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Abstract

In the past few years, various advancements
have been made in generative models owing
to the formulation of Generative Adversarial
Networks (GANs). GANs have been shown
to perform exceedingly well on a wide vari-
ety of tasks pertaining to image generation
and style transfer. In the field of Natural
Language Processing, word embeddings such
as word2vec and GLoVe are state-of-the-art
methods for applying neural network mod-
els on textual data. Attempts have been
made for utilizing GANs with word embed-
dings for text generation. This work presents
an approach to text generation using Skip-
Thought sentence embeddings in conjunction
with GANs based on gradient penalty func-
tions and f-measures. The results of using
sentence embeddings with GANs for gener-
ating text conditioned on input information
are comparable to the approaches where word
embeddings are used.

1. Introduction

Numerous efforts have been made in the field of nat-
ural language text generation for tasks such as senti-
ment analysis (Zhang et al., 2018) and machine trans-
lation (Gangi & Federico; Qian et al., 2018). Early
techniques for generating text conditioned on some in-
put information were template or rule-based engines,
or probabilistic models such as n-gram. In recent
times, state-of-the-art results on these tasks have been
achieved by recurrent (Press et al.; Mikolov et al.,
2010) and convolutional neural network models trained
for likelihood maximization. This work proposes an

Code available at:
https://github.com/enigmaeth/skip-thought-gan

approach for text generation using Generative Adver-
sarial Networks with Skip-Thought vectors.

GANs (Goodfellow et al., 2014) are a class of neural
networks that explicitly train a generator to produce
high-quality samples by pitting against an adversarial
discriminative model. GANs output differentiable val-
ues and hence the task of discrete text generation has
to use vectors as differentiable inputs. This is achieved
by training the GAN with sentence embedding vectors
produced by Skip-Thought (Kiros et al., 2015), a neu-
ral network model for learning fixed length represen-
tations of sentences.

2. Related Works

Deep neural network architectures have demonstrated
strong results on natural language generation tasks
(Xie, 2017). Recurrent neural networks using combi-
nations of shared parameter matrices across time-steps
(Sutskever et al., 2014; Mikolov et al., 2010; Cho et al.,
2014) with different gating mechanisms for easing opti-
mization (Hochreiter & Schmidhuber, 1997; Cho et al.,
2014) have found some success in modeling natural
language. Another approach is to use convolutional
neural networks that reuse kernels across time-steps
with attention mechanism to perform language gener-
ation tasks (Kalchbrenner et al., 2016; 2014).

Supervised learning with deep neural networks in the
framework of encoder-decoder models has become the
state-of-the-art methods for approaching NLP prob-
lems (Young et al.). Stacked denoising autoencoder
have been used for domain adaptation in classifying
sentiments (Glorot et al., 2011) and combinatory cate-
gorical autoencoders demonstrate learning the compo-
sitionality of sentences (Hermann & Blunsom, 2013).
Recent text generation models use a wide variety of
GANSs such as gradient policy based sequence gener-
ation framework (Yu et al., 2016) and an actor-critic
conditional GAN to fill missing text conditioned on
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surrounding text (Fedus et al., 2018) for performing
natural language generation tasks. Other architec-
tures such as those proposed in (Wang et al., 2017)
with RNN and variational auto-encoder generator with
CNN discriminator and in (Guo et al., 2017) with leaky
discriminator to guide generator through high-level ex-
tracted features have also shown great results.

3. Skip-Thought Generative
Adversarial Network (STGAN)

This section introduces Skip-Thought Generative Ad-
versarial Network with a background on models that
it is based on. The Skip-Thought model (Kiros et al.,
2015) induces embedding vectors for sentences present
in training corpus. These vectors constitute the real
distribution for the discriminator network. The gen-
erator network produces sentence vectors similar to
those from the encoded real distribution. The gener-
ated vectors are sampled over training and decoded to
produce sentences using a Skip-Thought decoder con-
ditioned on the same text corpus.

3.1. Skip-Thought Vectors

Skip-Thought is an encoder-decoder framework with
an unsupervised approach to train a generic, dis-
tributed sentence encoder. The encoder maps sen-
tences sharing semantic and syntactic properties to
similar vector representations and the decoder recon-
structs the surrounding sentences of an encoded pas-
sage. The sentence encoding approach draws inspi-
ration from the skip-gram model in producing vector
representations using previous and next sentences.

The Skip-Thought model uses an RNN encoder with
GRU activations (Chung et al., 2014) and an RNN
decoder with conditional GRU, the combination being
identical to the RNN encoder-decoder of (Cho et al.,
2014) used in neural machine translation.

3.1.1. SKIP-THOUGHT ARCHITECTURE

For a given sentence tuple (s;_1, s;,si+1), let w! de-
note the ¢-th word for sentence s;, and let x! denote its
word embedding. The model has three components:
Encoder. Encoded vectors for a sentence s; with N
words w’, w't!,...,w™ are computed by iterating over
the following sequence of equations:

rt = o(W,x* + U,ht 1)

7' = 0(W,x* + U,h*™1)

Bt = tanh(Wx® + U(r* @ h*™1))
ht = (1 -2t ©ht 1 + 2t @Rt

where h! is a hidden state at each time step and in-
terpreted as a sequence of words w},...,w? A is the
proposed state update at time ¢, z° is the update gate
and r? is the reset gate. Both update gates take values
between zero and one.

Decoder. A neural language model conditioned on
the encoder output h; serves as the decoder. Bias ma-
trices C,, C}., C are introduced for the update gate,
reset gate and hidden state computation by the en-
coder. Two decoders are used in parallel, one each for
sentences s; + 1 and s; — 1. The following equations
are iterated over for decoding:

rf = o(Wax* 1 4+ Udht~! + C,hy)

zt — O,(Wcz:lxtfl + U;ihtfl + C,hy)

i* = tanh(W9x*1 + Ud(r* © h*~1) + Chy)
hf,=1-z"0h" '+ 0h

Objective. For the same tuple of sentences, objective
function is the sum of log-probabilities for the forward
and backward sentences conditioned on the encoder
representation:

ZlogP(w§+1|wﬁ1,hi) + ZlogP(wf_ﬂwf_tl,hi)
¢ ¢

3.2. Generative Adversarial Networks

Generative Adversarial Networks (Goodfellow et al.,
2014) are deep neural net architectures comprised of
two networks, contesting with each other in a zero-sum
game framework. For a given data, GANs can mimic
learning the underlying distribution and generate ar-
tificial data samples similar to those from the real dis-
tribution. Generative Adversarial Networks consists
of two players - a Generator and a Discriminator. The
generator G tries to produce data close to the real dis-
tribution P(z) from some stochastic distribution P(z)
termed as noise. The discriminator D’s objective is to
differentiate between real and generated data G(z).

The two networks - generator and discriminator com-
pete against each other in a zero-sum game. The min-
imax strategy dictates that each network plays opti-
mally with the assumption that the other network is
optimal. This leads to Nash equilibrium which is the
point of convergence for GAN model.

Objective. (Goodfellow et al., 2014) have formulated
the minimax game for a generator G, discriminator D
adversarial network with value function V(G, D) as:

mGin max V(D,G) =Eqpyoia(@)logD(x) ]+

Eznp.(z)[log (1 = D(G(2)))]
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Figure 1. Skip-Thought Generative Adversarial Network model architecture

3.3. Model Architecture

The STGAN model uses a deep convolutional gener-
ative adversarial network, similar to the one used in
(Radford et al.). The generator network is updated
twice for each discriminator network update to pre-
vent fast convergence of the discriminator network.

The Skip-Thought encoder for the model encodes sen-
tences with length less than 30 words using 2400 GRU
units (Chung et al., 2014) with word vector dimen-
sionality of 620 to produce 4800-dimensional combine-
skip vectors. (Kiros et al., 2015). The combine-skip
vectors, with the first 2400 dimensions being uni-skip
model and the last 2400 bi-skip model, are used as
they have been found to be the best performing in the
experiments!. The decoder uses greedy decoding tak-
ing argmax over softmax output distribution for given
time-step which acts as input for next time-step. It
reconstructs sentences conditioned on a sentence vec-
tor by randomly sampling from the predicted distribu-
tions with or without a preset beam width. Unknown
tokens are not included in the vocabulary. A 620 di-
mensional RNN word embeddings is used with 1600
hidden GRU decoding units. Gradient clipping with
Adam optimizer (Kingma & Ba, 2014) is used, with a
batch size of 16 and maximum sentence length of 100
words for decoder.

3.4. Improving Training and Loss

The training process of a GAN is notably difficult (Sal-
imans et al., 2016) and several improvement techniques
such as batch normalization, feature matching, his-
torical averaging (Salimans et al., 2016) and unrolling
GAN (Metz et al.) have been suggested for making the
training more stable. Training the Skip-Thought GAN
often results in mode dropping (Arjovsky & Bottou;
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Srivastava et al.) with a parameter setting where it
outputs a very narrow distribution of points. To over-
come this, it uses minibatch discrimination by looking
at an entire batch of samples and modeling the dis-
tance between a given sample and all the other samples
present in that batch.

The minimax formulation for an optimal discriminator
in a vanilla GAN is Jensen-Shannon Distance between
the generated distribution and the real distribution.
(Arjovsky et al., 2017) used Wasserstein distance or
earth mover’s distance to demonstrate how replacing
distance measures can improve training loss for GAN.
(Gulrajani et al., 2017) have incorporated a gradient
penalty regularizer in WGAN objective for discrimi-
nator’s loss function. The experiments in this work
use the above f-measures to improve performance of
Skip-Thought GAN on text generation.

4. Results and Discussion
4.1. Conditional Generation of Sentences.

GANSs can be conditioned on data attributes to gener-
ate samples (Mirza & Osindero, 2014; Radford et al.).
In this experiment, both the generator and discrimi-
nator are conditioned on Skip-Thought encoded vec-
tors (Kiros et al., 2015). The encoder converts 70000
sentences from the BookCorpus dataset (Zhu et al.,
2015) with a training/test/validation split of 5/1/1
into vectors used as real samples for discriminator.
The decoded sentences are used to evaluate model
performance under corpus level BLEU-2, BLEU-3 and
BLEU-4 metrics (Papineni et al.), once using only test
set as reference and then entire corpus as reference.
Table 1 compares these results for different architec-
tures that have been experimented with in this paper.


https://github.com/ryankiros/skip-thoughts/

Generating Text through Adversarial Training using Skip-Thought Vectors

Model Test set Complete corpus reference
BLEU-3 BLEU-2 | BLEU-3 | BLEU-4
STGAN 0.521 0.709 0.564 0.525
STGAN (minibatch) 0.526 0.745 0.607 0.531
STGAN-GP 0.558 0.791 0.621 0.547
STWGAN 0.582 0.833 0.669 0.580
STWGAN-GP 0.617 0.836 0.682 0.594

Table 1. BLEU-2, BLEU-3 and BLEU-4 metric scores for different models with (a) test set as reference, and
(b) entire corpus as reference. ST: Skip-Thought, GAN: Generative Adversarial Network, W: Wasserstein

Mode collapse

With minibatch discrimination

With gradient penalty

it ? it a bottle ?
it ? a glass bottle 7
it ? a glass bottle it ?

it ? how would it ?
it ? how would it ?

it my hand a bottle 7
the phone my hand it

battery is eighteen percent um ?
what fine are cash please 7
you’re gonna go over the t- house .
do you have a nice store around here?
open this flight number six zero one.

Wasserstein STGAN

Wasserstein STGAN with gradient penalty

we have new year ’s holidays, always.
here you can n’t see your suitcase ,
please show me how much is a transfer?
i had a police take watch out of my wallet .
here i collect my telephone card and telephone number

my passport and a letter card with my card , please

here on my telephone, mr. kimura’s registration card’s address.

i can n’t see some shopping happened .
get him my camera found a person ’s my watch .

delta airlines flight six zero two from six p.m. to miami, please?

Table 2. Sample sentences generated from training on CMU-SE Dataset; mode collapse is overcome by using minibatch

discrimination.
gradient penalty regularizer.

4.2. Language Generation.

Language generation is done on a dataset comprising
simple English sentences referred to as CMU-SE? in
(Rajeswar et al., 2017). The CMU-SE dataset consists
of 44,016 sentences with a vocabulary of 3,122 words.
For encoding, the vectors are extracted in batches of
sentences having the same length. The samples rep-
resent how mode collapse is manifested when using
least-squares distance (Mao et al., 2016) f-measure
without minibatch discrimination. Table 2(a) contains
sentences generated from STGAN using least-squares
distance (Mao et al., 2016) in which there was no
mode collapse observed, while 2(b) contains examples
wherein it is observed. Table 2(c) shows generated sen-
tences using gradient penalty regularizer(GAN-GP).
Table 2(d) has samples generated from STGAN when
using Wasserstein distance f-measure as WGAN (Ar-
jovsky et al., 2017)) and 2(e) contains samples when
using a gradient penalty regularizer term as WGAN-
GP (Gulrajani et al., 2017).

*https://github.com/clab/sp2016.11-731/tree/
master/hw4/data

Formation of sentences further improved by changing f-measure to Wasserstein distance along with

4.3. Further Work

Another performance metric that can be computed for
this setup has been described in (Rajeswar et al., 2017)
which is a parallel work to this. Simple CFG? and
more complex ones like Penn Treebank CFG generate
samples (Eisner & Smith, 2008) which are used as in-
put to GAN and the model is evaluated by computing
the diversity and accuracy of generated samples con-
forming to the given CFG.

Skip-Thought sentence embeddings can be used to
generate images with GANs conditioned on text vec-
tors for text-to-image conversion tasks like those
achieved in (Reed et al.; Bodnar, 2018). These em-
beddings have also been used to Models like neural-
storyteller* which use these sentence embeddings can
be experimented with generative adversarial networks
to generate unique samples.

Shttp://www.cs.jhu.edu/~jason/465/hw-grammar/
extra-grammars/holygrail

‘https://github.com/ryankiros/
neural-storyteller
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