
dual descent
SoyLx + Ly + 2pL§71 Lx(oy +1)

|X’r‘+1 _ X’r‘||2 + ||X7" _ XT‘—1H2 (57)

2p 2p

where in (a) we used oy > ||Y7||1, V7.

B.2.2 POTENTIAL FUNCTION

Rearranging equation[57] we have

Lx(oy +1 1 1 —pL?
gt 2 (BB, D st - x4 (o - L5 ) e - v

28 208 28
< <Lx(f;2+1> n ;) IX7 — X712 4 (2;6 -1y QZL%> Iy" -y 2
Y —QZL% Y+ —yr)? + (6oy +1)Lx 2‘;[/9-,1 +2pL3 X7+ — X7
ot (60y +1)Lx ;ﬁng +2pL2 X X2
7 QZL% [yt —yr)? - ’YQZL%”YT oy, (58)

Define a potential function P™+! & (X"+1 y"+1) 4+ dO"*!. We can obtain

2
,PTJrl _pr <- é . L971 . Q((GO’Y + 1)LX + Lg’2 + 2pLg’1) ||XT+1 B XT||2
2 2 23
=c1
Q('Y - pL%’) LY + L-‘J’l + % r+1 2
- - [y = Y7
28 2
L.,
1
d(’y - pL%/) LY + ; —1512
— — Yr—-vy" . 5
5 — |1 n (59)

A
=c3
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B.2.3 CONVERGENCE CONDITIONS

If the following conditions hold, i.e., ¢1,ca,c3 > 0, then the potential function has a sufficient
decrease at each iteration.

B Lga d(6oy +1)Lx + Ly +2pL3 1)
2 2 28

1
(v —pLY) - (Ly + Lo+ 2) >0. 61)

>0, (60)

@

To show that 3d > 0 such that
B— Ly 0 1 }“Ld { —% ((60y +1)Lx + Lg 2 +2pL ;) 1 .
0 Ly + Lga +3 - 0 E(’Y_PLY)
by S-procedure it is sufficiently to show the set X = {z| (3 — Ly1)x® <Ly + Ly + %, ((60y +
DLx + Lg2 +2pL5 1)a* > (v — pLi,)} is empty.

=0

Hence, we require that

1.
v —pLy >0, (62)
which gives
(63)

2. 5 2 Lg,l;

3. and we also need
(Ly + Ly + 5)((60y +1)Lx + Ly 2 +2pL3 1)

B>Lg1+ (64)
. v—pL;
Note that we need piﬁ — 7_;;%’ > 0, since the potential function should be greater than 0, meaning

that

Lyp® —vp+22>0, (65)
which is actually satisfied automatically by checking the two roots of the equation L% p* — yp + 2
(note that Ly > 7).

Combing the descent lemma shown in Lemma|[T] we have the conditions of p, 3 shown in Lemma|2]
so that the potential function can have a sufficient descent at each iteration.

B.3 PROOF OF THEOREM[II
Proof. First, we can get the upper bound of ||VL(X",Y")||, which is
VL™, YT
<X = X[+ X — proj (X7 = Vx f(X7,Y7))
HYT = YT+ YT = projy, (Y7 + Vy f(X7,YT))]|

(@)
<X = X7 [lproj (X = Vx f(X™F,Y7)) = projy (X7 = Vx f(X",Y7))|
YT = YT+ [lprojy, (YT 4+ Vy (X7 YY) — projy, (Y7 + Vy f(X7,Y7))|

()
SIXT = X+ [V f(XTLYT)) = Vx f(XT, YY)
HYTF =Y+ [ Vy f(XTFL YY) = Vy f(XTYT)| (66)

(c)
<IXTH = XU+ [ Vxh(XTH) = Vxh(XT)] + oy [[Vxg(X™H) — g(X7)]|
+HVyl(Y™) = V(Y7

d)
<(L+ Lx + oy L) | X7 = X[+ (1+ Ly) [y = Y7
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where in (a) we used the optimality condition of X" -subproblem; in (b) we used nonexpansiveness
of the projection operator; in (c) we take the gradient of f(X,Y"); in (d) we used the Lipschitz
continuous of function A (X) and {(Y).

Since X", Y™ are within compact sets, the sizes of X", Y" are bounded, which implies that there
exits o7 such that

IVLXT Y|P < on(IX7 = X712+ [y = ¥7)%). (67)

Lecr

From equation we also know that there exits a constant oo £ min{cy, co } such that

P — P > oyC" (68)
Combining equation |67} we have
VLT Y|P < 2 (P —PTHY). (69)
2
Summing both sides of the above inequality over r = 1,...,7T, we have
4 o o
DIVLETYIP < (PP < (P - D) (70)
2 2

r=1

where in the last inequality we have used the fact that P” is decreasing and lower bounded by P since
X", Y™ are within the compact sets. By utilizing the definition T'(¢), the above inequality becomes

T(e)e < 2 (P!~ P). (N
g2
Dividing both sides by T'(¢), and by setting C' £ o /05, the desired result is obtained O
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