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ABSTRACT

We present coupled ensembles of neural networks, which is a reconfiguration of
existing neural network models into parallel branches. We empirically show that
this modification leads to results on CIFAR and SVHN that are competitive to
state of the art, with a greatly reduced parameter count. Additionally, for a fixed
parameter, or a training time budget coupled ensembles are significantly better
than single branch models. Preliminary results on ImageNet are also promising.
Code for the experiments can be found at: https://github.com/vabh/
coupled_ensembles

1 INTRODUCTION

The design of early convolutional architectures (CNN) involved choices of hyper-parameters such
as: filter size, number of filters at each layer, and padding (LeCun et al., 1998; Krizhevsky et al.,
2012). Since the introduction of the VGGNet (Simonyan & Zisserman, 2014), ResNet (He et al.,
2016) and DenseNet (Huang et al., 2017), the design has moved towards following a template: filter
size of 3×3 and N features maps, down-sample to half the input resolution only by the use of either
maxpool or strided convolutions (Springenberg et al., 2015), doubling the number the feature maps
following each down-sampling operation, and “skip-connections” between non-contiguous layers.

Our work extends this template by adding another element, which we refer to as “coupled ensem-
bling”. In this set-up, the network is decomposed into several branches, each branch being func-
tionally similar to a complete CNN. We show that given a parameter budget, it is better to have the
parameters split among branches rather than having a single branch (which is the case for all current
networks). The activations of the parallel branches are combined by taking the arithmetic mean
of the individual log-probabilities. Combining these elements, we significantly match and improve
the performance of convolutional networks on CIFAR and SVHN datasets, with a heavily reduced
parameter count.

2 COUPLED ENSEMBLES

For the following discussion, we define some terms:

• Branch: the proposed model comprises several branches. The number of branches is denoted by
e. Each branch takes as input a data point and produces a score vector corresponding to the target
classes. Current design of CNNs are referred to as single-branch, having e = 1.

• Element block: the model architecture used to form a branch. In our experiments, we use
DenseNet-BC and ResNet with pre-activation as element blocks.

• Fuse Layer: the operation used to combine each of the parallel branches which make up our
model. In our experiments, each of the branches are combined by taking the mean of each of their
individual log probabilities over the target classes.

We consider neural network models which output a score vector of the same dimension as the num-
ber of target classes. This is usually implemented as a linear layer and referred to as a fully connected
(FC) layer. The differences among current neural network models is related to what is present before
the last FC layer. We are agnostic to this internal setup (however complex it may or may not be)
because the resulting “element block” always takes an image as input and produces a vector of N
values as output, parametrized by a tensor W .
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Figure 1: Coupled ensembles with mean of LogSoftMax for the fuse layer operation.

Table 1: Classification error comparison with the state of the art. The third and fourth groups of
rows compare coupled ensembles with single branch models for the same parameter budget.

Architecture C10+ C100+ SVHN #Params
ResNet pre-act. L = 164 k = 64 (He et al., 2016) 5.46 24.33 - 1.7M
ResNet pre-act. L = 1001 k = 64 4.92 22.71 - 10.2M
ResNet pre-activation L = 65 k = 64 e = 2 5.26 23.24 - 1.4M
ResNet pre-activation L = 164 k = 64 e = 4 3.96 18.84 - 6.8M
DenseNet-BC L = 100 k = 12 e = 1 4.77 22.87 1.79 0.8M
DenseNet-BC L = 112 k = 16 e = 1 4.47 20.73 1.83 1.7M
DenseNet-BC L = 130 k = 20 e = 1 3.86 19.62 1.84 3.4M
DenseNet-BC L = 160 k = 24 e = 1 3.74 18.43 1.88 6.9M
DenseNet-BC L = 166 k = 32 e = 1 3.68 17.68 1.88 13.0M
DenseNet-BC L = 190 k = 40 e = 1 3.75 17.22 1.79 25.8M
DenseNet-BC L = 82 k = 8 e = 3 4.30 21.25 1.66 0.8M
DenseNet-BC L = 82 k = 10 e = 4 3.78 19.92 1.62 1.6M
DenseNet-BC L = 88 k = 14 e = 4 3.57 17.68 1.55 3.5M
DenseNet-BC L = 88 k = 20 e = 4 3.18 16.79 1.57 7.0M
DenseNet-BC L = 94 k = 26 e = 4 3.01 16.24 1.50 13.0M
DenseNet-BC L = 106 k = 33 e = 4 2.99 15.68 1.53 25.1M

In our set-up, the model is composed of parallel branches and each branch produces a score vector
for the target categories. The score vectors are combined through the “fuse layer” during training and
the composite model produces a single prediction. We refer to this as coupled ensembles (Figure 1).
No additional parameters are introduced as the fuse layer is an arithmetic operation without any
learnable parameters.

3 EXPERIMENTS AND RESULTS

We use DenseNet Huang et al. (2017) as the element block. We train and evaluate on CI-
FAR Krizhevsky & Hinton (2009), SVHN Netzer et al. (2011) and ILSVRC2012 Russakovsky et al.
(2015) datasets. All yyperparameters for training set according to the description provided in the
papers of the element blocks.

3.1 COMPARISON WITH SINGLE BRANCH MODELS

We fix the parameter budget and compare the top-1 error for single branch DenseNet and coupled
ensembles with DenseNet element blocks. The results are in table 1. We see that for all parameter
counts, coupled ensembles (e > 1) perform significantly better. DenseNet-L88-k20-e4 has error of
16.79% with 7M parameters, which is better than the 25M parameter single branch DenseNet-L190-
k40-e1 model’s 17.22%. Additionally, with 25M parameters, a coupled ensemble model achieves
an error of 15.68%. In this case, coupled ensembles exceed the performance of single branch model
with 7× less parameters, and for the same number of parameters perform better by 2%. The first
four rows of table 1 show that using ResNet as the element block has similar results, with coupled
ensembles performing significantly better.
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Table 2: Coupled Ensembles of DenseNet-BC (e = 4) with different “fuse layer” combinations
versus a single branch model. Performance is given as the top-1 error rate (mean±standard deviation
for the individual branches) on the CIFAR-100 test set. Columns “L” and “k” denote the “element
block” architecture, “e” is the number of branches. Column “Avg.” indicates the type of “fuse
layer” during training (section 2); Column “Individual” is error of each branch; Columns “FC” and
“SM”(SoftMax) give the performance for “fuse layer” choices during inference.

L k e Avg. Individual FC SM Params

100 12 4 LSM 22.29±0.11 17.61 17.68 3.20M
100 12 4 none 23.13±0.09 18.42 18.85 3.20M
100 25 1 n/a 20.61 n/a n/a 3.34M
154 17 1 n/a 20.02 n/a n/a 3.29M

Table 3: Preliminary results on ImageNet with DenseNet element blocks.

L k e Params. Epochs Train time (h) Top-1 error

161 32 1 14.1M 90 162 31.21
121 30 2 14.1M 90 225 29.41
121 30 2 14.1M 64 160 29.83

3.2 COMPARISON WITH INDEPENDENTLY TRAINED MODELS

We next compare coupled ensembles to an ensemble of independently trained models. Row 4 of
table 2 shows the results obtained by an ensemble 4 DenseNet-L100-k12 models, each of which
where trained seperately. During inference, the models are combined by taking the mean of their
predicted log-probabilities. We compare this with DenseNet-L100-k12-e4, where each branch is
functionally equivalent to the individual single branch DenseNet models. First we see that error for
coupled ensembles is 17.61%, which is lower than the ensemble of independent models’ 18.42%.

In table 2, the column ‘Individual’ shows the error rate of branches. We observe that coupled en-
sembles’ branches have an error rate of 22.29±0.11. In contrast independent trainings of equivalent
models obtains an error rate of 23.13±0.09. This shows that the joint training in coupled ensembles
aids each branch to perform better than when they are trained separately.

3.3 IMAGENET

Preliminary results on the ILSVRC-2012 validation set show that coupled ensembles have a lower
error for a fixed parameter budget, as compared to a single branch model (DenseNet-L169-k32-e1)
(table 3). We can see that results from the smaller scale datasets are carried over to the larger scale
ILSVRC dataset. We also see that coupled ensembles perform better for a fixed training time (row 1
and 3 of table 3). Note that due to resource constraints, this was the strongest possible baseline that
we could train. Training was done on down sampled 256×256 images instead of taking crops from
the full sized images. Data augmentation consisted of random horizontal flips and random crops.

4 CONCLUSION

Coupled ensembles are a way of reconfiguring neural networks into ‘element blocks’, which resem-
ble CNNs. This improves upon existing models especially for a fixed parameter budget, leading to
competitive state of the art results. Additionally, the performances of the constituent element blocks
are better than the case where the same element blocks are trained independently without coupling.
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