
Published as a conference paper at ICLR 2020

LEARNING THE ARROW OF TIME FOR PROBLEMS IN
REINFORCEMENT LEARNING

Nasim Rahaman1,2,3 Steffen Wolf1 Anirudh Goyal3 Roman Remme1 Yoshua Bengio3,4,5

1Image Analysis and Learning Lab, Ruprecht-Karls-Universität, Heidelberg
2Max-Planck Institute for Intelligent Systems, Tübingen
3Mila, Montréal
4CIFAR Senior Fellow
5Canada CIFAR AI Chair

ABSTRACT

We humans have an innate understanding of the asymmetric progression of time,
which we use to efficiently and safely perceive and manipulate our environment.
Drawing inspiration from that, we approach the problem of learning an arrow of
time in a Markov (Decision) Process. We illustrate how a learned arrow of time
can capture salient information about the environment, which in turn can be used
to measure reachability, detect side-effects and to obtain an intrinsic reward signal.
Finally, we propose a simple yet effective algorithm to parameterize the problem
at hand and learn an arrow of time with a function approximator (here, a deep
neural network). Our empirical results span a selection of discrete and continuous
environments, and demonstrate for a class of stochastic processes that the learned
arrow of time agrees reasonably well with a well known notion of an arrow of
time due to Jordan, Kinderlehrer, and Otto (1998).

1 INTRODUCTION

The asymmetric progression of time has a profound effect on how we, as agents, perceive, process
and manipulate our environment. Given a sequence of observations of our familiar surroundings
(e.g. as video frames), we possess the innate ability to predict whether the said observations are
ordered correctly. We use this ability not just to perceive, but also to act: for instance, we know
to be cautious about dropping a vase, guided by the intuition that the act of breaking a vase cannot
be undone. This profound intuition reflects some fundamental properties of the world in which
we dwell, and in this work we ask whether and how these properties can be exploited to learn a
representation that functionally mimics our understanding of the asymmetric nature of time.

The term Arrow of Time was coined by the British astronomer Eddington (1929) to denote this
inherent asymmetry, which he attributed to the non-decreasing nature of the total thermodynamic
entropy of an isolated system, as required by the second law of thermodynamics. Since then, the
notion of an arrow of time has been formalized and explored in various contexts, spanning not only
physics, but also algorithmic information theory (Zurek, 1989), causal inference (Janzing et al.,
2016) and time-series analysis (Janzing, 2010; Bauer et al., 2016).

Broadly, an arrow of time can be thought of as a function that monotonously increases as a system
evolves in time. Expectedly, the notion of irreversibility plays a central role in the discourse. In sta-
tistical physics, it is posited that the arrow of time (i.e. entropy production) is driven by irreversible
processes (Prigogine, 1978; Seifert, 2012). To understand how a notion of an arrow of time can be
useful in the reinforcement learning context, consider the example of a cleaning robot tasked with
moving a box across a room (Amodei et al., 2016). The optimal way of successfully completing the
task might involve the robot doing something disruptive, like knocking a vase over (Fig 1). Now on
the one hand, such disruptions – or side-effects – might be difficult to recover from. In the extreme
case, they might be virtually irreversible – say when the vase is broken. On the other hand, irre-
versibility implies that states with a larger number of broken vases tend to occur in the future, and
one should therefore expect an arrow of time (as a scalar function of the state) to assign larger values

1

Published as a conference paper at ICLR 2020

D
is
or
de

r

Time

D
is
or
de

r

Time

D
is
or
de

r

Time

D
is
or
de

r

Time

Figure 1: The agent (in orange) is tasked with reaching its goal, the checkered flag (middle frame). It may
take the shorter path (right frame), which entails breaking the vases in its way, or it may prefer the safer path
(left frame) which is longer but keeps the vases intact. The former path is irreversible, and the initial state is
unreachable from the final state (red arrow). On the contrary, the latter path is completely reversible, and the
initial state remains reachable from the final state. Now, an arrow of time (pink) measures the disorder, which
might help a safe agent decide which path to take.

to states with larger number of broken vases. An arrow of time should therefore quantify the amount
of disorder in the environment, analogous to the entropy for isolated thermodynamical systems.

Now, one possible application could be to detect and preempt such side-effects, for instance by
penalizing policies that significantly increment the arrow of time by executing difficult-to-reverse
transitions. But the utility of an arrow of time is more general: it serves as a directed measure of
reachability. This can be seen by observing that it is more difficult to obtain order from disorder:
it is, after all, difficult to reach a state with a vase intact from one with it broken, rather than vice
versa. In this sense, we may say that a state is relatively unreachable from another state if an arrow
of time assigns a lower value to the former. Further, a directed measure of reachability afforded
by an arrow of time can be utilized for deriving an intrinsic reward signal to enable agents to learn
complex skills in the absence of external rewards. To see how, consider that an agent tasked with
reversing the arrow of time (by creating order from disorder) must in general learn complex skills
to achieve its goal. Indeed, gluing together a broken vase will require the agent to learn an array of
complex planning and motor skills, which is the ultimate goal of such intrinsic rewards.

In summary, our contributions are the following. (a) We propose a simple objective to learn an ar-
row of time for a Markov (Decision) Process in a self-supervised manner, i.e. entirely from sampled
environment trajectories and without external rewards. We call the resulting function (acting on the
state) the h-potential, and demonstrate its utility and caveats for a selection of discrete and contin-
uous environments. Moreover, we compare the learned h-potential to the free-energy functional of
stochastic processes – the latter being a well-known notion of an arrow of time (Jordan et al., 1998).
While there exist prior work on detecting the arrow of time in videos (Pickup et al., 2014; Wei et al.,
2018) and time-series data (Peters et al., 2009; Bauer et al., 2016), we believe our work to be the first
towards measuring it in the context of reinforcement learning. (b) We critically and transparently
discuss the conceptually rich subtleties that arise before an arrow of time can be practically useful
in the RL context. (c) We expose how the notions of reachability, safety and curiosity can be unified
under the common framework afforded by a learned arrow of time.

2 THE h-POTENTIAL

Motivated by the preceding discussion, our goal is to learn a function that quantifies the amount
of disorder in a given environment state, where we say that irreversible state transitions increase
disorder. In this sense, we seek a function (of the state) that is constant in expectation along fully
reversible state transitions, but increase in expectation along state transitions that are less reversible.
To that end, we begin by formally introducing this function, which we call the h-potential, as the
solution to a functional optimization problem. Subsequently, we critically discuss a few conceptual
roadblocks that must be cleared before such a function can be useful in the RL setting.

2.1 FORMALISM

Consider a Markov Decision Process (a MDP, i.e. environment), and let S and A be its state and
action spaces respectively. A policy π is a mapping from the state space to the space of distributions
over actions. Given a state s ∈ S sampled from some initial state distribution p0, we may sample

2

Published as a conference paper at ICLR 2020

an action a ∈ A from the policy π(a|s), which in turn can be used to sample another state s′ ∈ S
from the environment dynamics p(s′|a, s). Iterating N more times for a fixed π, one obtains a
sequence of states (s0, ..., st, ..., sN), which is a realization of the Markov chain (a trajectory) with
transition probabilities pπ(st+1|st) =

∑
a∈A p(st+1|st, a)π(a|st). We may now define a function

hπ : S → R as the solution to the following functional objective:

Jπ[ĥ] = Et∼U({0,...,N−1})EstEst+1|st [ĥ(st+1)− ĥ(st)|st] + λT [ĥ]; hπ = arg max
ĥ
Jπ[ĥ] (1)

whereU(A) is the uniform distribution over any setA, EtEstEst+1|st is the expectation over all state
transitions, λ is a scalar coefficient and T [ĥ] is a regularizing term that prevents ĥ from diverging
within a finite domain. In words: the first term on the right hand side of the first equation above
encourages hπ to increase in expectation along the sampled trajectories, whereas the second term
controls this increase; the two terms are balanced with a coefficient λ. Informally: if a state transition
s → s′ is fully reversible, the probability of sampling it equals that of sampling the corresponding
reverse transition, s′ → s. For such transitions, the pressure on hπ to increase along the forward
transition (s → s′) is compensated by the counter-pressure for it to increase along the reverse
transition (s′ → s), or equivalently, decrease along the forward transition. Along such transitions,
we should therefore expect hπ to remain constant (in expectation). Accordingly, if the forward
transition were to be more likely (i.e. if the transition is not fully reversible), we should expect hπ
to increase (in expectation) in order to satisfy its objective.

The regularizer T must be chosen to suit the problem at hand, and different choices result in solutions
that have different characteristics1. Possible choices for T include (any combination of) the negative
of L2 norm −‖ĥ‖2, and/or the following trajectory regularizer:

T [ĥ] = −Et∼U({0,...,N−1})EstEst+1|st [|ĥ(st+1)− ĥ(st)|2|st] (2)

Intuitively: while the solution hπ is required to increase in expectation along trajectories, the trajec-
tory regularizer acts as an contrastive term by penalizing hπ for changing at all.

With some effort, the problem defined in Eqn 1 can be approached analytically for toy Markov
chains (interested readers may refer to App A for a technical discussion). However, such analytical
treatment becomes infeasible for more complex and larger-scale environments with unknown tran-
sition probabilities. To tackle such environments, we will cast the functional optimization problem
in Eqn 1 to an optimization problem over the parameters of a deep neural network and solve it for a
variety of discrete and continuous environments.

2.2 SUBTLETIES

In this section, we discuss two conceptually rich subtleties that determine the conditions under which
the learned arrow of time (h-potential) can be useful in practice.

The Role of a Policy. The first subtlety is rooted in the observation that the trajectories (s0, ..., sN)
are collected by a given but arbitrary policy. However, there may exist policies for which the re-
sulting arrow of time is unnatural, perhaps even misleading. Consider for instance the actions of
a practitioner of Kintsugi, the ancient Japanese art of repairing broken pottery. The corresponding
policy2 might cause the environment to transition from a state where the vase is broken to one where
it is not. If we learn the h-potential on such trajectories, it might be the case that counter to our in-
tuition, states with a larger number of broken vases are assigned smaller values (and the vice versa).
Now, one may choose to resolve this conundrum by defining:

J [h] = Eπ∼U(Π)Jπ[h] (3)

where Π is the set of all policies defined on S, and U(Π) denotes a uniform distribution over Π. The
resulting function h∗ = arg max{J [h] + λT [h]} would characterize the arrow of time with respect
to all possible policies, and one would expect that for a vast majority of such policies, the transition
from broken vase to a intact vase is rather unlikely and/or requires highly specialized policies.

1This is not unlike the case for linear regression: for instance, using Lasso instead of ridge-regression will
generally yield solutions that have different properties.

2This is analogous to Maxwell’s demon in classical thermodynamics.

3

Published as a conference paper at ICLR 2020

Unfortunately, determining h∗ is not feasible for most interesting applications, given the outer ex-
pectation over all possible policies. As a compromise, we use (uniformly) random actions to gather
trajectories. The simplicity of the corresponding random policy justifies its adoption, since one
would expect a policy resembling (say) a Kintsugi artist to be rather complex and not implementable
with random actions. In this sense, we ensure that the learned arrow of time characterizes the un-
derlying dynamics of the environment, and not the peculiarities of a particular agent3. The price
we pay is the lack of adequate exploration in complex enough environments, although this problem
plagues most model-based reinforcement learning approaches4 (cf. Ha & Schmidhuber (2018)). In
the following, we assume π to be uniformly random and use hπ interchangeably with h.

Dissipative Environments. The second subtlety concerns what we require of environments in which
the arrow of time is informative. To illustrate the matter, consider the class of systems5, a typical
instance of which could be a billiard ball moving on a frictionless arena and bouncing (elastically)
off the edges (Bunimovich, 2007). The state space comprises the ball’s velocity and its position
constrained to a billiard table (without holes!), where the ball is initialized at a random position on
the table. For such a system, it can be seen by time-reversal symmetry that when averaged over
a large number of trajectories, the state transition s → s′ is just as likely as the reverse transition
s′ → s. In this case, recall that the arrow of time is expected to remain constant. A similar argument
can be made for systems that identically follow closed trajectories in their respective state space (e.g.
a frictionless and undriven pendulum). It follows that the h-potential must remain constant along the
trajectory and that the arrow of time is uninformative. However, for so-called dissipative systems,
the notion of an arrow of time is pronounced and well studied (Willems, 1972; Prigogine, 1978).
In MDPs, dissipative behaviour may arise in situations where certain transitions are irreversible
by design (e.g. bricks disappearing in Atari Breakout), or due to partial observability, e.g. for a
damped pendulum, the state space does not track the microscopic processes that give rise to friction6.
Therefore, a central premise underlying the practical utility of learning the arrow of time is that the
considered MDP is indeed dissipative, which we shall assume in the following; in Sec 5 (Fig 5b),
we will empirically investigate the case where this assumption is violated.

3 APPLICATIONS WITH RELATED WORK

In this section, we discuss a few applications of the arrow of time, and illustrate how the h-potential
provides a common framework to unify the notions of reachability, safety and curiosity.

3.1 MEASURING REACHABILITY

Given two states s and s′ in S, the reachability of s′ from s measures how difficult it is for an agent
at state s to reach state s′. The prospect of learning reachability from state-transition trajectories has
been explored: in Savinov et al. (2018), the approach taken involves learning a logistic regressor
network gθ : S × S → [0, 1] to predict the probability of states s′ and s being reachable to one
another within a certain number of steps (of a random policy), in which case g(s, s′) ≈ 1. However,
the model g is not directed: it does not learn whether s′ is more likely to follow s, or the vice versa.
Instead, our proposal is to derive a directed measure of reachability from h-potential by defining a
function η : S×S → R such that η(s, s′) ≡ η(s→ s′) := h(s′)−h(s), where η(s→ s′) measures
the reachability of state s′ from state s. This inductive bias on η (in form of a functional constraint)
induces the following useful properties.

First, consider the case where the transition between states s and s′ is fully reversible, i.e. when
state s is exactly as reachable from state s′ as is s′ from s; we denote such transitions with s ↔ s′.
Now, in expectation, we obtain that h(s′) = h(s) and consequently, η(s → s′) = η(s′ → s) = 0.
But if instead the state s′ is more likely to follow state s than the vice versa (in expectation over
trajectories), we say s′ is more reachable from s than the vice versa. It follows in expectation that

3What we do is similar (in spirit) to inverse reinforcement learning the reward function maximized by a
random policy (instead of an expert policy), cf. Ng & Russell (2000).

4While this is a fundamental problem (App C.3), powerful methods for off-policy learning exist (see Munos
et al. (2016) and references therein); however, a full analysis is beyond the scope of the current work.

5Precisely: Hamiltonian systems where Liouville’s theorem holds and the Hamiltonian is time-independent.
6In particular, observe that a dissipative system may or may not be ergodic.

4

Published as a conference paper at ICLR 2020

h(s′) > h(s), and consequently, η(s → s′) > 0. Now the inductive bias on η as a difference of
h-potentials automatically implies η(s′ → s) = −η(s→ s′) < 0.

Second, observe that the reachability measure implemented by η is additive by construction: given
a trajectory s0 → s1 → s2, we have that η(s0 → s2) = η(s0 → s1) + η(s1 → s2). As a special
case, if we have that s0 ↔ s1 and s1 ↔ s2 – i.e. if η(s0 → s1) = η(s1 → s2) = 0 – it identically
follows that s0 ↔ s2, i.e. η(s0 → s2) = 0. In this case, the inductive bias enables η to generalize
to the transition s0 ↔ s2 even if it is never explicitly sampled by the policy.

Third, η allows for a soft measure of reachability. It measures not only whether a state s′ is reachable
from another state s, but also quantifies how reachable the former is from the latter. As an example,
consider a trajectory s0 → s1 → ... → s100, where the agent breaks one vase at every state
transition. If the h-potential increases in constant increments for every vase broken (which we
confirm it does in Sec 5), we obtain due to the inductive bias that η(s0 → s100) = 100 ·η(s0 → s1).
This behaviour is sought-after in the context of AI-Safety (Krakovna et al., 2018; Leike et al., 2017).

Nonetheless, one should be careful when interpreting η. While the above implies that η(s′ →
s) = η(s→ s′) if the transition between states s and s′ is fully reversible, the converse can only be
guaranteed if the Markov process admits a trajectory between s and s′ in either direction, i.e. if there
exists a trajectory that visits both s and s′ (in any order). Observe that this condition much weaker
than ergodicity, which requires that the Markov process admit a trajectory from any given state s to
all other states s′. In fact, the discrete environments we investigate in Sec 5 are non-ergodic.

3.2 DETECTING AND PENALIZING SIDE EFFECTS FOR SAFE EXPLORATION

The problem of detecting and avoiding side-effects is well known and crucially important for safe
exploration (Moldovan & Abbeel, 2012; Eysenbach et al., 2017; Krakovna et al., 2018; Armstrong
& Levinstein, 2017). Broadly, the problem involves detecting and avoiding state transitions that
permanently and irreversibly damage the agent or the environment (Leike et al., 2017). As such, it is
fundamentally related to reachability, as in the agent is prohibited from taking actions that drastically
reduce the reachability between the resulting state and some predefined safe state. In Eysenbach
et al. (2017), the authors learn a reset policy responsible for resetting the environment to some initial
state after the agent has completed its trajectory. The resulting value function of the reset policy
indicates when the actual (forward) policy executes an irreversible state transition, but at the cost of
the added complexity of training a reset policy. In contrast, Krakovna et al. (2018) propose to attack
the problem by measuring reachability relative to a safe baseline policy – namely by evaluating the
reduction in reachability of all environment states from the current state with respect to that from
a baseline state, where the latter is defined as the state that system would have (counterfactually)
been in had the agent acted according to the corresponding baseline policy. However, determining
the counterfactual baseline state requires a causal model of the environment, which cannot always
assumed to be known.

We propose to directly use the reachability measure η defined in Section 3.1 to derive a reward term
for safe-exploration. Let rt be some external reward at time-step t. The augmented reward is given
by:

r̂t = rt − β ·max{η(st−1 → st), 0} (4)

where β is a scaling coefficient. In practice, one may replace η with σ(η), where σ is a monotonically
increasing transfer function (e.g. a step function). Intuitively, transitions s → s′ that are less
reversible cause the h-potential to increase, and the resulting reachability measure η(s → s′) is
positive in expectation. This incurs a penalty (due to the negative sign), which is reflected in the
value function of the agent. Conversely, transitions that are reversible should have the property that
η(s→ s′) = 0 (also in expectation), thereby incurring no penalty.

3.3 REWARDING CURIOUS BEHAVIOUR

In most reinforcement learning applications, the reward function is assumed to be given; however,
shaping a good reward function can often prove to be a challenging endeavour. It is in this context
that the notion of curiosity comes to play an important role (Schmidhuber, 2010; Chentanez et al.,
2005; Pathak et al., 2017; Burda et al., 2018; Savinov et al., 2018). One typical approach towards
encouraging curious behaviour is to seek novel states that surprise the agent (Schmidhuber, 2010;

5

Published as a conference paper at ICLR 2020

Pathak et al., 2017; Burda et al., 2018) and use the error in the agent’s prediction of future states
is used as a curiosity reward. This approach is however known to be susceptible to the so-called
noisy-TV problem, wherein an uninteresting source of entropy like a noisy-TV can induce a large
curiosity bonus because the agent cannot predict its future state. Savinov et al. (2018) propose to
circumvent the noisy-TV problem by defining novelty in terms of (undirected) reachability, wherein
states that are easily reachable from the current state are considered less novel.

The h-potential and the corresponding reachability measure η affords another way of defining a
curiosity reward. Say an agent’s policy samples a trajectory from state s to s′. Now, recall that
η(s → s′) takes a positive value if state s′ is reachable from s (with respect to a simple reference
policy); we therefore encourage the agent policy to sample trajectories where the η(s → s′) is
negative, i.e. where s′ is less reachable from s. In doing so, we encourage the agent to seek states
that are otherwise difficult to reach just by chance, and possibly learn useful skills in the process. In
other words, we reward the agent for reversing the arrow of time (recall that η(s→ s′) < 0 implies
h(s′) < h(s)). The general form of the corresponding reward is given by:

r̂t = −η(st−1 → st) (5)

While the above is independent of the external reward function defined by the environment, the lat-
ter might often align with the former: in many environments, the task at hand is to reach the least
reachable state. This is readily recognized in classical control tasks like Pendulum, Cartpole and
Mountain-Car, where the goal state is often the least reachable. However, if the environment’s spec-
ified task requires the agent to inadvertently execute irreversible trajectories, it is possible that our
proposed reward is less applicable. Furthermore, while the proposed curiosity reward encourages the
agent to reach for difficult-to-reach states, it need not provide an incentive to seek out diverse states.
In other words: an agent optimizing the proposed reward may seek out the most difficult-to-reach
states, but ignore other interesting but less difficult-to-reach states in the process (cf. App C.3).

To summarize, we used the h-potential to define a directed measure of reachability (Sec 3.1), which
then naturally lead to two applications. In the first (Sec 3.2), we obtained a safety penalty by essen-
tially discouraging the agent from increasing the h-potential by executing difficult-to-reverse transi-
tions. In the second (Sec 3.3), we argued that encouraging the agent to decrease the h-potential can
provide an useful curiosity (intrinsic) reward signal in the absence of external rewards. In this sense,
we have illustrated how the framework of a learned arrow of time (i.e. the h-potential) unifies the
notions of reachability, safety, and curiosity.

4 ALGORITHM

In Sec 2, we proposed a general functional objective, and defined the h-potential as the solution
to the corresponding functional optimization problem. While the problem could be approached
analytically with some effort for certain toy Markov chains (see App A), complex environments
with unspecified dynamics require a fundamentally different approach. We therefore convert the
functional optimization problem in Eqn 1 (right) to one over the parameters θ of a deep neural
network ĥθ to obtain the following surrogate problem:

θ∗ = arg max
θ

{
Et∼U({0,...,N−1})EstEst+1|st [ĥθ(st+1)− ĥθ(st)|st] + λT [ĥθ]

}
(6)

where π is a reference policy, i.e. uniform random, and we denote the solution ĥθ∗ by h. To train
the network, the expectations are replaced by their sample estimates. As for the regularizer, recall
that its purpose was to prevent h from diverging within a finite domain – this can be achieved by a
loss term T (like the trajectory regularizer in Eqn 2), or by a training constraint like early stopping.

The training algorithm is rather straightforward and can be summarized as follows (please refer to
App B for the full algorithm). We first use an offline reference policy (uniform random, in our
experiments) to sample trajectories from the environment. Next, we sample a batch of uniformly
random state transitions and evaluate the objective in Eqn 6 (by replacing expectations by their
sample estimates). We regularize the either by adding the trajectory regularizer to the objective
or by using early stopping to terminate the training after a fixed number of iterations. Finally, we
optimize the parameters θ of ĥθ to maximize the objective at hand.

6

Published as a conference paper at ICLR 2020

0 20 40 60 80 100 120
t [Timestep]

5000

0

5000

10000

15000

20000

25000

30000

35000

(s
t

s t
+

1)

[P
ot

en
tia

l D
iff

er
en

ce
]

Figure 2: The potential difference (i.e. change in h-
potential) between consecutive states along a trajec-
tory on the Vaseworld (2D world) environment. The
dashed vertical lines denote when a vase is broken.
Gist: the h-potential increases step-wise when the
agent irreversibly breaks a vase (corresponding to the
spikes), but remains constant as it reversibly moves
about. Further, the spikes are all of roughly the same
height, indicating that the h-potential has learned to
measure irreversibility by counting the number of de-
stroyed vases.

0 50 100 150 200 250
Timestep

5

0

5

10

15

h-
Po

te
nt

ia
l

Figure 3: The h-potential along a trajectory from
a random policy, annotated with the corresponding
state images on the Sokoban (2D world) environment.
The white sprite corresponds to the agent, orange to
a wall, blue to a box and green to a goal. Gist: the h-
potential increases sharply as the agent pushes a box
against the wall. While it may decrease for a given
trajectory (in this case because the agent manages to
move a box away from the wall), it increases in ex-
pectation over all trajectories (cf. Fig 14 in Appendix
C.1.3).

5 EXPERIMENTS

In this section, we empirically investigate the h-potential that we obtain with the training procedure
described in the previous section. First, we show in a 2D-world environment that the h-potential
learns to measure reachability. Second, we show that the h-potential can be used to detect side-
effects in the challenging game of Sokoban (Leike et al., 2017). Third, we show on the game of
Mountain Car with Friction that the h-potential can learn to capture sailent features of the environ-
ment, which can be used to formulate an intrinsic reward. We also demonstrate how the h-potential
fails if the environment is not dissipative, i.e. if the friction is turned off. Finally, we show for a par-
ticle undergoing Brownian motion under a potential that in expectation over states, the h-potential
agrees reasonably well with the Free Energy functional, wherein the latter is known to be an arrow
of time (Jordan et al., 1998). Moreover in App C, we show results on three additional environments.

1.25 1.00 0.75 0.50 0.25 0.00 0.25 0.50
Position

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

h(
x

=
,v

=
0)

[N
eg

at
iv

e
Po

te
nt

ia
l a

t Z
er

o
Ve

lo
cit

y] Negative Potential at Zero Velocity

0.2

0.4

0.6

0.8

1.0
He

ig
ht

 o
f t

he
 M

ou
nt

ai
n

Height

Figure 4: The h-potential (for Mountain Car) at
zero-velocity plotted against position. Also plot-
ted (orange) is the height profile of the mountain.
Gist: the h-potential approximately recovers the
height-profile of the mountain with just trajecto-
ries from a random policy.

Measuring Irreversibility. The environment con-
sidered is a 7 × 7 2D world, where cells can be oc-
cupied by the agent, the goal and/or a vase (their
respective positions are randomly sampled in each
episode). If the agent enters a cell with a vase in it,
the vase disappears without compromising the agent.
In Fig 2, we plot the change in h-potential (recall that
η(st → st+1) = h(st+1) − h(st)) to find that the
breaking of a vase (irreversible) corresponds to the
h-potential increasing in steps of roughly constant
size (observe that the spikes attain similar heights),
whereas the agent moving around (reversible) does
not result in it increasing. This indicates that the
h-potential has learned to quantify irreversibility in-
stead of merely detecting it by counting the number
of broken vases. In App C.1.1, (a) we further inves-
tigate the effect of adding temporally-correlated and
TV (uncorrelated) noise to the state and find that the h-potential is fairly robust to the latter but
might get distracted by the former and (b) verify that an agent trained with the safety penalty in
Eqn 4 breaks fewer vases (than without).

Detecting Side-Effects. Sokoban (“warehouse-keeper”) is a challenging puzzle video game, where
an agent must push a number of boxes to set goal locations placed on a map. The agent may only
push boxes (and not pull), rendering certain moves irreversible - for instance, when a box is pushed

7

Published as a conference paper at ICLR 2020

1.00 0.75 0.50 0.25 0.00 0.25 0.50
Position

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Ve
lo

cit
y

28.0

25.2

22.4

19.6

16.8

14.0

11.2

8.4

5.6

2.8

(a) With friction.

1.00 0.75 0.50 0.25 0.00 0.25 0.50
Position

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Ve
lo

cit
y

2.10

1.05

0.00

1.05

2.10

3.15

4.20

5.25

6.30

(b) Without friction.

Figure 5: The h-potential as a function of state (position and velocity) for (continuous) Mountain-Car with and
without friction. The overlay shows random trajectories (emanating from the dots). Gist: with friction, we find
that the state with largest h is one where the car is stationary at the bottom of the valley. Without friction, there
is no dissipation and the car oscillates up and down the valley. Consequently, we observe that the h-potential is
constant (up-to edge effects) and thereby uninformative.

against a wall. Moreover, the task of even determining whether a move is irreversible might be non-
trivial, making the problem a good test-bed for detecting side-effects (Leike et al., 2017). In Fig 3,
we see that the h-potential increases if a box is pushed against a wall (irreversible side-effect) but
remains constant if the agent moves about (reversible, even when the agent pushes a box around),
demonstrating that the h-potential has indeed learned to detect side-effects. For experimental details
and additional plots, please refer to App C.1.3.

Obtaining Intrinsic Reward and the Importance of Dissipativity. The environment considered
shares its dynamics with the well known (continuous) Mountain-Car environment (Sutton & Barto,
2011), but with a crucial amendment: the car is subject to friction. Friction is required to make the
environment dissipative and thereby induce an arrow of time (cf. Sec 2.2). Moreover, we initialize
the system in a uniform-randomly sampled state to avoid exploration issues (cf. App C.3). In Fig 4,
we see that the learned h-potential roughly recovers the terrain from random trajectories (i.e. without
external rewards), which can now be used to obtain an intrinsic reward signal. Further, Fig 5b
illustrates the importance of dissipation (in this case, induced via friction). Details in App C.2.2.

0 10 20 30 40 50 60
t[Timestep]

0.065

0.060

0.055

0.050

0.045

0.040

0.035

0.030

0.025

Va
lu

e
(L

in
ea

rly
 A

dj
us

te
d)

Free Energy
H-Functional

Figure 6: The true arrow of time (the Free-
Energy functional, in blue) plotted against the
learned arrow of time (the H-functional, i.e. the
negative spatial expectation of the h-potential;
plotted in orange) after linear scaling and shifting.
Gist: we find the H-functional to be in good (al-
beit not perfect) agreement with the Free-Energy
functional, where the latter is a known notion of
an arrow of time.

Comparison with the Free-Energy Functional.
The setting considered is that of a particle (a
random-walker) undergoing Brownian motion un-
der the influence of a potential field Ψ(x) (where x
denotes the spatial position). We denote the proba-
bility of finding the particle at position x at time t
by ρ(x, t). Now, the dynamics of the corresponding
time-dependent random variable (i.e. stochastic pro-
cess) X(t) is governed by the stochastic differential
equation:

dX(t) = −∇Ψ(X(t))dt+
√

2β−1dW(t) (7)

where W(t) is the standard Wiener process (i.e.
dW(t) is white-noise) and β−1 is a temperature pa-
rameter. The Free-Energy functional F is now de-
fined as:

F [ρ(·, t)] = Ex∼ρ(·,t) [Ψ(x)]

+β−1Ex∼ρ(·,t) [log ρ(x, t)] (8)

where the first expectation of the RHS is the energy
functional, and the second expectation is the negative entropy. A celebrated result due to Jordan,
Kinderlehrer, and Otto (1998) is that the Free-Energy is a Lyapunov functional of the dynamics, i.e.
it can only decrease with time, thereby defining a notion of an arrow of time. Now, to find out how
well our learned arrow of time agrees with the Free-Energy functional, we train it with realizations

8

Published as a conference paper at ICLR 2020

of the stochastic process X(t) in two-dimensions. Fig 6 plots the Free-Energy functional F against a
linearly adjustedH-functional, defined as: H[ρ(·, t)] = −Ex∼ρ(·,t)[h(x)]. Indeed, we find that up to
a linear transform, theH-functional (and the corresponding h-potential) agrees reasonably well with
the true arrow of time given by the Free-Energy functional F . Crucially, the H-functional is also
a Lyapunov functional of the dynamics – implying that in expectation over states, the h-potential
functions as an arrow of time. Details can be found in App C.4.

CONCLUSION

In this work, we approached the problem of learning an arrow of time in a Markov (Decision)
Processes. We defined the arrow of time (h-potential) as a solution to an optimization problem and
laid out the conceptual roadblocks that must be cleared before it can be useful in the RL context.
But once these roadblocks have been cleared, we demonstrated how the notions of reachability,
safety and curiosity can be bridged by a common framework of a learned arrow of time. Finally,
we empirically investigated the strengths and shortcomings of our method on a selection of discrete
and continuous environments. Future work could draw connections to algorithmic independence of
cause and mechanism (Janzing et al., 2016) and explore applications in causal inference (Janzing,
2010; Peters et al., 2017).

ACKNOWLEDGEMENTS

The authors would like to thank Min Lin for the initial discussions, Georgios Arvanitidis, Simon
Ramstedt, Zaf Ahmed, Stefan Bauer and Maximilian Puelma Touzel for their valuable feedback on
the draft.

REFERENCES

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
crete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and R Devon
Hjelm. Unsupervised state representation learning in atari. arXiv preprint arXiv:1906.08226,
2019.

Anonymous, Nov 2019. URL https://openreview.net/forum?id=rylJkpEtwSeId=
H1xTTMZW5H.

Stuart Armstrong and Benjamin Levinstein. Low impact artificial intelligences. arXiv preprint
arXiv:1705.10720, 2017.

Stefan Bauer, Bernhard Schölkopf, and Jonas Peters. The arrow of time in multivariate time series.
In International Conference on Machine Learning, pp. 2043–2051, 2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

L. Bunimovich. Dynamical billiards. Scholarpedia, 2(8):1813, 2007. doi: 10.4249/scholarpedia.
1813. revision #91212.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018.

Nuttapong Chentanez, Andrew G Barto, and Satinder P Singh. Intrinsically motivated reinforcement
learning. In Advances in neural information processing systems, pp. 1281–1288, 2005.

Arthur Stanley Eddington. The nature of the physical world / by A.S. Eddington. Cambridge Uni-
versity Press Cambridge, England, 1st ed. edition, 1929.

Benjamin Eysenbach, Shixiang Gu, Julian Ibarz, and Sergey Levine. Leave no trace: Learning to
reset for safe and autonomous reinforcement learning. arXiv preprint arXiv:1711.06782, 2017.

9

https://openreview.net/forum?id=rylJkpEtwS¬eId=H1xTTMZW5H
https://openreview.net/forum?id=rylJkpEtwS¬eId=H1xTTMZW5H

Published as a conference paper at ICLR 2020

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for exploration.
arXiv preprint arXiv:1706.10295, 2017.

Shuyang Gao, Greg Ver Steeg, and Aram Galstyan. Efficient estimation of mutual information for
strongly dependent variables. In Artificial Intelligence and Statistics, pp. 277–286, 2015.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Dominik Janzing. On the entropy production of time series with unidirectional linearity. Journal of
Statistical Physics, 138(4-5):767–779, 2010.

Dominik Janzing, Rafael Chaves, and Bernhard Schölkopf. Algorithmic independence of initial
condition and dynamical law in thermodynamics and causal inference. New Journal of Physics,
18(9):093052, 2016.

Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the fokker–
planck equation. SIAM journal on mathematical analysis, 29(1):1–17, 1998.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

LF Kozachenko and Nikolai N Leonenko. Sample estimate of the entropy of a random vector.
Problemy Peredachi Informatsii, 23(2):9–16, 1987.

Victoria Krakovna, Laurent Orseau, Miljan Martic, and Shane Legg. Measuring and avoiding side
effects using relative reachability. CoRR, abs/1806.01186, 2018. URL http://arxiv.org/
abs/1806.01186.

Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information. Phys-
ical review E, 69(6):066138, 2004.

Tejas Kulkarni, Ankush Gupta, Catalin Ionescu, Sebastian Borgeaud, Malcolm Reynolds, Andrew
Zisserman, and Volodymyr Mnih. Unsupervised learning of object keypoints for perception and
control. arXiv preprint arXiv:1906.11883, 2019.

Jan Leike, Miljan Martic, Victoria Krakovna, Pedro A Ortega, Tom Everitt, Andrew Lefrancq, Lau-
rent Orseau, and Shane Legg. Ai safety gridworlds. arXiv preprint arXiv:1711.09883, 2017.

Teodor Mihai Moldovan and Pieter Abbeel. Safe exploration in markov decision processes. arXiv
preprint arXiv:1205.4810, 2012.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. In Advances in Neural Information Processing Systems, pp. 1054–1062,
2016.

Andrew Y Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In in Proc. 17th
International Conf. on Machine Learning. Citeseer, 2000.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In ICML, 2017.

Jonas Peters, Dominik Janzing, Arthur Gretton, and Bernhard Schölkopf. Detecting the direction
of causal time series. In Proceedings of the 26th annual international conference on machine
learning, pp. 801–808. ACM, 2009.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations
and learning algorithms. MIT press, 2017.

Lyndsey C Pickup, Zheng Pan, Donglai Wei, YiChang Shih, Changshui Zhang, Andrew Zisserman,
Bernhard Scholkopf, and William T Freeman. Seeing the arrow of time. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2035–2042, 2014.

Ilya Prigogine. Time, structure, and fluctuations. Science, 201(4358):777–785, 1978.

10

http://arxiv.org/abs/1806.01186
http://arxiv.org/abs/1806.01186

Published as a conference paper at ICLR 2020

Nikolay Savinov, Anton Raichuk, Raphaël Marinier, Damien Vincent, Marc Pollefeys, Timo-
thy Lillicrap, and Sylvain Gelly. Episodic curiosity through reachability. arXiv preprint
arXiv:1810.02274, 2018.

Abraham Savitzky and Marcel JE Golay. Smoothing and differentiation of data by simplified least
squares procedures. Analytical chemistry, 36(8):1627–1639, 1964.

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE
Transactions on Autonomous Mental Development, 2(3):230–247, 2010.

Max-Philipp B. Schrader. gym-sokoban. https://github.com/mpSchrader/
gym-sokoban, 2018.

Udo Seifert. Stochastic thermodynamics, fluctuation theorems and molecular machines. Reports on
progress in physics, 75(12):126001, 2012.

Zhang Shangtong. Modularized implementation of deep rl algorithms in pytorch. https://
github.com/ShangtongZhang/DeepRL, 2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. 2011.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De Freitas.
Dueling network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581,
2015.

Donglai Wei, Joseph J Lim, Andrew Zisserman, and William T Freeman. Learning and using the ar-
row of time. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 8052–8060, 2018.

Jan C Willems. Dissipative dynamical systems part i: General theory. Archive for rational mechanics
and analysis, 45(5):321–351, 1972.

Wojciech H Zurek. Algorithmic randomness and physical entropy. Physical Review A, 40(8):4731,
1989.

11

https://github.com/mpSchrader/gym-sokoban
https://github.com/mpSchrader/gym-sokoban
https://github.com/ShangtongZhang/DeepRL
https://github.com/ShangtongZhang/DeepRL

Published as a conference paper at ICLR 2020

A THEORETICAL ANALYSIS

In this section, (a) we present a theoretical analysis of the optimization problem formulated in Eqn 1,
(b) analytically evaluate the result for a few toy Markov processes to validate that the resulting
solutions are indeed consistent with intuition and (c) highlight how the h-potential differs from a
forward state-action transition model. To simplify the exposition, we consider the discrete case
where the state space S of the MDP is finite.

A.1 ANALYTICAL SOLUTION TO EQN 1 AND APPLICATION TO TOY MARKOV CHAINS

Consider a discrete Markov chain with enumerable states si ∈ S . At an arbitrary (but given) time-
step t, we let pti = p(st = si) denote the probability that the Markov chain is in state si, and pt

the corresponding vector (over states). With Tij we denote the probability of the Markov chain
transitioning from state si to sj under some policy π, i.e. Tij = pπ(st+1 = sj |st = si). One has
the transition rule:

pt+1 = ptT pt = p0T t (9)

where T t is the t-th matrix power of T . Now, we let hi denote the value hπ takes at state si, i.e.
hi = hπ(si), and the corresponding vector (over states) becomes h. This reduces the expectation of
the function (now a vector) h w.r.t any state distribution (now also a vector) p to the scalar product
p · h. In matrix notation, the optimization problem in Eqn 1 simplifies to:

arg max
h

1

N

N−1∑
t=0

[
ptTh− pt · h

]
+ λT (h) (10)

For certain T , the discrete problem in Eqn 10 can be handled analytically. We consider two can-
didates for T , the first being the norm of h, and the second one being the norm of change in hi in
expectation along trajectories.

Proposition 1. If T (h) = −(2N)−1‖h‖2, the solution to the optimization problem in Eqn 10 is
given by:

h =
p0TN − p0

λ
(11)

Proof. First, note that the objective in Eqn 10 becomes:

L[h] =
1

N

N−1∑
t=0

[
ptTh− pt · h

]
− 1

2N
‖h‖2 (12)

To solve the maximization problem, we must differentiate L w.r.t. its argument h, and set the
resulting expression to zero. This yields:

∇hL =
1

N

[
N−1∑
t=0

(ptT − pt)− λh

]
= 0 (13)

Now, the summation (over t) is telescoping, and evaluates to pN−1T −p0. Substituting pN−1 with
the corresponding expression from Eqn 9 and solving for h, we obtain Eqn 11.

Proposition 1 has an interesting implication: if the Markov chain is initialized at equilibrium, i.e. if
p0 = p0T , we obtain that h = 0 identically. Given the above, we may now consider as examples
the following simple Markov chains.

12

Published as a conference paper at ICLR 2020

α

α
1− α

1− α

s1 s2

Figure 7: The two-state Markov chain considered in Examples 1 and 3.

Example 1. Consider a Markov chain with two states and reversible transitions, parameterized by
α ∈ [0, 1] such that T11 = T21 = 1−α and T12 = T22 = α (Fig 7). If p0 = (1/2, 1/2), one obtains:

h ∝ (−γ, γ) (14)
where γ = α − 1/2. To see how, consider that for all N > 0, one obtains p0TN = (1 − α, α).
Together with Proposition 1, Eqn 14 follows.

The above example illustrates two things. On the one hand, if α = 1/2, one obtains a Markov chain
with perfect reversibility, i.e. the transition s1 → s2 is equally as likely as the transition s2 → s1.
In this case, one indeed obtains h(s1) = h(s2) = 0, as mentioned above. On the other hand, if one
sets α = 1, the transition from s2 → s1 is never sampled, and that from s1 → s2 is irreversible;
consequently, h(s2) − h(s1) takes the largest value possible. Now, while this aligns well with our
intuition, the following example exposes a weakness of the L2-norm-penalty used in Proposition 1.

s1 s2 s3 s4

Figure 8: The four-state Markov chain considered in Examples 2 and 4.

Example 2. Consider two Markov chains, both always initialized at s1. For the first Markov chain,
the dynamics admits the following transitions: s1 → s2 → s3 → s4, whereas for the second chain,
one has s1 → s3 → s2 → s4 (Fig 8). Now, for both chains and N ≥ 4, it’s easy to see that
(p0TN)i = 1 if i = 4, but 0 otherwise. From Eqn 11, one obtains:

h ∝ (−1, 0, 0, 1) (15)

The solution for h given by Eqn 15 indeed increases (non-strictly) monotonously with timestep.
However, we obtain h(s2) = h(s3) = 0 for both Markov chains. In particular, h does not increase
between the s2 → s3 transition in the former and the s3 → s2 transition in the latter, even though
both transitions are irreversible. It is in general apparent from 1 that the solution for h depends only
on the initial and final state distribution, and not the intermediate trajectory.

Now, consider the following regularizer that penalizes not just the function norm, but the change in
h in expectation along trajectories:

T (h) = − 1

2N

N−1∑
t=0

(ptTh− pt · h)2 − ω

2N
‖h‖2 (16)

where ω is the relative weight of the L2 regularizer. This leads to the result:
Proposition 2. The solution to the optimization problem in Eqn 10 with the regularizer in Eqn 16 is
the solution to the following matrix-equation:

N−1∑
t=0

p0(T t+1 − T t)hp0(T t+1 − T t) + ωh =
p0TN − p0

2λ
(17)

Proof. Analogous to Eqn 12, we may write the objective in Eqn 10 as (by substituting Eqn 16 in
Eqn 10):

L[h] =
1

N

N−1∑
t=0

[
ptTh− pt · h

]
− λ

2N

N−1∑
t=0

(ptTh− pt · h)2 − λω

2N
‖h‖2 (18)

13

Published as a conference paper at ICLR 2020

Like in Proposition 1, we maximize it by setting the gradient of L w.r.t. h to zero. This yields:

∇hL =
1

N

[
N−1∑
t=0

(ptT − pt)− λ

2
∇h

N−1∑
t=0

(ptTh− pt · h)2 − ωλh

]
= 0 (19)

The first term in the RHS is again a telescoping sum; it evaluates to: p0TN − p0 (cf. proof of
Proposition 1). The second term can be expressed as (with I as the identity matrix):

λ

2
∇h

N−1∑
t=0

(ptTh− pt · h)2 =
λ

2

N−1∑
t=0

∇h(pt(T − I)h)2 (20)

= λ

N−1∑
t=0

(pt(T − I)h)(pt(T − I)) (21)

= λ

N−1∑
t=0

p0(T t+1 − T t)hp0(T t+1 − T t) (22)

where the last equality follows from Eqn 9. Substituting the above in Eqn 19 and rearranging terms
yields Eqn 17.

While Eqn 17 does not yield an explicit expression for h, it is sufficient for analysing individual
cases considered in Examples 1 and 2.
Example 3. Consider the two-state Markov chain in Example 1 (Fig 7) and the associated transition
matrix T and initial state distribution p0 = (1/2, 1/2). Using the regularization scheme in Eqn 16
and the associated solution Eqn 17, one obtains:

h = (−γ̃, γ̃) (23)

where:
γ̃ =

2α− 1

λ(4α2 − 4α+ 2ω + 1)
(24)

To obtain this result7, we use that T t = T for all t ≥ 1 and truncate the sum without loss of
generality at N = 1.

Like in Example 1, we observe h(s1) = h(s2) = 0 if α = 1/2 for all ω > 0 (i.e. at equilibrium). In
addition, if ω ≥ 1/2, it can be shown that h(s2) − h(s1) increases monotonously with α and takes
the largest possible value at α = 1. We therefore find that for the simple two-state Markov chain
of Example 1, the regularization in Eqn 16 indeed leads to intuitive behaviour for the respective
solution h. Now:
Example 4. Consider the four-state Markov chain with transitions s1 → s2 → s3 → s4 (Fig 8) and
the corresponding transition matrix T , where T12 = T23 = T34 = T44 = 1, Tij = 0 for all other
i, j. Set p0 = (1, 0, 0, 0), i.e. the chain is always initialized at s1. Now, the summation over t in
Eqn 17 can be truncated at N = 4 without loss of generality (over N), given that T t+1 = T t for all
t ≥ 3. At ω = 0, one solution is:

h ∝ (−3/2,−1/2, 1/2, 3/2) (25)

Further, for all ω ≥ 0, one obtains h(s1) < h(s2) < h(s3) < h(s4), where the inequality is strict.
This is unlike Eqn 15 where h(s2) = h(s3), and consistent with the intuitive expectation that the
arrow of time must increase along irreversible transitions.

A.2 THE h-POTENTIAL VS. A FORWARD MODEL

Thus far, we have considered Markov chains, which relies on a notion of a transition matrix Tij
specifying p(st+1 = sj |st = si). Now, the transition probabilities can also be expressed as:

p(sj |si) := p(st+1 = sj |st = si) =
∑
a

p(st+1 = sj |st = si, at = a)π(a|si) (26)

7Interested readers may refer to the attached SymPy computation.

14

Published as a conference paper at ICLR 2020

where the variable a is called the action, and p(st+1 = sj |st = si, at = a) is the action-conditioned
one-step forward transition model, or simply a forward model. The distribution π(a|si) is called the
policy, and can characterize the behaviour of an agent.

Now, given the forward model and a policy, one could define a possible measure of reversibility as:

g(si → sj) = log

[
p(sj |si)
p(si|sj)

]
(27)

Indeed, g(si → sj) = 0 when p(sj |si) = p(si|sj), i.e. when the probability of transitioning from
state si to state sj equals that of transitioning from sj to si. Further, if the transition si → sj is
more likely than sj → si under the model and the policy, then we have that p(sj |si) > p(si|sj)
and consequently, g(si → sj) > 0 (and vice versa with i and j swapped). This raises the question:
can the quantity g(si → sj) replace h(si → sj) := h(sj) − h(si)? To answer this, consider the
following.

First, in non-ergodic processes, there may exist states si and sj for which both quantities p(sj |si)
and p(si|sj) are zero. In the Markov process in Figure 8, these could be states (si, sj) = (s1, s3)
or (si, sj) = (s1, s4). In both cases, however, we have that g(si → sj) is not defined. In fact, this
applies to any functional form g might take (i.e. it need not take the one specified in Eqn 27): as long
as g depends exclusively on p(si|sj) and p(sj |si), it is unable to differentiate between the two cases.
This is quite unlike h, where we know from Example 4 that h(s1 → s3) = 2 and h(s1 → s4) = 3.

Second, to obtain the quantity p(sj |si) required to evaluate g, we require a marginalization over
actions a. If a is discrete and the action space is small, this is a simple summation. However, for
large or even continuous action spaces, this marginalization amounts to an integral, which may not
be tractable in practice.

It is therefore evident that the reversibility measure g obtained with a one-step forward model need
not be consistent over multiple steps, and in that it differs from the h-potential. One may address this
by considering (in addition) τ -step models p(st+τ |st, at, at+1, ..., at+τ−1), but to obtain p(st+τ |st)
one must marginalize over at, at+1, ..., at+τ−1, which does not scale well with τ . Nevertheless, in
practice it might be possible to utilize the one-step model as a mean to obtain the h-potential. This
involves approximating the true transition matrix T with a learned matrix T̃ , which can then be used
to analytically evaluate h or to train a parameteric approximation to h from trajectories sampled
from the model in a manner analogous to DynaQ (Sutton & Barto, 2011).

CONCLUSION

In conclusion, we find that the functional objective defined in Eqn 1 may indeed lead to analytical
solutions that are consistent with the notion of an arrow of time in certain toy Markov chains, and
highlight the subtleties involved in relying on a one-step forward model to obtain a measure of
reversibility. However, in most interesting real world environments, the transition model T is not
known and or or the number of states is infeasibly large, rendering an analytic solution intractable.
In such cases, as we see in Section 5, it is possible to parameterize h as a neural network and train
the resulting model with stochastic gradient descent to optimize the functional objective defined in
Eqn 1.

15

Published as a conference paper at ICLR 2020

B ALGORITHM

Algorithm 1 Training the h-Potential

Require: Environment Env, random policy π], trajectory buffer B
Require: Model hθ, regularizer T , optimizer.

1: for k = 1...M do
2: B[k, :] ← (s0, ..., sN) ∼ Env[π]] {Sample a trajectory of length N with the random

policy and write to k-th position in the buffer.}
3: end for
4: loop
5: Sample trajectory index k ∼ {1, ...,M} and time-step t ∼ {0, ..., N − 1}. {In general, one

may sample multiple k’s and t’s for a larger mini-batch.}
6: Fetch states st ← B[k, t] and st+1 ← B[k, t + 1] from buffer.
7: Compute loss as L(θ) = −[hθ(st+1)− hθ(st)].
8: if using trajectory regularizer then
9: Compute regularizer term as [hθ(st+1)− hθ(st)]2 and add to L(θ).

10: else
11: Apply the regularizer as required. If early-stopping, break out of the loop if necessary.
12: end if
13: Compute parameter gradients∇θL(θ) and update parameters with the optimizer.
14: end loop

16

Published as a conference paper at ICLR 2020

0 20 40 60 80 100 120
t [Timestep]

5000

0

5000

10000

15000

20000

25000

(s
t

s t
+

1)

[P
ot

en
tia

l D
iff

er
en

ce
]

(a) TV-Noise

0 20 40 60 80 100 120
t [Timestep]

17500

20000

22500

25000

27500

30000

32500

35000

(s
t

s t
+

1)

[P
ot

en
tia

l D
iff

er
en

ce
]

(b) Causal Noise

Figure 9: The potential difference η plotted along trajectories, where the state-space is augmented with tem-
porally uncorrelated (TV-) and correlated (causal) noise. The dashed vertical lines indicate time-steps where a
vase is broken. Gist: while our method is fairly robust to TV-noise, it might get distracted by causal noise.

0 20 40 60 80 100 120
t [Timestep]

650000

600000

550000

500000

450000

400000

350000

300000

250000

h(
s t

)
[P

ot
en

tia
l]

Figure 10: The h-potential along a trajectory sam-
pled from a random policy. Gist: The h-potential
increases step-wise along the trajectory every time an
agent (irreversibly) breaks a vase. It remains constant
as the agent (reversibly) moves about.

1000000 800000 600000 400000 200000 0
h(St) [Potential]

0

50

100

150

200

250

300

350

Fr
eq

ue
nc

y

t = 0
t = 32
t = T

Figure 11: Histogram (over trajectories) of values
taken by h at time-steps t = 0, t = 32 and t = T =
128.

C EXPERIMENTAL DETAILS

All experiments were run on a workstation with 40 cores, 256 GB RAM and 2 nVidia GTX 1080Ti.

C.1 DISCRETE ENVIRONMENTS

C.1.1 2D WORLD WITH VASES

The environment state comprises three 7×7 binary images (corresponding to agent, vases and goal),
and the vases appear in a different arrangement every time the environment is reset. The probability
of sampling a vase at any given position is set to 1/2.

We use a two-layer deep and 256-unit wide ReLU network to parameterize the h-potential. It is
trained on 4096 trajectories of length 128 for 10000 iterations of stochastic gradient descent with
Adam optimizer (learning rate: 0.0001). The batch-size is set to 128, and we use a weight decay
of 0.005 to regularize the model. We use a validation trajectory to generate the plots in Fig 10 and
2. Moreover, Fig 11 shows histograms of the values taken by h at various time-steps along the
trajectory. We learn that h takes on larger values (on average) as t increases.

To test the robustness of our method, we conduct experiments where the environment state is aug-
mented with one of: (a) a 7× 7 image with uniform-randomly sampled pixel values (TV-noise) and
(b) a 7×7 image where every pixel takes the value t/128, where t is the time-step8 of the correspond-

8Recall that the trajectory length is set to 128.

17

Published as a conference paper at ICLR 2020

0 50000 100000 150000 200000 250000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

 R
ea

ch
in

g
th

e
Go

al

Without h-Potential
With h-Potential

(a) Probability of reaching the goal.

0 50000 100000 150000 200000 250000
Iterations

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

M
ea

n
Nu

m
be

r o
f V

as
es

 B
ro

ke
n

Without h-Potential
With h-Potential

(b) Number of vases broken.

Figure 12: Probability of reaching the goal and the expected number of vases broken, obtained over 100 eval-
uation episodes (per step). Gist: while the safety Lagrangian results in fewer vases broken, the probability of
reaching the goal state is compromised. This trade-off between safety and efficiency is expected (cf. Moldovan
& Abbeel (2012)).

ing state (Causal Noise). Fig 9a and 9b plot the corresponding η = ∆h along randomly sampled
trajectories.

Given a learned arrow of time, we now present an experiment where we use it to derive a safe-
exploration penalty (in addition to the environment reward). To that end, we now consider the
situation where the agent’s policy is not random, but specialized to reach the goal state (from its
current state). For both the baseline and the safe agents, every action is rewarded with the change
in Manhattan norm of the agent’s position to that of the goal – i.e. an action that moves the agent
closer to the goal is rewarded +1, one that moves it farther away from the goal is penalized −1,
and one that keeps the distance unchanged is neither penalized nor rewarded (0). Further, every step
is penalized by −0.1 (so as to keep the trajectories short), and exceeding the available time limit
(30 steps) incurs a termination penalty (−10). In addition, the reward function of the safe agent is
augmented with the reachability, i.e. it takes the form described in Eqn 4. We use β = 4 and a
transfer function σ such that σ(η) = 0 if η < 5000 (cf. Fig 2), and 1 otherwise.

The policy is parameterized by a 3-layer deep 256-unit wide (fully connected) ReLU network and
trained via Duelling Double Deep Q-Learning9 (Van Hasselt et al., 2016; Wang et al., 2015). The
discount factor is set to 0.99 and the target network is updated once every 200 iterations. For
exploration, we use a 1 − ε greedy policy, where ε is decayed linearly from 1 to 0.1 in the span
of the first 10000 iterations. The replay buffer stores 10000 experiences and the batch-size used is
10. Fig 12a shows the probability of reaching the goal (in an episode of 30 steps) over the iterations
(sample size 100), whereas Fig 12b shows the expected number of vases broken per episode (over
the same 100 episodes). Both curves are smoothed by a Savitzky-Golay filter (Savitzky & Golay,
1964) of order 3 and window-size 53 (the original, unsmoothed curves are shaded). As expected, we
find that using the safety penalty does indeed result in fewer vases broken, but also makes the task
of reaching the goal difficult (we do not ensure that the goal is reachable without breaking vases).

C.1.2 2D WORLD WITH DRYING TOMATOES

The environment considered comprises a 7 × 7 2D world where each cell is initially occupied by
watered tomato plant10. The agent waters the cell it occupies, restoring the moisture level of the
plant in the said cell to 100%. However, for each step the agent does not water a plant, it loses some
moisture (by 2% of maximum in our experiments). If a plant loses all moisture, it is considered dead
and no amount of watering can resurrect it. The state-space comprises two 7 × 7 images: the first
image is an indicator of the agent’s position, whereas the pixel values of the second image quantifies
the amount of moisture held by the plant11 at the corresponding location.

9We adapt the implementation due to Shangtong (2018).
10We draw inspiration from the tomato-watering environment described in Leike et al. (2017).
11This is a strong causal signal which may distract the model. We include it nonetheless to make the task

more challenging.

18

Published as a conference paper at ICLR 2020

0 20 40 60 80 100 120
t [Timestep]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
tri

ns
ic

Re
wa

rd
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re
fe

re
nc

e
Re

wa
rd

Intrinsic Reward
Reference Reward

Figure 13: The intrinsic reward (Eqn 28) plotted against an engineered reward, which in this case is the amount
of moisture gained by the tomato plant the agent just watered. Gist: the h-Potential captures useful information
about the environment, which can then be utilized to define intrinsic rewards.

We show that it is possible to recover an intrinsic reward signal that coincides well with one that
one might engineer. To that end, we parameterize the h-potential as a two-layer deep 256-unit wide
ReLU network and train it on 4096 trajectories (generated by a random policy) of length 128 for
10000 iterations of Adam (learning rate: 0.0001). The batch-size is set to 128 and the model is
regularized with the trajectory regularizer (λ = 0.5).

Unsurprisingly, we find that h increases as the plants lose moisture. But conversely, when the agent
waters a plant, it causes the h-potential to decrease by an amount that strongly correlates with the
amount of moisture the watered plant gains. This can be used to define a dense reward signal for the
agent:

r̂t = −{η(st−1 → st)− RunningAveraget[η]} (28)

where we use a momentum of 0.95 to evaluate the running average.

In Fig 13, we plot for a random trajectory the intrinsic reward r̂t against a reference reward, which
in this case is the moisture gain of the plant the agent just watered. Further, we observe the reward
function dropping significantly at around the 90-th iteration - this is precisely when all plants have
died. This demonstrates that the h-potential can indeed be useful for defining intrinsic rewards.

C.1.3 SOKOBAN

0 100 200 300 400 500
Timestep

20

15

10

5

0

5

h-
Po

te
nt

ia
l

Figure 14: h-Potential averaged over 8000 trajectories, plotted against timestep t; shaded band shows the
standard deviation. Gist: as required by its objective (Eqn 1), the h-Potential must increase in expectation
along trajectories.

19

Published as a conference paper at ICLR 2020

(a) States at time t. (b) States at time t+ 1.

Figure 15: Random samples from 200 transitions that cause the largest increase in the h-potential (out of a
sample size of 8000 transitions). The orange, white, blue and green sprites correspond to a wall, the agent, a
box and a goal marker respectively. Gist: pushing boxes against the wall increases the h-potential.

The environment state comprises five 10× 10 binary images, where the pixel value at each location
indicates the presence of the agent, a box, a goal, a wall and empty space. The layout of all sprites are
randomized at each environment reset, under the constraint that the game is still solvable (Schrader,
2018). The h-potential is parameterized by a two-layer deep and 512-unit wide network, which is
trained on 4096 trajectories of length 512 for 20000 steps of Adam (learning rate: 0.0001). The
batch-size is set to 256 and we use the trajectory regularizer (λ = 0.05) to regularize our model.

C.1.4 CONVEYOR BELT ENVIRONMENT OF KRAKOVNA ET AL. (2018)

Figure 16: The initial state of the conveyor belt environment with an agent (orange robot), a vase (blue) and a
conveyor belt (red arrows). The conveyor belt carries the vase rightwards, until it falls off it and breaks.

The environment considered is a 5× 5 2D world (Fig 16) with an agent, a conveyor belt and a vase
that is initially placed on the belt (this is the Vase environment in Krakovna et al. (2018)). If the
agent is passive (i.e. it stays put, Fig 17b), the conveyor belt moves the vase one step to the right
until it eventually falls off the belt and breaks. However, the intended behaviour of a safe (good)
agent (Fig 17a) is that it removes the vase from the conveyor belt, preventing it from breaking. One
may also have a malicious agent (Fig 17c) that removes the vase from the belt (e.g. to collect a
reward) only to put it back on it again. In contrast, an inept agent (Fig 17d) may remove the vase
from the belt but irreversibly push it to a corner (like in Sokoban). In the following, we investigate
the safety-reward that is awarded by the h-potential to each of these policies, which we label good,
passive, malicious and inept.

20

Published as a conference paper at ICLR 2020

(a) Good Agent. (b) Passive Agent. (c) Malicious Agent. (d) Inept Agent.

Figure 17: Illustration of the policies we use to test the safety reward assigned by the h-potential. Gist: the
good agent removes the vase from the vase and stays put. The passive policy stays put and does nothing as the
vase falls off the belt. The malicious policy removes the vase from the belt (possibly to collect a reward) only
to put it back on it again. The inept policy removes the vase from the belt, but pushes it to a corner (the agent
lacks the ability to pull it back).

To that end, we gather 4096 random trajectories of length 64 each. The h-potential is parameterized
by a 256-unit wide and 2-layer deep MLP with ReLU activation, and trained with 80000 steps of
stochastic gradient descent with Adam Kingma & Ba (2014). We use a trajectory regularizer with
λ = 0.01 to regularize the model. The state space is a collection of 6 binary images of size 7 × 7,
where in each image the truth value of a pixel marks the presence of a wall, empty space, belt, agent,
vase and a broken vase in the corresponding location12.

As the model trains, we track the return it awards to the four policies mentioned above (to aid
visualization, we normalize the rewards to have a mean of zero) and plot the result in Fig 18. We
find that the h-potential rewards the good policy, but penalizes the passive, malicious and inept
policies. This can be contrasted with the predefined safety performance measure, which assigns a
safety score of +50 to the good and inept agents, 0 to the malicious agent and −50 to the passive
agent13 (larger score is safer). Our method therefore learns that pushing the vase to a corner is no
less irreversible than breaking it (malicious and passive) and penalizes the inept policy accordingly.

0 10000 20000 30000 40000 50000 60000 70000 80000
Iterations

60

40

20

0

20

40

60

80

Re
la

tiv
e

Re
tu

rn
s

Good Policy
Passive Policy
Malicious Policy
Inept Policy

Figure 18: The normalized returns awarded to the various policies discussed in text and illustrated in Fig 17,
averaged over 5 training runs (shaded bands are the standard deviations). Gist: the h-potential penalizes all
irreversible behaviour, including the vase being pushed in to a corner by the inept policy (in addition to it falling
off the belt due to the passive and malicious policies).

To conclude, we confirm that the safety reward extracted from the h-potential can enable agents to
avoid irreversible behaviour. However, while preventing the irreversible is safe in this context, it
may not always be the case – we point the reader to the Sushi environment in Krakovna et al. (2018)
for an example14.

12cf. implementation in https://github.com/deepmind/ai-safety-gridworlds under
environments/conveyor belt.py.

13We refer to the implementation in https://github.com/deepmind/ai-safety-gridworlds
14The object on the belt is Sushi instead of a vase, and the belt leads to a hungry human.

21

Published as a conference paper at ICLR 2020

3 2 1 0 1 2 3
Angle

8

6

4

2

0

2

4

6

8

An
gu

la
r V

el
oc

ity

2.8

2.4

2.0

1.6

1.2

0.8

0.4

0.0

0.4

(a) Learned h-Potential as a function of the state-
space (θ, θ̇). Overlaid are trajectories from a random
policy.

3 2 1 0 1 2 3
Angle [rad]

0.5

0.0

0.5

1.0

1.5

2.0

h(
x

=
,v

=
0)

[N
eg

at
iv

e
Po

t.
at

 Z
er

o
Ve

lo
cit

y]

(b) Negative of the learned h-Potential as a function
of θ when θ̇ = 0.

Figure 19: Gist: the learned h-Potential takes large values around (θ, θ̇) = 0, since that is where most
trajectories terminate due to the effect of damping.

C.2 CONTINUOUS ENVIRONMENTS

C.2.1 UNDER-DAMPED PENDULUM

Under-damped Pendulum. The environment considered simulates an under-damped pendulum,
where the state space comprises the angle15 θ and angular velocity θ̇ of the pendulum. The dynamics
are governed by the following differential equation where τ is the (time-dependent) torque applied
by the agent and m, l, g are constants:

θ̈ =
−3g

2l
sin(θ) +

3τ

ml2
− αθ̇ (29)

We adapt the implementation in OpenAI Gym (Brockman et al., 2016) to add an extra term αθ̇ to
the dynamics to simulate friction. In our experiments, we set g = 10, m = l = 1, α = 0.1 and the
torque τ is uniformly sampled iid. from the interval [−2, 2].

The h-Potential is parameterized by a two-layer 256-unit wide ReLU network, which is trained on
4096 trajectories of length 256 for 20000 steps of stochastic gradient descent with Adam (learning
rate: 0.0001). The batch-size is set to 1024 and we use the trajectory regularizer with λ = 1 to
regularize the network. Fig 19a plots the learned h-potential (trained with trajectory regularizer)
as a function of the state (θ, θ̇) whereas Fig 19b shows the negative potential for all angles θ at
zero angular velocity, i.e. θ̇ = 0. We indeed find that states in the vicinity of θ = 0 have a larger h-
potential, owing to the fact that all trajectories converge to (θ, θ̇) = 0 for large t due to the dissipative
action of friction.

C.2.2 CONTINUOUS MOUNTAIN CAR

The environment16 considered is a variation of Mountain Car (Sutton & Barto, 2011), where the
state-space is a tuple (x, ẋ) of the position and velocity of a vehicle on a mountainous terrain. The
action space is the interval [−1, 1] and denotes the force f applied by the vehicle. The dynamics of
the modified environment is given by the following equation of motion:

ẍ = ζf − 0.0025 cos 3x− αẋ (30)

where ζ and α are constants set to 0.0015 and 0.1 respectively, and the velocity ẋ is clamped to
the interval [−0.07, 0.07]. Our modification is the last αẋ term to simulate friction. Further, the
initial state (x, ẋ) is sampled uniformly from the state space S = [−1.2, 0.6]× [−0.07, 0.07]. This

15θ is commonly represented as (cos(θ), sin(θ)) instead of a scalar.
16We adapt the implemetation due to Brockman et al. (2016), available here:

github.com/openai/gym/blob/master/gym/envs/classic control/continuous mountain car.py

22

Published as a conference paper at ICLR 2020

can potentially be avoided if an exploratory policy is used (instead of the random policy) to gather
trajectories, but we leave this for future work.

The h-potential is parameterized by a two-layer 256-unit wide ReLU network, which is trained on
4096 trajectories of length 256 for 20000 steps of stochastic gradient descent with Adam (learning
rate: 0.0001). The batch-size is set to 1024 and we use the trajectory regularizer with λ = 1.

C.3 LEARNING THE h-POTENTIAL WHILE SIMULTANEOUSLY EXPLORING THE
ENVIRONMENT

Recall that the policy we have thus-far used to gather the trajectories required to train the h-potential
is random (cf. Sec 2.2). While the use of random policies is ubiquitous in the model-based and
related literature (Ha & Schmidhuber, 2018; Savinov et al., 2018; Kulkarni et al., 2019; Anand
et al., 2019), it typically comes at a price: namely, the lack of adequate exploration in complex
enough environments (Ha & Schmidhuber, 2018). In this section, we investigate possible strategies
towards approaching this problem in the context of learning an h-potential. We stress that the results
in this section are preliminary and the discussion below is intended to showcase the challenges that
lie in the way; much more future work will be needed to holistically address this important issue in
a principled manner.

To proceed, we consider again the environment of Mountain Car with Damping (cf. Sec 5 and
App C.2.2), but with the amendment that the car is initialized in the valley with zero velocity. We
choose this task because it is small enough for fast iteration and easy visualization, yet it poses
a difficult exploration problem for an appropriate choice of environment parameters17, given that
the car may not climb far out of the valley by simply applying a constant action. Likewise, random
actions are not enough to adequately explore the state-space in order to learn the h-potential (Fig 20).

1.00 0.75 0.50 0.25 0.00 0.25 0.50
Position

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Ve
lo

cit
y

60

48

36

24

12

0

12

24

36

Figure 20: Random trajectories (white curves emanating from the dots) overlayed on the h-potential as a
function of state (position and velocity). Gist: the h-potential trained on random trajectories fails to wholly
characterize the dynamics of the considered environment. This is due to a lack of adequate exploration by the
random policy.

The approach we describe can be thought of as bootstrapping the h-potential by using an exploratory
policy in tandem with a random policy and a trajectory buffer. The procedure (adapted from Anony-
mous (2019)) is as following:

1. Initialize a trajectory buffer and fill it with trajectories from a random policy (starting at the
environment specified initial states, i.e. in the valley).

17In particular, the friction parameter α and the force ζ in Eqn 30, where the latter can be thought of as the
power of the car. We use α = 0.1 and ζ = 0.0025, which we assure ourselves is not enough for the car to
reach the top of the mountain by applying a constant action.

23

Published as a conference paper at ICLR 2020

1.00 0.75 0.50 0.25 0.00 0.25 0.50
Position

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Ve
lo

cit
y

45

36

27

18

9

0

9

18

(a) With exploration bias.

1.00 0.75 0.50 0.25 0.00 0.25 0.50
Position

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Ve
lo

cit
y

32.0

25.6

19.2

12.8

6.4

0.0

6.4

12.8

19.2

25.6

(b) With random rewards.

Figure 21: The h-potential as a function of state (position and velocity). The overlaid curves (in white,
emanating from the dots) show samples from the trajectory buffer used to train the respective h-potential. Gist:
we find in Fig 21a that the exploration bias causes the h-potential to over-specialize to one section of the
state-space whilst ignoring the other. This can be contrasted with Fig 21b, where the trajectories are gathered
by initializing a random policy at states reached by exploratory policies trained to maximize random reward
functions.

2. Train (from scratch) the h-potential with transitions available in the trajectory buffer.

3. Train (from scratch) an exploratory policy to minimize the h-potential (cf. Sec 3.3).

4. Use the exploratory policy to transition to a difficult-to-reach state.

5. Initialize the random policy at the said state, and use it to gather more trajectories that
randomly replace a fraction18 of the existing trajectories in the buffer.

6. Repeat steps 2-6.

The trajectories gathered in step 5 are mixed with previously gathered trajectories to improve the
stability of the training procedure. Moreover, note that the h-potential and the exploratory policies
are reinitialized and trained from scratch at every iteration (step 6) to counteract the exploration-
bias detailed below. Further, the exploratory policy is parameterized by a NoisyNet (Fortunato
et al., 2017) to (locally) aid exploration.

Unfortunately, the above procedure runs in to the problem that the exploratory policy adapts to
the h-potential (in step 3), and the h-potential in turn adapts to the exploratory policy (in step 5).
This circular adaptation, which we call the exploration bias, leads to the situation where the h-
potential (correctly) learns that the mountain to the right is difficult to climb (Fig 21a, positions
> −0.52), whereas the mountain to the right is left unexplored (because it is initially assigned
a larger values). Consequently, the exploratory policy minimizing the h-potential will focus on
climbing the mountain to the right whilst ignoring the one to the left (cf. Fig 21a), which in results
in more trajectories gathered for the right mountain (and none for the left).

To side-step the exploration bias, we resort to pre-populating the trajectory buffer with trajectories
gathered by a random policy initialized at states reached by exploratory policies trained on random
reward potentials. Precisely, we replace the the h-potential by a randomly initialized neural network,
use it to train the exploratory policy, use the exploratory policy for a random number of steps to
transition to a state, use that state as the initial state of a random policy, gather trajectories to populate
the buffer, and repeat a few times over (5 in our experiments). The result is a trajectory buffer that is
populated with a more diverse set of trajectories. The intuition behind this heuristic is that a random
reward potential will attract the exploratory policy to random locations in the state space, leading to
a more diverse set of trajectories. That said, we have not studied the efficiency of this strategy and
its feasibility in other environments.

180.5 in our experiments.

24

Published as a conference paper at ICLR 2020

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

315
280
245
210
175
140
105
70
35

0

Figure 22: Learned h-Potential as a function of position x. Observe the qualitative similarity to the potential
Ψ defined in Eqn 32.

With the trajectory buffer pre-populated, we train the h-potential to obtain the result19 in Fig 21b,
which can be compared to Fig 5a.

In conclusion, we presented a preliminary investigation of strategies towards attacking the explo-
ration issues that may arise when training the h-potential (or model-based methods in general).
Concretely, we formulated the strategy of bootstrapping (Anonymous, 2019), but found that it can
be subject to what we called exploration bias. We side-stepped the exploration bias by using a pop-
ulation of exploratory policies trained to maximize random reward functions, which lead to trajec-
tories diverse enough to train the h-potential for the environment considered. We remain optimistic
that a well-crafted algorithm combining bootstrapping with random rewards might be fruitful even
in complex environments, but leave a thorough investigation to future work.

C.4 COMPARISON WITH THE FREE-ENERGY FUNCTIONAL

The environment state at a given time-step t comprises two scalars, the x1(t) and x2(t) coordinates
of the particle’s position x(t). Recall that the dynamics is defined by:

dX(t) = −∇Ψ(X(t))dt+
√

2β−1dW(t) (31)

where X(t) is the stochastic process associated with the particle’s position x(t). In our experiments,
the potential is given by:

Ψ(x) =
x2

1

20
+
x2

2

40
(32)

which makes X(t) a two dimensional Ornstein-Uhlenbeck process with temperature parameter√
2β−1 set to 0.3. Further, Ex∼ρ(·,t)[Ψ] (in Eqn 8) is estimated via Monte-Carlo sampling, the

differential entropy Ex∼ρ(·,t)[log ρ(·, t)] via a non-parametric estimator (Kozachenko & Leonenko,
1987; Kraskov et al., 2004; Gao et al., 2015), and the linear transform coefficients for H via linear
regression.

We train a two-layer deep, 512-unit wide network on 8092 trajectories of length 64 for 20000 steps
of stochastic gradient descent with Adam (learning rate: 0.0001). The batch-size is set to 1024
and the network is regularized by weight decay (with coefficient 0.0005). Fig 22 shows the learned
h-potential as a function of position x. Fig 6 compares the free-energy functional with the learnt
arrow of time given by the linearly scaled H-functional. To obtain the linear scaling parameters
for the H , we find parameters w and b such that

∑N
t=0(wH[ρ(·, t)] + b− F [ρ(·, t)])2 is minimized

(constraining w to be positive), i.e. by solving a linear regression problem. Finally, Fig 22 plots h as
a function of state x ∈ R2, whereas Fig 6 shows that after appropriate (linear) scaling, the learned
H largely agrees with the true F .

19We tried refining the h-potential with a few iterations of bootstrapping, but that did not significantly change
the result.

25

Published as a conference paper at ICLR 2020

The linear adjustment is done to account for the arbitrary scaling of H and F ; the crucial detail
is that H is also a Lyapunov functional of the dynamics, i.e. it decreases montonously with time.
This arbitrariness results from various aspects. First, observe that while the dynamics in Eqn 31 is
invariant to a constant shift in potential Ψ, the Free Energy functional F is not – from Eqn 8, we
see that adding a constant to the potential Ψ results in the same constant being added to F (for all
t). This justifies adding a constant shift to H as appropriate. Moreover, the scale of h-potential is
controlled by the regularizing coefficient λ, which is arbitrary with respect to the scale of the Free
Energy functional F .

26

	Introduction
	The h-Potential
	Formalism
	Subtleties

	Applications with Related Work
	Measuring Reachability
	Detecting and Penalizing Side Effects for Safe Exploration
	Rewarding Curious Behaviour

	Algorithm
	Experiments
	Theoretical Analysis
	Analytical Solution to Eqn 1 and Application to Toy Markov Chains
	The h-Potential vs. a Forward Model

	Algorithm
	Experimental Details
	Discrete Environments
	2D World with Vases
	2D World with Drying Tomatoes
	Sokoban
	Conveyor Belt Environment of krakovna2018measuring

	Continuous Environments
	Under-damped Pendulum
	Continuous Mountain Car

	Learning the h-Potential While Simultaneously Exploring the Environment
	Comparison with the Free-Energy Functional

